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Counting

CSC-2259 Discrete Structures

Konstantin Busch - LSU 1

Basic Counting Principles
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Product Rule:

Suppose a procedure consists of 2 tasks

1n ways to perform 1st task

2n ways to perform 2nd task

21 nn  ways to perform procedure
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Example: 2 employees 10 offices

How many ways to assign employees 
to offices?

1st employee has 10 office choices

2nd employee has 9 office choices

Total office assignment ways: 10x9 = 90
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Example: How many different variable names 
with 2 symbols?  

1st symbol 
letter
26 choices

2nd symbol 
alphanumeric
26+10 = 36 choices

Total variable name choices: 26x36 = 936

(e.g. A1, A2, AA)XY
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Generalized Product Rule:

Suppose a procedure consists of      tasks

1n ways to perform 1st task

2n ways to perform 2nd task

knnn 21 ways to perform procedure

k

kn ways to perform    th task



k
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Example: How many different variable names 
with exactly          symbols?  

1st symbol 
letter
26 choices

Remaining symbols 
alphanumeric
36 choices for each

Total choices:

(e.g. D1B…6)

1k

11 kYXY 

1)36(26363626  k

1k
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Sum Rule:

Suppose a procedure can be performed 
with either of 2 different methods

1n ways to perform 1st method

2n ways to perform 2nd method

21 nn  ways to perform procedure
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Example: Number of variable names with 
1 or 2 symbols

Variables with 1 symbol: 26

Variables with 2 symbols: 936

Total number of variables: 26+936=962
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Principle of Inclusion-Exclusion:

Suppose a procedure can be performed 
with either of 2 different methods

1n ways to perform 1st method

2n ways to perform 2nd method

cnn  21
ways to perform procedure

c common ways in both methods
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Example:
Number of binary strings of length 8
that either start with 1 or end with 0

Strings that start with 1:

Strings that end with 0:

Total strings: 128+128-64=192

7211 xxx  128 choices

0721 yyy  128 choices

Common strings: 01 71 zz  64 choices

Pigeonhole Principle

Konstantin Busch - LSU 11

3 pigeons

2 pigeonholes
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One pigeonhole contains 2 pigeons

3 pigeons

2 pigeonholes
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k+1 pigeons

k pigeonholes
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At least one pigeonhole contains 2 pigeons

k+1 pigeons

k pigeonholes
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Pigeonhole Principle:

If k+1 objects are placed into k boxes, 
then at least one box contains 2 objects

Examples:

•Among 367 people at least 2 have the
same birthday (366 different birthdays)

•Among 27 English words at least 2 
start with same letter (26 different letters)
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Generalized Pigeonhole Principle:

If     objects are placed into    boxes, 
then at least one box contains         objects

N k










k

N

Proof:

If each box contains less than        objects:








k

N

N
k

N
k

k

N
k 


































 111 objects#

End of Proof

contradiction
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Example:

Among        people, at least
have birthday in same month

9
12

100









100

100N people (objects)

12k months (boxes)
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Example:

How many students do we need to have so that 
at least six receive same grade (A,B,C,D,F)?

?N students (objects)

5k grades (boxes)

6








k

N
at least six students receive
same grade
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r
k

N









Smallest integer        with               

is smallest integer with 1 r
k

N

1 r
k

N
)1(  rkN 1)1(  rkN

N
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r
k

N










5k

6r

1)1(  rkN

261)16(5 N

For our example:

students

We need at least 26 students
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An elegant example:

In any sequence of           numbers
there is a sorted subsequence of length

12 n

1n

(ascending or descending)

numbers 1012 n41n

8, 11, 9, 1, 4, 6, 12, 10, 5, 7

8, 11, 9, 1, 4, 6, 12, 10, 5, 7
Ascending
subsequence

3n

Descending
subsequence
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Theorem:

In any sequence of           numbers
there is a sorted subsequence of length

12 n

1n

(ascending or descending)

Proof:
1321 2,,,,
n

aaaa 

),( ii yx

Length of longest 
ascending subsequence 
starting from

Sequence

ia

Length of longest 
descending subsequence 
starting from

ia
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8, 11, 9, 1, 4, 6, 12, 10, 5, 7

8, 11, 9, 1, 4, 6, 12, 10, 5, 7

Longest ascending subsequence from 81 a

Longest descending subsequence from 81 a

For example:

31 x

31 y

)3,3(),( 11 yx
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8, 11, 9, 1, 4, 6, 12, 10, 5, 7

8, 11, 9, 1, 4, 6, 12, 10, 5, 7

Longest ascending subsequence from 112 a

Longest descending subsequence from 112 a

For example:

22 x

42 y

)4,2(),( 22 yx
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We want to prove that 
there is a             with:
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Assume (for sake of contradiction) that
for every           :),( ii yx

),( ii yx

1 nxi 1 nyi

nxi 1

or

and nyi 1
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Number of unique pairs of form        
with                 and                :

),( ii yx

nxi 1 nyi 1

unique pairs 
2nnn 

),( ii yx

n choices n choices

For example: ),(,),1,3(),3,1(),1,2(),2,1(),1,1( nn
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unique pairs of form 2nnn  ),( ii yx

Since                           has           elements
there are exactly          pairs of form  

1321 2,,,,
n

aaaa  12 n

12 n ),( ii yx

From pigeonhole principle, there are two
equal pairs              kjyxyx kkjj  ),,(),(

kj xx  and kj yy 

Konstantin Busch - LSU 28

kjyxyx kkjj  ),,(),(

Case            :kj aa 

1321 2
2

,,,,,,,,,,,,
nkkkj aaaaaaaa

kx


Ascending subsequence
with      elementskx

Ascending subsequence
with                                elementsjjk xxx  11

Contradiction, since longest ascending subsequence
from       has lengthja jx

kj xx 
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kjyxyx kkjj  ),,(),(

Case            :kj aa 

1321 2
2

,,,,,,,,,,,,
nkkkj aaaaaaaa

ky


Descending subsequence
with      elementsky

Descending subsequence
with                                elementsjjk yyy  11

Contradiction, since longest descending subsequence
from       has lengthja jy

kj yy 
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Therefore, there is a             with:

Therefore, it is not true the assumption 
that for every           :),( ii yx

),( ii yx

1 nxi 1 nyi

nxi 1

or

and nyi 1

End of Proof

Permutations
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Permutation:

Objects: a,b,c

An ordered arrangement 
of objects

Example:

Permutations:  a,b,c   a,c,b   
b,a,c   b,c,a
c,a,b   c,b,a
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r-permutation:

Objects: a,b,c,d

An ordered arrangement 
of r objects

Example:

2-permutations:  a,b   a,c   a,d   
b,a   b,c   b,d
c,a   c,b   c,d
d,a   d,b   d,c
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How many ways to arrange 5 students in line? 

1st position in line: 5 student choices

2nd position in line: 4 student choices

3rd position in line: 3 student choices

4th position in line: 2 student choices

5th position in line: 1 student choices

Total permutations: 5x4x3x2x1=120
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How many ways to arrange 3 students in line
out of a group of 5 students? 

1st position in line: 5 student choices

2nd position in line: 4 student choices

3rd position in line: 3 student choices

Total 3-permutations: 5x4x3=60
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Given     objects the number of
-permutations is denoted

n
r

),( rnP

6)3,3(

12)2,4(

60)3,5(

120)5,5(









P

P

P

PExamples:
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Theorem:
)!(

!
),(

rn

n
rnP


 nr 0

Proof:

))1(()2()1(),(  rnnnnrnP 

1st position
object
choices

2nd position
object
choices

3rd position
object
choices

rth position
object
choices
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)!(

!
            

12))1(()(

12))1(()())1(()2()1(
            

))1(()2()1(),(

rn

n

rnrn

rnrnrnnnn

rnnnnrnP

















End of Proof

Multiply and divide with same product

Konstantin Busch - LSU 38

Example: How many different ways to order 
gold, silver, and bronze medalists
out of 8 athletes? 

336678
!5

!8

)!38(

!8
)3,8( 


P

Combinations
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r-combination: An unordered arrangement 
of r objects

Objects: a,b,c,dExample:

2-combinations:  a,b   a,c   a,d   b,c  b,d  c,d

3-combinations:  a,b,c   a,b,d   a,c,d  b,c,d
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Given     objects the number of
-combinations is denoted

n
r

),( rnC

4)3,4(

6)2,4(





C

CExamples:










r

n
or

Also known as binomial coefficient
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Combinations can be used to find permutations

Objects: a,b,c,d

a,b,c   a,b,d   a,c,d  b,c,d

3-combinations )3,4(C
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Combinations can be used to find permutations

Objects: a,b,c,d

a,b,c   a,b,d   a,c,d  b,c,d
a,c,b   a,d,b   a,d,c  b,d,c
b,a,c   b,a,d   c,a,d  c,b,d
b,c,a   b,d,a   c,d,a  c,d,b
c,a,b   d,a,b   d,a,c  d,b,c
c,b,a   d,b,a   d,c,a  d,c,b

3-combinations

3-permutations

)3,4(C

)3,3(P
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Combinations can be used to find permutations

3-combinations

3-permutations

)3,4(C

)3,3(P

a,b,c   a,b,d   a,c,d  b,c,d
a,c,b   a,d,b   a,d,c  b,d,c
b,a,c   b,a,d   c,a,d  c,b,d
b,c,a   b,d,a   c,d,a  c,d,b
c,a,b   d,a,b   d,a,c  d,b,c
c,b,a   d,b,a   d,c,a  d,c,b

Total permutations: )3,3()3,4()3,4( PCP 

Objects: a,b,c,d
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Theorem:
)!(!

!
),(

rnr

n
rnC


 nr 0

Proof: ),(),(),( rrPrnCrnP 

)!(!

!

)!(

!

)!(

!

),(

),(
),(

rnr

n

rr

r

rn

n

rrP

rnP
rnC









End of Proof
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Example: Different ways to choose 5 cards
out of 52 cards

960,598,21249101726
12345

4849505152

)!47(!5

!52
)5,52( 




C
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),(),( rnnCrnC Observation:

),(
)!())!((

!

)!(!

!
),( rnnC

rnrnn

n

rnr

n
rnC 







Example: )47,52()5,52( CC 

Binomial Coefficients
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32233

3

3

2

3

1

3

0

3
)( yxyyxxyx 





































3223

3

33x             

             

))()(()(

yxyyx

yyyyyxyxyyxxxyyxyxxxyxxx

yxyxyxyx







Possible ways to
obtain product
of    terms of
and    terms of  0 y

Possible ways to
obtain product
of     terms of
and    terms of  

2
y

3 x
1

x

Possible ways to
obtain product
of    terms of
and    terms of  

0
y3

x
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nnnnnn y
n

n
xy

n

n
yx

n
yx

n
x

n
yx 














































  12211

1210
)( 

)())()(()( yxyxyxyxyx n  

n times

Possible ways to
obtain product
of    terms of
and    terms of  0 y

Possible ways to
obtain product
of        terms of
and    terms of  

1n
y

n x
1

x

Possible ways to
obtain product
of    terms of
and    terms of  

0
yn
x
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Observation: 
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nnnnnn

even odd
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Pascal’s Identity:


























 

k

n

k

n

k

n

1

1

Proof:

0 kn

T set with           elements1n

Ta element of T
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number of subsets of    
with size 

T
k

subsets that 
contain a

||||
1

YX
k

n








 

subsets that
do not contain    a
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X :subsets of       with size
that contain 

T k
a

Each              has form:Xs },,,{ 11  kttas 

1k elements 
from }{aT 

Total ways for 
constructing              :Xs
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|}{|
||

k

n

k

aT
X
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elements 
from
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Y :subsets of       with size
that do not contain 

T k
a

Each              has form:Ys },,{ 1 ktts 

k
}{aT 

Total ways for 
constructing            :Ys

















 


k

n

k

aT
Y

|}{|
||
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1

End of Proof
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Pascal’s Triangle
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4

6

3

6

2

6

1

6

0

6

5

5

4

5

3

5

2

5

1

5

0

5

4

4

3

4

2

4

1

4

0

4

3

3

2

3

1

3

0

3

2

2

1

2

0

2

1

1

0

1

0

0

1615201561

15101051

14641

1331

121

11

1



























4

5

3

5

4

6
51015 

Generalized Permutations and Combinations
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Permutations with repetition for: a,b,c

aaa   aab   aba   abb   aac   aca   acc   abc  acb
bbb  bba   bab   baa   bbc  bcb   bcc  bac   bca
ccc   cca   cac    caa   ccb  cbc   cbb  cab   cba

Total permutations with repetition: 3x3x3 = 27

3 ways to chose each symbol



16

Konstantin Busch - LSU 61

Permutations with repetition:

#ways to arrange in line     objects 
chosen from a collection of     objects:

r
n

rn

Example: Strings of length
from English alphabet:

5r
526rn

aaaaa, aaaab, aaaba, aaabb, aabab,…
Konstantin Busch - LSU 62

Combinations with repetition for: a,b,c

aaa   aab   aba   abb   aac   aca   acc   abc  acb
bbb  bba   bab   baa   bbc  bcb   bcc  bac   bca
ccc   cca   cac    caa   ccb  cbc   cbb  cab   cba

Total combinations with repetition: 10

aaa   aab   abb   aac   acc   abc  
bbb  bbc   bcc
ccc

After removing redundant permutations
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a | b | c

* * *

1st letter 
choice

2nd letter 
choice

3rd letter 
choice

abc = a|b|c = *|*|*

aab = aa|b|= **|*|

acc = a||cc = *||**

bcc =|b|cc = |*|**

Encoding for combinations with repetitions:
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All possible combinations with repetitions
for objects a,b,c:

aaa:  ***||
aab:  **|*|
aac:  **||*
abb:  *|**|
abc:  *|*|*
acc:  *||**
bbb:  |***|
bbc:  |**|*
bcc:  |*|**
ccc:  ||***

Equivalent to finding
all possible ways to
arrange *** and ||
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All possible ways to arrange *** and || :

10
2

54

!2!3

!5

)!35(!3

!5

3

5



















equivalent to all possible ways to select
3 objects out of 5:

5 total positions in a string
3 positions are dedicated for *

Konstantin Busch - LSU 66

2-combinations with repetition for: a,b,c

Total = 6aa   ab   ac   bb   bc   cc

Each combination can be encoded 
with ** and || :

ab = a|b| = *|*|

ac = a||c = *||*
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All possible 2-combinations with repetitions
for objects a,b,c:

aa:  **||
ab:  *|*|
ac:  *||*
bb:  |**|
bc:  |*|*
cc:  ||**

Equivalent to finding
all possible ways to
arrange ** and ||
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All possible ways to arrange ** and || :

6
2

34

!2!2

!4

)!24(!2

!4

2

4



















equivalent to all possible ways to select
2 objects out of 4:

4 total positions in a string
2 positions are dedicated for *
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4-combinations with repetition for: a,b,c

Total = 15
aaaa   aaab   aaac
aabb   aabc  aacc  
abbb   abbc  abcc accc
bbbb   bbbc  bbcc bccc cccc

Each combination can be encoded 
with **** and || :

aabb = aa|bb| = **|**|

abcc = a|b|cc = *|*|**
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All possible ways to arrange **** and || :

15
2

56

!2!3

!6

)!46(!4

!6

4

6



















equivalent to all possible ways to select
4 objects out of 6:

6 total positions in a string
4 positions are dedicated for *
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r-combinations with repetition:

Number of ways to select    objects out of    :r n








 

r

rn 1

Proof:

Each of the     objects corresponds to a *r

The original       objects create          of |n 1n
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obj 1|obj 2|obj 3|…|obj(n-1)|obj n

*|***|*||*|…|*

The | separate the     original objectsn

The * represent the     selected objectsr

1st selected
object

2nd selected
object

rth selected
object

1n
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Each    -combination can be encoded with a 
unique string formed with **…* and ||…| :

abc = a|b|c|| = *|*|*||

Example 3-combinations of 5 objects a,b,c,d,e:

cde = ||c|d|e = ||*|*|*

r

1nr

*|***|*||*|…|*

)1(  nrString length:
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All possible strings made of **…* and ||…| :








 








 

r

rn

r

nr 1)1(

Equivalent to all possible ways to select
objects out of                  :

total positions in a string
positions are dedicated for *

End of Proof

r 1n

r )1(  nr
)1(  nr

r
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Example:

How many ways to select r=6 cookies from 
a collection of n=4 different kinds of cookies?

84
321

789

)!69(!6

!9

6

9

6

1461

























 








 

r

rn

Equivalent to combinations with repetition:
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Example: How many integer solutions 
does the equation have?

11321  xxx 0,, 321 xxx

11416  4,1,6 321  xxx

11830  4,8,0 321  xxx
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78
21

1213

11

13

11

11131






















 








 

r

rn

Equivalent to selecting r=11 items (ones) 
from n=3 kinds (variables)

1111111111111
33333221111
 xxxxxxxxxxx

41 x 22 x 53 x

11524 
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Permutations of indistinguishable objects

SUCCESS

How many different strings are made by
reordering the letters in the string?

SUSCCES, USCSECS, CESUSSC,…
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SUCCESS










3

7

available
positions 
for 3 S

SUCCESS










2

4

available
positions 
for 2 C

SUCCESS










1

2

available
positions 
for 1 U

SUCCESS










1

1

available
positions 
for 1 E

420
!1!1!2!3

!7

!0!1

!1

!1!1

!2

!2!2

!4

!4!3

!7

1

1

1

2

2

4

3

7

















































Total possible strings:
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Permutations of indistinguishable objects:

1n indistinguishable objects of type 1

2n indistinguishable objects of type 2


kn indistinguishable objects of type k

!!!

!

21 knnn

n



Total permutations for the     objects:n
knnnn  21
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Proof:










1n

n

Available 
positions 
for     
objects
of type 1

nXXX 21

1n








 

2

1

n

nn

Available
positions 
for     
objects
of type 2

nXXX 21

2n








  

k

k

n

nnn 11 

Available
positions 
for     
objects
of type k

nXXX 21

kn
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Total possible permutations:

!

1

!

1

!

!

)!(!

)!(

)!(!

)!(

)!(!

!

)

21

1

11

212

1

11

11

2

1

1

k

kk

k

k

k

nnn

n

nnnn

nnn

nnnn

nn

nnn

n

n

nnn

n

nn

n

n
































 







 













)0( 21  knnnn 

End of Proof
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Distributing objects into boxes

5 distinguishable objects:  a, b, c, d, e

3 distinguishable boxes: 
Box1: holds 2 objects
Box2: holds 1 object
Box3: holds 2 objects

How many ways to distribute the objects
into the boxes? (position inside box doesn’t matter)

Box 1 Box 2 Box 3

c  dba  e

Konstantin Busch - LSU 84

Problem is equivalent to finding all 
permutations with indistinguishable objects 

5n distinct positions:  a b c d e

21 n

a b c d e

positions
for Box 1

12 n

a b c d e

positions
for Box 2

c  dba  e

23 n

a b c d e

positions
for Box 3



22
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Total arrangements of objects into boxes:

30
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Same as permutations 
of indistinguishable objects
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n distinguishable objects

k distinguishable boxes: 
Box1: holds      objects
Box2: holds      objects

…
Boxk: holds      objects

1n

In general:

2n

kn

!!!

!

21 knnn

n


Total arrangements:

knnnn  21
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Distributing indistinguishable objects 
into distinguishable boxes

r indistinguishable objects

n distinguishable boxes: 

…

Box 1 Box 2 Box n

……
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Box 1 Box 2 Box n

……

Problem is same with finding the number 
of solutions to equation:

rxxx n  21

:0ix number of objects in Box i



23
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rxxx n  21








 

r

rn 1

Total number of solutions:

0ix

Is equal to number of ways to distribute
the indistinguishable objects into the boxes


