The Foundations: Logic and Proofs

CSC-2259 Discrete Structures

K. Busch - LSU

Propositional Logic

Proposition is a declarative statement that is either true of false

·Baton Rouge is the capital of Louisiana	True
·Toronto is the capital of Canada	False
•1+1=2	True
·2+2=3	False

Statements which are not propositions:

·What time is it?

 $\cdot x + 1 = 2$

p = today is Thursday

Negation: $\neg p = \text{today is not Thursday}$

truth table

p	$\neg p$
Т	F
F	Т

K. Busch - LSU

p = today is Thursday q = it is raining today

Conjunction:

 $p \land q = \text{today}$ is Thursday and it is raining today

truth table

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

K. Busch - LSU

p = today is Thursday q = today is Friday

Disjunction:

 $p \lor q = \text{today}$ is Thursday or today is Friday

truth table

p	q	$p \vee q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

K. Busch - LSU

.

p = today is Thursday

q = today is Friday

Exclusive-or: one or the other but not both

 $p \oplus q = \text{today is Thursday or today is Friday (but not both)}$

truth table

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

K. Busch - LSU

(hypothesis) p = Maria learns discrete math(conclusion) q = Maria will find a good job

Conditional statement:

 $p \rightarrow q = \text{if Maria learns discrete math then she will find a good job}$

if p then q	
p implies q	
q follows from p	
p only if q	
p is sufficient for q	

truth table $\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & T \end{array}$

K. Busch - LSU

Conditional statement: $p \to q$ equivalent (same truth table)

Converse:
$$q \to p$$
 equivalent Inverse: $\neg p \to \neg q$

K. Busch - LSU

p = you can take the flight q = you buy a ticket

Biconditional statement:

 $p \leftrightarrow q$ = you can take the flight if and only if you buy a ticket

p if and only if q
p iff q
If p then q and conversely
p is necessary and sufficient for q

truth table

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

K. Busch - LSU

9

Compound propositions

p	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$p \vee \neg q \rightarrow p \wedge q$
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F

Precedence of operators

higher lower

K. Busch - LSU

Translating English into propositions

p = "you cannot ride the roller coasterify you are under 4 feet tall unless you are older than 16 years old"

q = you can ride the roller coaster

r = you are under 4 feet tall

s =you are older than 16 years old

$$p = r \land \neg s \rightarrow \neg q$$

K. Busch - LSU

11

Logic and Bit Operations

Boolean

vaniables

vario	idle2	OK	MINU	NOK	
\mathcal{X}	y	$x \vee y$	$x \wedge y$	$x \oplus y$	
0	0	0	0	0	T = 1
0	1	1	0	1	
1	0	1	0	1	F = 0
1	1	1	1	0	

OP AND YOR

Bit string

0110110110 1100011101

1110111111 bitwise OR 0100010100 bitwise AND 1010101011 bitwise XOR

K. Busch - LSU

Propositional Equivalences

Compound proposition

Tautology: always true Contradiction: always false

tautology contradiction

p	$\neg p$	$p \lor \neg p$	$p \land \neg p$
Т	F	Т	F
F	Т	Т	F

Contingency: not a tautology and not a contradiction

K. Busch - LSU

13

Logically equivalent compound propositions: $p \equiv q$

 $p \leftrightarrow q$ is a tautology

Have same truth table

Example: $\neg x \lor y \equiv x \to y$

\boldsymbol{x}	y	$\neg x$	$\neg x \lor y$	$x \rightarrow y$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

K. Busch - LSU

De Morgan's laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

p	q	$p \vee q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

K. Busch - LSU

15

Identity laws

$$p \wedge T \equiv p$$

$$p \vee F \equiv p$$

Domination laws

$$p \lor T \equiv T$$

$$p \wedge F \equiv F$$

Idempotent laws

$$p \lor p \equiv p$$

$$p \wedge p \equiv p$$

Negation laws

$$p \lor \neg p \equiv T$$

$$p \land \neg p \equiv F$$

Double Negation law

$$\neg(\neg p) \equiv p$$

K. Busch - LSU

Commutative laws

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Associative laws

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

Distributive laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Absorption laws

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

K. Busch - LSU

17

Conditional Statements $p \rightarrow q \equiv \neg p \lor q$

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Biconditional Statements

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

K. Busch - LSU

Construct new logical equivalences

$$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \qquad \text{(since } \neg x \lor y \equiv x \rightarrow y)$$
$$\equiv \neg (\neg p) \land \neg p \qquad \text{(De Morgan's laws)}$$
$$\equiv p \land \neg q \qquad \text{(Double negation law)}$$

K. Busch - LSU

19

Predicates and Quantifiers

variable predicate

A(x): Computer x is under attack by an intruder

B(x): Computer x is functioning properly

Propositional functions

$$Q(x, y): x = y + 3$$

$$R(x, y, z)$$
: $x + y = z$

K. Busch - LSU 20

Predicate logic

Computers = $\{CS1, CS2, MATH1\}$

A(x): Computer x is under attack by an intruder

$$A(CS1) = T$$

$$A(CS2) = F$$

$$A(MATH1) = T$$

B(x): Computer x is functioning properly

$$B(CS1) = F$$

$$B(CS2) = T$$

$$B(MATH1) = F$$

K. Busch - LSU

21

Predicate logic

predicate

2-ary predicate

3-ary predicate

$$Q(x, y)$$
: $x = y + 3$ $R(x, y, z)$: $x + y = z$

$$R(x, y, z): x + y = z$$

$$P(1) = F$$

$$Q(4,1) = T$$

$$R(1,1,2) = T$$

$$P(4) = T$$

$$Q(3,2) = F$$

$$R(2,1,1) = F$$

n-ary predicate

$$P(x_1, x_2, ..., x_n)$$

K. Busch - LSU

Universal quantifier:
$$\forall x P(x)$$
 for all x it holds $P(x)$

$$P(x): x+1 > x$$
 (for every element in domain) $\forall x \ P(x)$ is true for every real number x

$$Q(x): x^2 > 0$$
 (for every element in domain) $\forall x \, Q(x)$ is not true for every real number x Counterexample: $Q(0) = F$

K. Busch - LSU 23

Existential quantifier: $\exists x \ P(x)$ there is x such that P(x)

$$P(x): x > 3$$

 $\exists x \ P(x)$ is true because $P(4) = T$

$$Q(x): x+1=1 \land x>0$$

 $\exists x \ Q(x) \text{ is not true}$

For finite domain $\{x_1, x_2, \dots, x_n\}$

$$\forall x \ P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$$

$$\exists x \ P(x) \equiv P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)$$

K. Busch - LSU

25

Quantifiers with restricted domain

$$\forall x < 0 \ (x^2 > 0)$$

$$\forall y \neq 0 \ (y^3 \neq 0)$$

$$\exists z > 0 \ (z^2 = 2)$$

Precedence of operators

$$\forall$$
 \neg \land \lor \rightarrow \longleftrightarrow

 \exists

higher lower

K. Busch - LSU

$$\exists x(x+y=1)$$
Bound free variable variable

$$\exists x (P(x) \land Q(x)) \lor \forall x R(x)$$
Scope of X Scope of X

K. Busch - LSU

27

Logical equivalences with quantifiers

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

$$\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$$
? False $\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$? False

K. Busch - LSU 28

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

K. Busch - LSU

29

Example

$$\neg \forall x (P(x) \to Q(x)) \equiv \exists x \neg (P(x) \to Q(x))$$
$$\equiv \exists x (P(x) \land \neg Q(x))$$

Recall that: $\neg (p \rightarrow q) \equiv p \land \neg q$

K. Busch - LSU

Translating English into Logical Expressions

P(x) = x is a hummingbird

Q(x) = x is large bird

R(x) = x lives on honey

S(x) = x is richly colored

"All hummingbirds are richly colored" $\forall x(P(x) \rightarrow S(x))$

"No large birds live on honey"

 $\neg \exists x (Q(x) \land R(x))$

"Birds that do not live on honey are dull in color"

 $\forall x (\neg R(x) \rightarrow \neg S(x))$

"Hummingbirds are small"

 $\forall x (P(x) \rightarrow \neg Q(x))$

K. Busch - LSU

31

Nested Quantifiers

Additive inverse

$$\forall x \exists y (x + y = 0)$$

Commutative law for addition

$$\forall x \forall y (x + y = y + x)$$

Associative law for addition

$$\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$$

K. Busch - LSU 32

Order of quantifiers

$$\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$$

$$\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$$

K. Busch - LSU

33

We cannot always change the order of quantifiers

$$\forall x \exists y P(x, y) \equiv \exists y \forall x P(x, y)$$
?

true false
$$\forall x \exists y (x + y = 0)$$
 $\exists y \forall x (x + y = 0)$

$$\exists y \forall x P(x, y) \to \forall x \exists y P(x, y)$$

But not the converse

K. Busch - LSU

Translating Math Statements

"The sum of two positive integers is always positive"

$$\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$$

"Every real number except zero has a multiplicative inverse"

$$\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$$

K. Busch - LSU

35

$$\lim_{x \to a} f(x) = L$$

For every real number $\varepsilon>0$ there exists a real number $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \,(0 < |x - a| < \delta \rightarrow |f(x) - L| < \varepsilon)$$

K. Busch - LSU

Translating into English

C(x): student x has a computer

F(x, y): students x and y are friends

$$\forall x (C(x) \lor \exists y (C(y) \land F(x, y)))$$

"Every student has a computer or has a friend who has a computer"

K. Busch - LSU 37

F(x, y): students x and y are friends

$$\exists x \forall y \forall z ((F(x,y) \land F(x,z) \land (y \neq z)) \rightarrow \neg F(y,z))$$

"There is a student none of whose friends are also friends with each other"

Translating English into Logical Expressions

"If a person is female and is a parent, then this person is someone's mother"

K. Busch - LSU 3

"Everyone has exactly one best friend"

$$\forall x \exists y (B(x, y) \land \forall z ((z \neq y) \rightarrow \neg B(x, z)))$$

$$\uparrow$$
Best friends

K. Busch - LSU 40

Negating nested quantifiers

$$\lim_{x \to a} f(x) \neq L$$

$$\neg \forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \,(0 < | \, x - a \, | < \delta \, \, \to \, | \, f(x) - L \, | < \varepsilon)$$

$$\equiv \exists \varepsilon > 0 \,\neg \exists \delta > 0 \,\forall x \,(0 < | \, x - a \, | < \delta \, \, \to \, | \, f(x) - L \, | < \varepsilon)$$

$$\equiv \exists \varepsilon > 0 \,\forall \delta > 0 \,\neg \forall x \,(0 < | \, x - a \, | < \delta \, \, \to \, | \, f(x) - L \, | < \varepsilon)$$

$$\equiv \exists \varepsilon > 0 \,\forall \delta > 0 \,\exists x \,\neg (0 < | \, x - a \, | < \delta \, \, \to \, | \, f(x) - L \, | < \varepsilon)$$

$$\equiv \exists \varepsilon > 0 \,\forall \delta > 0 \,\exists x \,\neg (0 < | \, x - a \, | < \delta \, \, \to \, | \, f(x) - L \, | < \varepsilon)$$

$$\equiv \exists \varepsilon > 0 \,\forall \delta > 0 \,\exists x \,(0 < | \, x - a \, | < \delta \, \, \land \, \neg (| \, f(x) - L \, | < \varepsilon))$$

 $\equiv \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x (0 < |x - a| < \delta \land |f(x) - L| \ge \varepsilon)$

Recall:
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

Rules of Inference

K. Busch - LSU

If you have a current password, then you can log onto the network p
ightharpoonup q

You have a current password p

Therefore, you can log onto the network Q

Valid argument: if premises are true then conclusion is true

Modus Ponens $p \to q$

 $\frac{p}{\therefore q}$

K. Busch - LSU

42

If
$$\sqrt{2} > 1$$
, then $(\sqrt{2})^2 > (1)^2$ $p \rightarrow q$

We know that $\sqrt{2} > 1$ p (true)

Therefore.

$$(\sqrt{2})^2 = 2 > 1 = (1)^2$$
 q (true) $p \rightarrow q$
Valid argument, true conclusion $p \rightarrow q$

K. Busch - LSU

43

If
$$\sqrt{2} > \frac{3}{2}$$
, then $(\sqrt{2})^2 > (\frac{3}{2})^2$ $p \rightarrow q$

We know that $\sqrt{2} > \frac{3}{2}$ p (false)

Therefore,

$$(\sqrt{2})^2 = 2 > \frac{9}{4} = \left(\frac{3}{2}\right)^2$$
 q (false)

Valid argument, false conclusion

 $p \to q$
 $p \to q$

K. Busch - LSU

Modus Ponens

$$p \to q$$

$$p$$

$$((p \rightarrow q) \land p) \rightarrow q$$

If
$$p \rightarrow q$$
 and p then q

K. Busch - LSU

45

Rules of Inference

Modus Ponens

$$p \rightarrow q$$

$$\frac{p}{\therefore q}$$

Hypothetical Syllogism

$$p \rightarrow q$$

$$\frac{q \to r}{\therefore p \to r}$$

Modus Tollens

$$p \rightarrow q$$

$$\frac{\neg q}{\therefore \neg p}$$

Disjunctive Syllogism

$$p \vee q$$

$$\frac{\neg p}{\therefore a}$$

K. Busch - LSU

Rules of Inference

Addition

$\therefore p \vee q$

Simplification

$$\frac{p \wedge q}{\therefore p}$$

Conjunction

$$\frac{p}{q}$$

$$\therefore p \wedge q$$

Resolution

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\therefore q \lor r
\end{array}$$

K. Busch - LSU

It is below freezing now

Therefore, p it is either below freezing $p \vee q$ q or raining now

$$p \vee q$$

Addition

$$\frac{p}{\therefore p \vee q}$$

$$p \wedge q$$

Therefore. it is below freezing now

p

Simplification

$$\frac{p \wedge q}{\therefore p}$$

K. Busch - LSU

q then we will not have a barbecue today

$$p \rightarrow q$$

$$q$$
 If we do not have a barbecue today

r then we will have a barbecue tomorrow

$$q \rightarrow r$$

Therefore,

p if it rains today

 $_r$ then we will have a barbecue tomorrow ~p o r

$$p \rightarrow r$$

$$\begin{array}{c}
p \to q \\
q \to r
\end{array}$$

K. Busch - LSU

Resolution
$$p \lor q$$

$$\neg p \lor r$$

$$\therefore q \lor r$$
K. Busch-LSU

51

52

Hypothesis:

$$\neg p$$
 It is not sunny this afternoon q and it is colder than yesterday $\neg p \land q$

$$\begin{array}{c} r & \text{We will go swimming} \\ p & \text{only if it is sunny} \end{array} \qquad r \to p$$

$$\neg r$$
 If we do not go swimming,
 s then we will take a canoe trip $\neg r \rightarrow s$

S If we take a canoe trip,
t then we will be home by sunset
$$S \rightarrow t$$

Conclusion:

t We will be home by sunset

K. Busch - LSU

- 1. $\neg p \land q$ Hypothesis
- 2. $\neg p$ Simplification from 1
- 3. $r \rightarrow p$ Hypothesis
- 4. $\neg r$ Modus tollens from 2,3
- 5. $\neg r \rightarrow s$ Hypothesis
- 6. s Modus ponens from 4,5
- 7. $s \rightarrow t$ Hypothesis
- 8. t Modus ponens from 6,7

K. Busch - LSU

53

Fallacy of affirming the conclusion

$$p \to q$$

$$q$$

$$---$$

$$p$$
 If you do every problem in this book $p \rightarrow q$ then you will learn discrete mathematics

You learned discrete mathematics q

Therefore, you did every problem in this book
$$p$$

Fallacy of denying the hypothesis

$$p \to q$$

$$\frac{\neg p}{\therefore \neg q}$$

p If you do every problem in this book $p \rightarrow q$ then you will learn discrete mathematics

You didn't do every problem in this book $\neg p$

Therefore, you didn't learn discrete mathematics $\neg q$

K. Busch - LSU

55

Rules of inference for quantifiers

Universal Instantiation

 $\forall x P(x)$

 $\therefore P(c)$ for any c

Universal Generalization

P(c) for arbitrary c

 $\therefore \forall x P(x)$

Existential Instantiation

 $\exists x P(x)$

 $\therefore P(c)$ for some c

Existential Generalization

P(c) for some c

 $\therefore \exists x P(x)$

K. Busch - LSU

Premises:

- C(x) A student in this class $\exists x (C(x) \land \neg B(x))$
 - C(x) Everyone in this class P(x) passed the first exam $\forall x(C(x) \rightarrow P(x))$

Conclusion:

- P(x) Someone who passed the first exam
- $\neg B(x)$ has not read the book $\exists x (P(x) \land \neg B(x))$

K. Busch - LSU 57

- 1. $\exists x (C(x) \land \neg B(x))$ Premise
- 2. $C(a) \land \neg B(a)$ Existential instantiation from 1
- 3. C(a) Simplification from 2
- 4. $\forall x(C(x) \rightarrow P(x))$ Premise
- 5. $C(a) \rightarrow P(a)$ Universal instantiation from 1
- 6. P(a) Modus Ponens from 3,5
- 7. $\neg B(a)$ Simplification from 2
- 8. $P(a) \land \neg B(a)$ Conjunction from 6,7
- 9. $\exists x (P(x) \land \neg B(x))$ Existential generalization from 8

Universal Modus Ponens

$$\forall x (P(x) \rightarrow Q(x))$$

P(a), for some particular a in domain

$$\therefore Q(a)$$

For all positive integers x,

$$P(x)$$
 if $x > 4$ $\forall x(P(x) \rightarrow Q(x))$ $Q(x)$ then $x^2 < 2^x$

Q(x)

$$100 > 4$$
 $P(100)$

Therefore,
$$100^2 < 2^{100}$$
 $Q(100)$

K. Busch - LSU

Proofs

Theorem: the main result that we want to prove

Lemma: intermediate result used in theorem proof

Axiom: basic truth

Corollary: immediate consequence of theorem

Conjecture: something to be proven

K. Busch - LSU

Typically, we want to prove statements

$$\forall x (P(x) \rightarrow Q(x))$$

Proof technique:

show that for some arbitrary c

$$P(c) \rightarrow Q(c)$$

and apply universal generalization

K. Busch - LSU

61

Direct proof: $P(c) \rightarrow Q(c)$

Proof by contraposition: $\neg Q(c) \rightarrow \neg P(c)$

Proof by contradiction: $\neg P(c) \rightarrow (r \land \neg r)$ If we want to prove P(c)

Definition: integer n is even $\leftrightarrow \exists k \ n = 2k$ integer n is odd $\leftrightarrow \exists k \ n = 2k+1$

An integer is either even or odd

K. Busch - LSU 63

Theorem: if
$$n$$
 is an even integer, then n^2 is even $Q(n)$

Proof: (direct proof $P(n) \rightarrow Q(n)$)

$$n ext{ is even } \rightarrow \exists k \ n = 2k$$

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Therefore, n^2 is even

End of proof

K. Busch - LSU

Theorem: if
$$n$$
 is an odd integer, then n^2 is odd $Q(n)$

Proof: (direct proof $P(n) \rightarrow Q(n)$)

$$n \text{ is odd} \rightarrow \exists k \ n = 2k+1$$

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Therefore, n^2 is odd

End of proof

K. Busch - LSU

65

Theorem: if
$$n^2$$
 is an even integer, then n is even $Q(n)$

Proof: (proof by contraposition $\neg Q(n) \rightarrow \neg P(n)$)

$$\neg Q(n) \rightarrow \neg P(n)$$

 $n ext{ is odd} o n^2 ext{ is odd}$ (see last proof)

Therefore: $P(n) \rightarrow Q(n)$

End of proof

Theorem: if
$$n^2$$
 is an odd integer, then n is odd $Q(n)$

Proof: (proof by contraposition $\neg Q(n) \rightarrow \neg P(n)$)

$$\neg Q(n) \rightarrow \neg P(n)$$

n is even $\rightarrow n^2$ is even

Therefore:
$$P(n) \rightarrow Q(n)$$

End of proof

K. Busch - LSU

67

Theorem:
$$\sqrt{2}$$
 is irrational P

Proof: (proof by contradiction $\neg P \rightarrow (r \land \neg r)$)

 $\neg P$: Assume $\sqrt{2}$ is rational

$$\sqrt{2} = \frac{m}{n}$$

r: m and n have no common divisor greater than 1

Therefore:
$$\neg P \rightarrow r$$

K. Busch - LSU

$$2 = \frac{m^2}{n^2} \longrightarrow m^2 = 2n^2 \longrightarrow m = 2k_1 \text{ (m is even)}$$

$$2n^2 = m^2 = 4k_1^2$$
 $n^2 = 2k_1^2$ $n = 2k_2$ (*n* is even)

$$\neg r$$
: $\frac{m}{n} = \frac{2k_1}{2k_2}$ common divisor is 2

Therefore:
$$\neg P \rightarrow \neg r$$

K. Busch - LSU

69

Therefore:

$$\neg P \rightarrow r$$

$$\neg P \rightarrow \neg r$$

$$\therefore (\neg P \rightarrow r) \land (\neg P \rightarrow \neg r) \text{ Conjunction}$$

$$\equiv \neg P \rightarrow (r \land \neg r)$$

contradiction

Therefore:

$$\neg P \rightarrow (r \land \neg r)$$

$$\neg (r \land \neg r)$$

$$\therefore \neg (\neg P)$$

$$\equiv P$$
Modus Tollens

End of proof

K. Busch - LSU

71

Counterexamples

False statement:

"Every positive integer is the sum of the squares of two integers"

$$\forall x > 0 \ \exists y \exists z (x = y^2 + z^2)$$

Counterexample: x = 3

$$3 \neq 1^2 + 1^2 = 2$$

 $3 \neq 1^2 + 2^2 = 1 + 4 = 5$

Any other combination gives sum larger than 3

Proof by cases

We want to prove $p \rightarrow q$

We know
$$p = p_1 \lor p_2 \lor \cdots \lor p_n$$

Instead, we can prove each case

$$\begin{split} p &\to q \\ &\equiv p_1 \vee p_2 \vee \dots \vee p_n \to q \\ &\equiv (p_1 \to q) \wedge (p_2 \to q) \wedge \dots \wedge (p_n \to q) \\ &\text{Case 1} \qquad \text{Case 2} \qquad \text{Case n} \end{split}$$

K. Busch - LSU

73

Theorem: If n is integer, then $n^2 \ge n$

Case 1 Case 2 Case 3

Proof:
$$n$$
 is integer $\equiv (n = 0) \lor (n \ge 1) \lor (n \le -1)$

Case 1:
$$n = 0$$
 $n^2 = 0^2 = 0 = n$

Case 2:
$$n \ge 1$$
 $n^2 = n \cdot n \ge n \cdot 1 = n$

Case 3:
$$n \le -1$$
 $n^2 > 0 > n$ End of proof

K. Busch - LSU

Existence Proofs

Theorem: There is a positive integer that can be written as the sum of cubes in two different ways

Proof: (constructive existence proof)

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

End of proof

K. Busch - LSU

75

Theorem: There exist irrational numbers x, y such that x^y is rational

Proof: (non-constructive existence proof)

We know:
$$\sqrt{2}$$
 is irrational

If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational $x = \sqrt{2}$, $y = \sqrt{2}$

If
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational $\longrightarrow x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^{2} = 2 = \frac{2}{1}$$
 rational

K. Busch - LSU

End of proof 76