The Foundations: Logic and Proofs

CSC-2259 Discrete Structures

K. Busch - LSU

Propositional Logic

Proposition is a declarative statement that
is either frue of false

Baton Rouge is the capital of Louisiana True
*Toronto is the capital of Canada False
-1+1=2 True
*2+2=3 False

Statements which are not propositions:

What time is it?
x+1 =2
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p = today is Thursday

Negation: —p = today is not Thursday

truth table
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p = today is Thursday
g =itis raining today

Conjunction:
p A Q =today is Thursday and it is raining today

truth table
P9 paQg

m Mmoo+ A
nm 4 A
M m M
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p = today is Thursday
g = today is Friday

Disjunction:
p v q = today is Thursday or today is Friday

truth table
P @ pva

m o4 A
m 4 m A
m o4 H

K. Busch - LSU 5

p = today is Thursday
q = today is Friday

Exclusive-or: one or the other but not both
p @ q = today is Thursday or today is Friday (but not both)

truth table
P 9 pe&q

m M o4
m 4 A
m o+ H4 ™
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(hypothesis) P = Maria learns discrete math

(conclusion) @ = Maria will find a good job

Conditional statement:
p — g = if Maria learns discrete math then she will find a good job

if pthengq truth table
p implies g I T [T
q follows from p I : :
ponly if q F T T

F F T

p is sufficient for g
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Conditional statement: P — (
equivalent

Contrapositive: —( — —p | (same
truth table)

Converse: (—> P

equivalent
Inverse: —P — —(Q
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p = you can take the flight
0 = you buy a ticket

Biconditional statement:
p <> g = Yyou can take the flight if and only if you buy a ticket

p if and only if q truth table
piffq ~p o fpeq
If p then q and conversely I : :
p is necessary and sufficient for q

F T F

F F T
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Compound propositions

T T
T F
F T
F F

4 m 4
4 m 4 4
m ™m m

-
-
-
-

Precedence of operators
- N VvV —> <

higher lower
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Translating English into propositions

p ="you cannotride the roller coasterif you are under 4 feet tall
unless you are older than16 yearsold"

g = you can ride the roller coaster

r = you are under 4 feet tall

s = you are older than 16 years old

Pp= rA—=S = —(Q
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Logic and Bit Operations

Boolean
variables OR AND XOR
XY Xvy XAY x@y
0 0 0 0 0 —
0 1 1 0 1
1 0 1 0 1 =
1 1 1 1 0

0110110110
Bit string 1100011101

1110111111 bitwise OR
0100010100 bitwise AND
1010101011 bitwise XOR
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Propositional Equivalences

Compound proposition
Tautology: always true
Contradiction: always false

tautology contradiction
P =P pvpP PpA-p
T F T F

F T T F

Contingency: not a tautology and
not a contradiction
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Logically equivalent
compound propositions: P =(

P <> ( isa tautology

Have same truth table

Example: —XVY=X—Y
Xy X XVY Xy

- m 4+
m 4 mH
s
i
i
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De Morgan's laws
—(pAQ)=—pVv—Q
—(pvag)=—pA—g

P g pvd—(pva) =P —q —PA-Q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

Identity laws Domination laws

pvF=p pAF=F

Idempotent laws  Negation laws
pvp=p pv—p=T
PAP=Dp pA—p=F

Double Negation law
—(=p)=p

K. Busch - LSU

15

16



Commutative laws Associative laws

pvg=qvp (pva)vr=pv(gvr)
PAG=QAD (pArg)ar=pa(gnar)
Distributive laws Absorption laws

pv(gar)=(pva)a(pvr) pv(pag)=p
pa(avr)=(pag)v(par) pA(pva)=p
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Conditional Statements
pP—>a=—-pvq

p—>g=—q—>—p
—(p—>0q)=pAr—q
(Po>DA(p—>r)=p—>(qar)
(pPo>av(p—>r)=p—>(qvr)
(p>r)Aa(@—>r=(pva)->r
(p>r)v(@—-n=(pag)—>r

Biconditional Statements
peog=(p—>a)A(d—p)
pPp>g=—p<>—Q
p<>g=(pAg)v(=pA—Q)
—(p<>q)=p<—0Q

K. Busch - LSU
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Construct new logical equivalences

_I(p —> q) —|(—|p\/q) (Since —XVY=X—>> y)
—(—p)A—=p (De Morgan's laws)

=pA—(Q (Double negation law)
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Predicates and Quantifiers

variable predicate
A

[ 4 i )\
A(x): Computer x is under attack by an intruder
B(x) : Computer x is functioning properly

Propositional functions
P(x): x>3

Q(x,y): x=y+3
R(X,Y,2): Xx+y=12
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Predicate logic

Computers ={CS1,CS 2, MATH 1}

A(x) : Computer x is under attack by an intruder
A(CSY) =T
A(CS2)=F
AMATHL) =T
B(x): Computer xis functioning properly
B(CS)=F
B(CS2)=T
B(MATH1) =F
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Predicate logic

predicate 2-ary predicate 3-ary predicate
P(x): x>3 Q(x,y): x=y+3 R(X,Y¥,2): X+y=12

PQ=F QU =T RL12) =T

P(4)=T Q(B2)=F R(211)=F

n-ary predicate
P(X,, X,5,..., X,)

K. Busch - LSU 22
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Universal quantifier: VX P(X)
for all x it holds P(x)

P(x):x+1>x (for every element in domain)

VX P(X) is true for every real number x

Q(X):x*>0

(for every element in domain)
VX Q(X) is not true for every real number x

Counterexample: Q(0)=F
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Existential quantifier: 3x P(x)
there is x such that P(x)

P(X):x>3
IX P(X) is true because P(4)=T

Q(X):x+1=1Ax>0

X Q(X) is not true

K. Busch - LSU 24
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For finite domain {X, X,,..., X, }

VX P(X)=P(X)AP(X,)A---AP(X,)

X P(X)=P(x)vP(X,)v:-vP(x,)

K. Busch - LSU 25

Quantifiers with restricted domain
Vx <0 (x* >0)
vy =0 (y® #0)
3z>0(z°=2)

Precedence of operators
V = A VvV > ©

3
higher lower
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IX(x+y=1

VAN
Bound free
variable variable

AX(P(X) A Q(X)) v VXR(X)
—

Scope of X Scope of X
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Logical equivalences with quantifiers

VX(P(X) AQ(X)) = VXP(x) A VXQ(X)

AxX(P(x) v Q(x)) = 3IxP(x) v IxQ(X)

Vx(P(x) v Q(x)) = VXP(x) v vxQ(x)? False
IX(P(x) AQ(x)) =3IxP(X) A3xQ(x)? False
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De Morgan's Laws for Quantifiers

—VXP(X) = Ix—P(x)

—3IXP(X) = VXx—P(X)
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Example

—VX(P(x) = Q(x)) = Ix—(P(x) = Q(x))
=3X(P(x) A=Q(x))

Recall that: —(p—>0)=pA—qQ

K. Busch - LSU
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Translating English into Logical Expressions

P(x) = xis a hummingbird
Q(x) = xis large bird

R(x) = x lives on honey
S(x) = xis richly colored

"All hummingbirds are richly colored” VX(P(x) = S(x))
"No large birds live on honey" —3x(Q(x) AR(X))
"Birds that do not live on honey

are dull in color” VX(ER() = =S(X)
"Hummingbirds are small” VX(P(X) = —Q(X))
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Nested Quantifiers

Additive inverse
vx3ay(x+y=0)

Commutative law for addition
VXVY(X+ Y=Y +X)

Associative law for addition
VXVYVZ(X+(Y+2)=(X+Y)+2)

K. Busch - LSU 32
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Order of quantifiers

VXVYP(X, y) = VyVxP(X, y)

Ix3AyP(x, y) = Jy3xP(x, y)
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We cannot always change
the order of quantifiers

Vx3AYP(x, y) = AyVXxP(X, y)?

true false
Vx3y(x+y =0) Jyvx(x+y=0)

FYVXP(X, y) = VXx3yP(X, y)
But not the converse

K. Busch - LSU 34
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Translating Math Statements

“The sum of two positive integers
is always positive"

VXVY((X>0)A(y>0) > (x+y>0))

“Every real number except zero
has a multiplicative inverse”

vXx((x = 0) — Jy(xy =1))

K. Busch - LSU 35

lim f(x)=L

X—a

For every real number & >0 there exists
a real number 6 >0 such that |f(X)-Llke

whenever 0<|x—al<d

Ve>030>0Vx(0<x—alkdo > | f(X)—Ll<e)

K. Busch - LSU 36
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Translating into English

C(x): student x has a computer
F(X,y): studentsxandy arefriends

VX(C(x) vIY(C(y) A F(x,Y)))

"Every student has a computer
or has a friend who has a computer”
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F(X,y): students xand y are friends

AXVYVZ((F (X, Y) AF(X,2) A(y # 2)) > —=F (Y, 2))

"There is a student none of whose friends
are also friends with each other”

K. Busch - LSU 38
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Translating English into Logical Expressions

"If a person is female and is a parent,
then this person is someone’'s mother”

VX((F (x) A P(x)) = 3yM (X, Y))

SN

female parent mother of y
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"Everyone has exactly one best friend"

Vx3ay(B(x, y) AVz((z # y) > —B(X, 2)))

|

Best friends

K. Busch - LSU 40
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Negating nested quantifiers
lim f(x) =L

X—a
—Ve>030>0Vx(0<x—alkdo » | f(X)-L|<¢)
=de>0—-30>0Vx(0<|x—-alkd > | f(X)-Llke)
=de>0Vo>0-Vx(0<x—alko > | f(X)-L|<e)
=Je>0Vo>03Ix—(0<|x—-alkd —> | f(X)—L|e)
=de>0Vo>03Ix(0<x—-alkd A—=(| f(X)—L|<¢&))
=de>0Vo>03Ix(0<x—-alkdo A |f(X)—L[>¢)

Recall: =(P —>0)=pA—(Q
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Rules of Inference

If you have a current password, RN
then you can log onto the network P q

You have a current password [J

Therefore,
you can log onto the network (]

Modus Ponens

Valid argument: P—4
if premises are true p
then conclusion is true g

K. Busch - LSU 42
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If J2>1,then (\/E)z>(1)2 P—(

We know that /2 -1 P (true)

Therefore,

(V2] =2>1=(F { (true)
P—>0
Valid argument, P
true conclusion g
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3 3)?
If \/§>§,Then (\/5)2>(§j P—(
We know that /2 >g P (false)

Therefore,

(V2f =259~ (ﬁj q (false)
4 \2 P—>Q

Valid argument, P

false conclusion X

K. Busch - LSU 44
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Modus Ponens
P—q
P

(p—>a)Ap)—q

If P—>Q and P then (
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Rules of Inference

Modus Ponens Modus Tollens
P—>q P—q
p —Q
5. q R
Hypothetical Disjunctive
Syllogism Syllogism
p—0 pPvq
q—>r —P

P> 5.Q

K. Busch - LSU 46
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Rules of Inference

Addition Simplification
P PAQ
L pvg P
Conjunction Resolution
p pvq
q ﬂp \VA §
S pAQ S.gwvr

K. Busch - LSU

It is below freezing now

Therefore,
p it is either below freezing
g or raining how

K. Busch - LSU

PV

Addition
P

S pVvqQ

47
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P It isbelow freezing

d and raining now PAg
Therefore,
it is below freezing now P
Simplification
PAQ
Sp

K. Busch - LSU

P If it rains today
0 then we will not have a barbecue today

d If we do not have a barbecue today
I then we will have a barbecue tomorrow

Therefore,
p if it rains today

r then we will have a barbecue tomorrow
P4
Hypo’rhe’rlcal q—r
Syllogism S
P

K. Busch - LSU
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P—4

q—or

Pp—>r
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=P it is not snowing —pVQ

or Jasmine is skiing

It is snowing
or Bart is playing hockey

= T o

Therefore,

pvr

Jasmine is skiing q \VA §

or Bart is playing hockey

pPvq
Resolution —pwvr

sqvr

K. Busch - LSU

Hypothesis:
—P It is not sunny this afternoon
(J and it is colder than yesterday

I We will go swimming
P only if it is sunny

—I If we do not go swimming,
S then we will take a canoe trip

S If we take a canoe trip,
t  then we will be home by sunset

Conclusion:
t We will be home by sunset

K. Busch - LSU
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—PAq

r-p

—F —>S

S —>t
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—pPAQ

r-p
—r

—f—>S

S—>t
t

© N o gk~ =

Hypothesis
Simplification from 1
Hypothesis

Modus tollens from 2,3
Hypothesis

Modus ponens from 4,5
Hypothesis

Modus ponens from 6,7
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Fallacy of affirming the conclusion
P—q

q

D

P If youdo every problem in this book Pp—(q
q then you will learn discrete mathematics

You learned discrete mathematics q

Therefore,

you did every problem in this book P

K. Busch - LSU 54
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Fallacy of denying the hypothesis
P—q
—p

P If youdo every problem in this book P—(
g then you will learn discrete mathematics

You didn't do every problem in this book —P

Therefore,

you didn't learn discrete mathematics —(
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Rules of inference for quantifiers

Universal
Instantiation

VXP(X)

. P(c)foranyc

Existential
Instantiation

AxP(x)

. P(c) forsomec

Universal
Generalization

P(c) for arbitraryc
- VXP(X)

Existential
Generalization

P(c) forsomec
- AXP(x)

K. Busch - LSU 56
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Premises:

C(x) A student in this class
—B(x) has not read the book

Ax(C(x) A—=B(x))

C(x) Everyone in this class
P(x) passed the first exam

VX(C(x) > P(x))

Conclusion:

P(x) Someone who passed the first exam
—B(x) has not read the book
(x) has not rea e boo K(P(X) A—B(X))
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P(a) A—B(a) Conjunction from 6,7
IX(P(x) A—=B(X)) Existential generalization from 8

1. 3IX(C(x) A=B(X)) Premise

2. C(a)A—B(a) Existential instantiation from 1
3. C(a) Simplification from 2

4. VX(C(x) = P(X)) Premise

5. C(a) > P(a) Universal instantiation from 1
6. P(a) Modus Ponens from 3,5

7. —B(a) Simplification from 2

8.

9.

K. Busch - LSU 58
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Universal Modus Ponens
VX(P(x) = Q(x))

P(a), for some particular a in domain

. Q(a)

For all positive integers X,
P(X) if x>4 Vx(P(x) = Q(x))
Q(x) then x* <2

100 > 4 P(100)
Therefore, 1007 < 2'% Q(100)
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Proofs

Theorem: the main result that
we want to prove

Lemma: intermediate result
used in theorem proof

Axiom: basic truth

Corollary: immediate consequence of theorem

Conjecture: something to be proven

K. Busch - LSU 60
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Typically, we want to prove statements

Vx(P(x) = Q(x))

Proof technique:
show that for some arbitrary c

P(c) - Q(c)

and apply universal generalization

K. Busch - LSU 61

Direct proof:  P(c) - Q(c)

Proof by contraposition: —Q(c) — —P(c)

Proof by contradiction: —P(c) — (r A—r)
If we want to prove P(c)

K. Busch - LSU 62
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Definition: Integer niseven <> 3k n= 2k

Integer nisodd <> Ik n =2k +1

An integer is either even or odd
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Theorem: if n is an even integer, P(n)
then n® is even Q(n)

Proof: (direct proof P(n)—>Q(n))
niseven — 3k n =2k
n® = (2k)* = 4k* = 2(2k?)

Therefore, n” is even

End of proof

K. Busch - LSU
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Theorem: if n is an odd integer, P(n)
then n® is odd Q(n)

Proof: (direct proof P(n)—Q(n))
nisodd —» 3k n=2k +1
n° =(2k +1)* = 4k* + 4k +1=2(2k* + 2k) +1

Therefore, n? is odd

End of proof

K. Busch - LSU

Theorem: if n%is an even integer, P(n)
then n is even Q(n)

Proof: (proof by contraposition—Q(n) ——P(n))
—Q(n) »> —=P(n)

nisodd —> n?isodd (see last proof)

Therefore:  P(n) — Q(n)
End of proof

K. Busch - LSU
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Theorem: if n%is an odd integer, P(n)
then n is odd Q(n)

Proof: (proof by contraposition—Q(n) ——P(n))
—Q(n) > —P(n)
nis even — n’ is even

Therefore:  P(n) — Q(n)
End of proof

K. Busch - LSU

Theorem: +/2 is irrational P

Proof: (proof by contradiction —P — (rA-r))

_P: Assume +/2 is rational

m
2 =—
n
r: M and N have no common

divisor greater than 1

Therefore:. —P — r

K. Busch - LSU 68
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m2
22? :> m® =2n° :> m = 2k, (mis even)
2n? =m? = 4k12 |:> n® = 2k12 |:> n =2k, (nis even)

m 2k .. )
—r: —=—L common divisor is 2
n 2k,

Therefore: —P — —r

K. Busch - LSU 69

Therefore:

—P—>r
—P — —r

(—|P —> I‘) VAN (—|P —> —|I’) COHJUHC'HOH
=—P—> (r A\ —|I’)

contradiction

K. Busch - LSU 70
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Therefore:

—|P —> (r VAN —|r)

—|(I‘ VAN —|I’)

" —|(—|P) Modus Tollens
=P

End of proof
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Counterexamples

False statement:
"Every positive integer is the sum of the
squares of two integers"”

vx >03yIz(x = y* + z°%)

Counterexample: X=3
321" +1° =2
3£1°+2°=1+4=5

Any other combination gives sum larger than 3

K. Busch - LSU 72
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Proof by cases
We want o prove P —(

We know P=P Vv P, V-V P,

Instead, we can prove each case

P—>q
=PVvPpvevp,—(Q
=(p, 2> DA(P, > A A~ (P, Q)

Case 1 Case 2 Case n
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Theorem: If nis integer, then n® >n

Case 1 Case 2 Case 3
Proof: nisinteger =(n=0)v(n>1)v(n<-1)

Case 1: n=0 n>=0°=0=n
Case 3: n<-1 n>>0>n

End of proof

K. Busch - LSU
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Existence Proofs

Theorem: There is a positive integer that
can be written as the sum of cubes
in two different ways

Proof: (constructive existence proof)

1729 =10° +9° =12° +1°

End of proof
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Theorem: There exist irrational numbers X, Y
such that xY is rational

Proof: (non-constructive existence proof)
We know: /2 is irrational

If \/Eﬁ is rational :> X=\/§, y=\/§

J2 J2
If V2 isirrationa =) x =2"", y=+2

V2
Xy:(ﬁﬁ) :\/Eﬁﬁ: 22:2:% rational

K. Busch - LSU End of pr‘oof 76

38



