Basic Counting Principles

Product Rule:

Suppose a procedure consists of 2 tasks

- n_1 ways to perform 1st task
- n_2 ways to perform 2nd task

 $n_1 \cdot n_2$ ways to perform procedure

2

Konstantin Busch - LSU

Example: How many different variable names Example: 2 employees 10 offices with 2 symbols? How many ways to assign employees to offices? XY (e.g. A1, A2, AA) 1st employee has 10 office choices 2nd symbol 1st symbol alphanumeric letter 2nd employee has 9 office choices 26 choices 26+10 = 36 choices Total office assignment ways: 10x9 = 90 Total variable name choices: 26x36 = 936 Konstantin Busch - LSU Konstantin Busch - LSU 3

1

Counting

CSC-2259 Discrete Structures

Konstantin Busch - LSU

Suppose a procedure can be performed with either of 2 different methods

- n_1 ways to perform 1st method
- n_2 ways to perform 2nd method
- $n_1 + n_2$ ways to perform procedure

Example: Number of variable names with 1 or 2 symbols

Variables with 1 symbol: 26

Variables with 2 symbols: 936

Total number of variables: 26+936=962

Konstantin Busch - LSU	7	

Example: Number of binary strings of length 8 that either start with 1 or end with 0 Strings that start with 1: $1x_1x_2\cdots x_7$ 128 choices Strings that end with 0: $y_1y_2\cdots y_70$ 128 choices Common strings: $1z_1\cdots z_70$ 64 choices Total strings: 128+128-64=192

Konstantin Busch - LSU

10

Pigeonhole Principle

11

One pigeonhole contains 2 pigeons

3 pigeons

Pigeonhole Principle:

If k+1 objects are placed into k boxes, then at least one box contains 2 objects

Examples:

- •Among 367 people at least 2 have the same birthday (366 different birthdays)
- •Among 27 English words at least 2 start with same letter (26 different letters)

Generalized Pigeonhole Principle:

If N objects are placed into k boxes, then at least one box contains [N] objects k

 $\lceil N \rceil$

Proof: .

If each box contains less than
$$\left|\frac{N}{k}\right|$$
 objects:
#objects $\leq k \left(\left\lceil \frac{N}{k} \right\rceil - 1\right) < k \left(\left(\frac{N}{k} + 1\right) - 1\right) = N$
contradiction
Konstantin Busch - LSU End of Proof₁₆

Example:

Among 100 people, at least $\left\lceil \frac{100}{12} \right\rceil = 9$ have birthday in same month

N = 100 people (objects)

k = 12 months (boxes)

Konstantin Busch - LSU

Example:

How many students do we need to have so that at least six receive same grade (A,B,C,D,F)?

N = ?	students (objects)	
<i>k</i> = 5	grades (boxes)	
$\left\lceil \frac{N}{k} \right\rceil \ge 6$	at least six students receive same grade Konstantin Busch - LSU	18

An elegant example:

In any sequence of $n^2 + 1$ numbers there is a sorted subsequence of length n+1(ascending or descending)

n+1=4Ascending subsequence n = 3 $n^{2} + 1 = 10$ numbers 8, 11, 9(1)(4), 6, 12, 10, (5), (7)

Descending subsequence

8,11,9,1,4,6,12,10,5,7 Korstantin Busch - LSU

21

Theorem:

In any sequence of $n^2 + 1$ numbers there is a sorted subsequence of length n+1(ascending or descending)

Proof: Sequence $a_1, a_2, a_3, ..., a_{n^2+1}$

 (x_i, y_i)

Konstantin Busch - LSU

Length of longest ascending subsequence starting from a_i

Length of longest descending subsequence starting from a_i

22

For example: $(x_1, y_1) = (3,3)$

Longest ascending subsequence from $a_1 = 8$ (8, 11), 9, 1, 4, 6, (12), 10, 5, 7 $x_1 = 3$

Longest descending subsequence from $a_1 = 8$ (8), 11, 9, 1, 4, (6) 12, 10, (5), 7 $y_1 = 3$

For example: $(x_2, y_2) = (2,4)$

Longest ascending subsequence from $a_2 = 11$ 8, (11), 9, 1, 4, 6, (12), 10, 5, 7 $x_2 = 2$

Longest descending subsequence from $a_2 = 11$ 8, (11, 9) 1, 4, (6), 12, 10, (5), 7

$y_2 = 4$

23 Konstantin Busch - LSU 24

We want to prove that there is a (x_i, y_i) with:

$$x_i \ge n+1$$
 or $y_i \ge n+1$

Assume (for sake of contradiction) that for every (x_i, y_i) :

$$1 \le x_i \le n$$
 and $1 \le y_i \le n$

Konstantin Busch - LSU

25

27

Number of unique pairs of form (x_i, y_i) with $1 \le x_i \le n$ and $1 \le y_i \le n$:

 $n \cdot n = n^2$ unique pairs

For example: (1,1), (1,2), (2,1), (1,3), (3,1), ..., (n,n)

Konstantin Busch - LSU

26

 $n \cdot n = n^2$ unique pairs of form (x_i, y_i)

Since $a_1, a_2, a_3, \dots, a_{n^2+1}$ has $n^2 + 1$ elements there are exactly $n^2 + 1$ pairs of form (x_i, y_i)

From pigeonhole principle, there are two equal pairs $(x_i, y_i) = (x_k, y_k), j < k$

$$x_j = x_k$$
 and $y_j = y_k$

Case $a_j \leq a_k$:

Ascending subsequence with x_k elements

$$a_1, a_2, a_3, \dots, a_k, \dots, a_{k_2}, \dots, a_{k_{x_k}}, \dots, a_{n^2+1}$$

Ascending subsequence with $x_k + 1 = x_j + 1 > x_j$ elements

Contradiction, since longest ascending subsequence from a_j has length x_j

Konstantin Busch - LSU

Case $a_i > a_k$:

$$(x_j, y_j) = (x_k, y_k), \quad j < k \quad \longrightarrow \quad y_j = y_k$$

Descending subsequence with y_k elements

$$a_1, a_2, a_3, \dots, \underbrace{a_j, \dots, a_k, \dots, a_{k_2}, \dots, a_{k_{2k}}}_{\gamma}, \dots, a_{n^2+1}$$

Descending subsequence with $y_k + 1 = y_j + 1 > y_j$ elements

Contradiction, since longest descending subsequence from a_j has length y_j

Konstantin Busch - LSU 29

Therefore, it is not true the assumption that for every (x_i, y_i) : $1 \le x_i \le n$ and $1 \le y_i \le n$

Therefore, there is a (x_i, y_i) with:

 $x_i \ge n+1$ or $y_i \ge n+1$

End of Proof

Konstantin	Busch - LSU	30

	Permutations		r-permutation:	An ordered arrangement	
Permutation:	An ordered arrangement of objects			of r objects	
Example:	Objects: ch c		Example:	Objects: a,b,c,d	
Example:	Objects, a,b,c		2-permutation	s: a,b a,c a,d	
Permu	tations: abc acb			b,a b,c b,d	
	bac bca			c,a c,b c,d	
	c,a,b c,b,a			d,a d,b d,c	
	Konstantin Busch - LSU	31		Konstantin Busch - LSU	

How many ways to arrange 5 students in line?

1st position in line: 5 student choices
2nd position in line: 4 student choices
3rd position in line: 3 student choices
4th position in line: 2 student choices
5th position in line: 1 student choices

Total permutations: 5×4×3×2×1=120

Konstantin Busch - LSU

33

35

How many ways to arrange 3 students in line out of a group of 5 students?

- 1st position in line: 5 student choices
- 2nd position in line: 4 student choices
- 3rd position in line: 3 student choices

Total 3-permutations: 5×4×3=60

Konstantin Busch - LSU

34

Given n objects the number of r-permutations is denoted

P(n,r)

Examples:

P(5,5) = 120P(5,3) = 60P(4,2) = 12P(3,3) = 6Konstantin Busch - LSU Theorem: $P(n,r) = \frac{n!}{(n-r)!}$ $0 \le r \le n$

Proof:

$$P(n,r) = n \cdot (n-1) \cdot (n-2) \cdots (n-(r-1))$$

$$1^{\text{st position}} 2^{\text{nd position}} 3^{\text{rd position}} r^{\text{th position}} object object object choices}$$

Konstantin Busch - LSU

 $P(n,r) = n \cdot (n-1) \cdot (n-2) \cdots (n-(r-1))$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-(r-1)) \cdot (n-r) \cdot (n-(r+1)) \cdots 2 \cdot 1}{(n-r) \cdot (n-(r+1)) \cdots 2 \cdot 1}$$
$$= \frac{n!}{(n-r)!}$$

Multiply and divide with same product

End of Proof

Example: How many different ways to order gold, silver, and bronze medalists out of 8 athletes?

$$P(8,3) = \frac{8!}{(8-3)!} = \frac{8!}{5!} = 8 \cdot 7 \cdot 6 = 336$$

38

Konstantin Busch - LSU 37 Konstantin Busch - LSU

Combinations

r-combination: An unordered arrangement of r objects

Objects: a,b,c,d

2-combinations: a,b a,c a,d b,c b,d c,d

3-combinations: a,b,c a,b,d a,c,d b,c,d

Konstantin Busch - LSU

Example:

Given n objects the number of r-combinations is denoted

$$C(n,r)$$
 or $\binom{n}{r}$

Also known as binomial coefficient

Examples: C(4,2) = 6C(4,3) = 4

39

Konstantin Busch - LSU

Combinations can be used to find permutations

Combinations can be used to find permutations

3-combinations $C(4,3)$			3-co	ombinat	tions (C(4,3)
a,b,c a,b,d a,c,d b,c,d			a,b,c	a,b,d	a,c,d	b,c,d
			a,c,b	a,d,b	a,d,c	b,d,c
		3-permutations	b,a,c	b,a,d	c,a,d	c,b,d
		P(3,3)	b,c,a	b,d,a	c,d,a	c,d,b
			c,a,b	d,a,b	d,a,c	d,b,c
			c,b,a	d,b,a	d,c,a	d,c,b
Objects: a,b,c,d		Obje	ects: a,	b,c,d		
Konstantin Busch - LSU	41		Konstantin Bu	sch - LSU		

Combinations can be used to find permutations

Total permutations: $P(4,3) = C(4,3) \cdot P(3,3)$

	3-co	ombina	tions (C(4,3)
	a,b,c	a,b,d	a,c,d	b,c,d
	a,c,b	a,d,b	a,d,c	b,d,c
3-permutations	b,a,c	b,a,d	c,a,d	c,b,d
P(3,3)	b,c,a	b,d,a	c,d,a	c,d,b
	c,a,b	d,a,b	d,a,c	d,b,c
	c,b,a	d,b,a	d,c,a	d,c,b

Theorem:
$$C(n,r) = \frac{n!}{r!(n-r)!}$$
 $0 \le r \le n$

Proof:
$$P(n,r) = C(n,r) \cdot P(r,r)$$

Example: Different ways to choose 5 cards out of 52 cards

Observation: C(n,r) = C(n,n-r)

 $C(52,5) = \frac{52!}{5!(47)!} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2,598,960$

$$C(n,r) = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-(n-r))!(n-r)!} = C(n,n-r)$$

Example: C(52,5) = C(52,47)

Konstantin Busch - LSU 45 Konstantin Busch - LSU 46

Binomial Coefficients

$$C(n,r) = \binom{n}{r}$$

+ y)ⁿ = $\binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y^{1} + \binom{n}{2}x^{n-2}y^{2} + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$
$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j}x^{n-j}y^{j}$$

Korstantin Busch - LSU 47

(*x*

Konstantin Busch - LSU

 $(x+y)^{3} = (x+y)(x+y)(x+y)$ = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy $= x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$ $(x+y)^{3} = \begin{pmatrix} 3\\0\\ \end{pmatrix} x^{3} + \begin{pmatrix} 3\\1\\ \end{pmatrix} x^{2}y + \begin{pmatrix} 3\\2\\ \end{pmatrix} xy^{2} + \begin{pmatrix} 3\\3\\ \end{pmatrix} y^{3}$ Possible ways to Possible ways to Possible ways to obtain product obtain product obtain product of 3 terms of xof 2 terms of x

and 0 terms of y

of 0 terms of xand 3 terms of y

48

Konstantin Busch - LSU

and 1 terms of y

$$n \text{ times}$$

$$(x+y)^{n} = (x+y)(x+y)(x+y)\cdots(x+y)$$
Observation: $2^{n} = \sum_{j=0}^{n} \binom{n}{j}$

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y^{1} + \binom{n}{2}x^{n-2}y^{2} + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$
Possible ways to obtain product of n terms of x and 0 terms of x and 1 terms of y
$$2^{n} = (1+1)^{n} = \sum_{j=0}^{n} \binom{n}{j} 1^{n-j} 1^{j} = \sum_{j=0}^{n} \binom{n}{j}$$

49

Konstantin Busch - LSU

Observation: $3^n = \sum_{j=0}^n 2^j \binom{n}{j}$

Observation:
$$0 = \sum_{j=0}^{n} (-1)^{j} {n \choose j}$$

$$3^{n} = (1+2)^{n} = \sum_{j=0}^{n} {n \choose j} 1^{n-j} 2^{j} = \sum_{j=0}^{n} {n \choose j} 2^{j}$$

Konstantin Busch - LSU

$$0 = 0^{n} = (1 + (-1))^{n} = \sum_{j=0}^{n} {n \choose j} 1^{n-j} (-1)^{j} = \sum_{j=0}^{n} {n \choose j} (-1)^{j}$$

Konstantin Busch - LSU

51

Konstantin Busch - LSU

52

53

Pascal's Identity:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

 $n \ge k > 0$

Proof: T set with n+1 elements

 $a \in T$ element of T

Konstantin Busch - LSU

54

number of subsets of T with size $\ k$

$$\binom{n+1}{k} = |X| + |Y|$$
subsets that contain a subsets that do not contain a

$$X \xrightarrow{: \text{subsets of } T \text{ with size } k}_{\text{that contain } a}$$

Each $s \in X$ has form: $s = \{a, t_1, \dots, t_{k-1}\}$ k - 1 elements from $T - \{a\}$

Total ways for constructing $s \in X$:

$$\mid X \models \begin{pmatrix} \mid T - \{a\} \mid \\ k - 1 \end{pmatrix} = \begin{pmatrix} n \\ k - 1 \end{pmatrix}$$

14

 $Y \stackrel{: {\rm subsets of } T \quad {\rm with \ size \ } k}{_{\rm that \ do \ not \ contain \ } a}$

Each
$$s \in Y$$
 has form: $s = \{t_1, \dots, t_k\}$
 k elements
from $T - \{a\}$

Total ways for constructing $s \in Y$:

$$|Y| = \binom{|T - \{a\}|}{k} = \binom{n}{k}$$

57

$$\binom{n+1}{k} = \mid X \mid + \mid Y \mid = \binom{n}{k-1} + \binom{n}{k}$$

Konstantin Busch - LSU

End of Proof

58

Generalized Permutations and Combinations

Permutations with repetition for: a,b,c

aaa aab aba abb aac aca acc abc acb bbb bba bab baa bbc bcb bcc bac bca ccc cca cac caa ccb cbc cbb cab cba

3 ways to chose each symbol

Total permutations with repetition: $3 \times 3 \times 3 = 27$

Konstantin Busch - LSU

15

Permutations with repetition:

#ways to arrange in line r objects chosen from a collection of n objects: n^{r}

Example: Strings of length r = 5from English alphabet: $n^r = 26^5$

aaaaa, aaaab, aaaba, aaabb, aabab,... Konstantin Busch - LSU

61

Combinations with repetition for: a,b,c

aaa	aab	000	abb	aac	280	acc	abc	œ
bbb	600) and	bea	bbc	200	bcc	bac	bea
ссс		Car C	280) Sector	X	Cast (cab	cha

After removing redundant permutations

aaa aab abb aac acc abc bbb bbc bcc ccc

Total combinations with repetition: 10

Konstantin Busch - LSU

62

Encoding for combinations with repetitions:

All possible combinations with repetitions for objects a,b,c:

 aaa:
 *** | |

 aab:
 ** | *

 aab:
 ** | *

 abb:
 * | **

 abb:
 * | **

 abb:
 * | **

 abb:
 * | **

 bb:
 | ***

 bb:
 | ***

 bbc:
 | ***

 bcc:
 | * | **

 ccc:
 | | ***

Equivalent to finding all possible ways to arrange *** and ||

All possible ways to arrange *** and || :

equivalent to all possible ways to select 3 objects out of 5:

5 total positions in a string 3 positions are dedicated for *

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{4\cdot 5}{2} = 10$$

Konstantin Busch - LSU

2-combinations with repetition for: a,b,c

aa ab ac bb bc cc Total = 6

Each combination can be encoded with ** and || :

ab = a|b| = *|*| ac = a||c = *||*

Konstantin Busch - LSU

66

All possible 2-combinations with repetitions for objects a,b,c:

aa: **	
ab: * *	
ac: * *	Equivalent to finding
bb: **	all possible ways to
bc: * *	arrange ** and
cc: **	

equivalent to all possible ways to select 2 objects out of 4:

4 total positions in a string 2 positions are dedicated for *

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2! \cdot 2!} = \frac{4 \cdot 3}{2} = 6$$

Konstantin Busch - LSU	67	Konstantin Busch - LSU	68

4-combinations with repetition for: a,b,c

aaaa aaab aaac aabb aabc aacc Total = 15 abbb abbc abcc accc bbbb bbbc bbcc bccc cccc

Each combination can be encoded with **** and || :

aabb = aa bb = ** **

abcc = a b cc = * * *

Konstantin Busch - LSU

69

71

All possible ways to arrange **** and || :

equivalent to all possible ways to select 4 objects out of 6:

6 total positions in a string 4 positions are dedicated for *

$$\binom{6}{4} = \frac{6!}{4!(6-4)!} = \frac{6!}{3! \cdot 2!} = \frac{6 \cdot 5}{2} = 15$$

Konstantin Busch - LSU

70

r-combinations with repetition:

Number of ways to select r objects out of n:

$$\binom{n+r-1}{r}$$

Proof:

Each of the r objects corresponds to a *

The original n objects create n-1 of

Konstantin Busch - LSU

The separate the *n* original objects
obj 1|obj 2|obj 3|...|obj(n-1)|obj n

$$n-1$$

The * represent the *r* selected objects
*|***|*||*|...|*
1st selected 2nd selected object

Konstantin Busch - LSU

18

All possible strings made of $\underbrace{**...*}_{r}$ and $\underbrace{||...|}_{n-1}$:

Equivalent to all possible ways to select r objects out of r + (n-1): r + (n-1) total positions in a string r positions are dedicated for *

Each *r*-combination can be encoded with a unique string formed with $\underbrace{**...*}_{r}$ and $\underbrace{||...|}_{n-1}$:

String length: r + (n-1)

Example:

How many ways to select r=6 cookies from a collection of n=4 different kinds of cookies?

Equivalent to combinations with repetition:

$$\binom{n+r-1}{r} = \binom{6+4-1}{6} = \binom{9}{6} = \frac{9!}{6!(9-6)!} = \frac{9\cdot 8\cdot 7}{1\cdot 2\cdot 3} = 84$$

75

does the equation have? $x_1 + x_2 + x_3 = 11$ $x_1, x_2, x_3 \ge 0$ 6 + 1 + 4 = 11 $x_1 = 6, x_2 = 1, x_3 = 4$

Example: How many integer solutions

$$0+3+8=11$$
 $x_1=0, x_2=8, x_3=4$

Konstantin Busch - LSU

$$4 + 2 + 5 = 11$$

$$\underbrace{\begin{array}{c}1_{x_1} + 1_{x_1} + 1_{x_1} + 1_{x_2} + 1_{x_2} + 1_{x_2} + 1_{x_3} + 1_{x_3} + 1_{x_3} + 1_{x_3} + 1_{x_3} \\ \hline x_1 = 4 \\ x_2 = 2 \\ x_3 = 5 \\ \end{array}} = 11$$

Equivalent to selecting r=11 items (ones) from n=3 kinds (variables)

$$\binom{n+r-1}{r} = \binom{3+11-1}{11} = \binom{13}{11} = \frac{13\cdot 12}{1\cdot 2} = 78$$

Konstantin Busch - LSU

77

Permutations of indistinguishable objects

SUCCESS

How many different strings are made by reordering the letters in the string?

SUSCCES, USCSECS, CESUSSC,...

Konstantin Busch - LSU 78

<u>SUCCESS</u>	S <u>UCCE</u> SS	S <u>U</u> CC <u>E</u> SS	SUCC <mark>E</mark> SS		
\sim	\/	\searrow			
$\begin{pmatrix} 7\\3 \end{pmatrix}$	$\begin{pmatrix} 4\\2 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1 \end{pmatrix}$		
available	available	available	available		
positions	positions	positions	positions		
for 3 <mark>5</mark>	for 2 C	for 1 U	for 1 <mark>E</mark>		
Total poss	ible strings:				
(7)(4)(2)	(1) 7! 4!	2! 1!	7! 420		

$$\binom{7}{3}\binom{4}{2}\binom{2}{1}\binom{1}{1} = \frac{7!}{3!4!} \cdot \frac{4!}{2!2!} \cdot \frac{2!}{1!1!} \cdot \frac{1!}{1!0!} = \frac{7!}{3!2!1!1!} = 420$$
Konstantin Busch - LSU

Permutations of indistinguishable objects:

*n*₁ indistinguishable objects of type 1

 n_2 indistinguishable objects of type 2 :

 n_k indistinguishable objects of type k

$$n = n_1 + n_2 + \dots + n_k$$

Total permutations for the n objects:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$
Konstantin Busch - LSU

Distributing objects into boxes

- 5 distinguishable objects: a, b, c, d, e
- 3 distinguishable boxes: Box1: holds 2 objects Box2: holds 1 object Box3: holds 2 objects

How many ways to distribute the objects into the boxes? (position inside box doesn't matter)

83

Problem is equivalent to finding all permutations with indistinguishable objects

n = 5 distinct positions: a b c d e

Total arrangements of objects into boxes:

Konstantin Busch - LSU

$$\frac{n!}{n_1!n_2!n_3!} = \frac{5!}{2!1!2!} = \frac{3 \cdot 4 \cdot 5}{2} = 30$$

Same as permutations of indistinguishable objects

In general:

85

n distinguishable objects

k distinguishable boxes: Box1: holds n₁ objects Box2: holds n₂ objects

> ... Boxk: holds n_k objects

$$n = n_1 + n_2 + \dots + n_k$$

Total arrangements: $\frac{n!}{n_1!n_2!\cdots n_k!}$

Konstantin Busch - LSU

86

Distributing indistinguishable objects into distinguishable boxes

r indistinguishable objects

••••

n distinguishable boxes:

Problem is same with finding the number of solutions to equation:

22

$$x_1 + x_2 + \dots + x_n = r \qquad x_i \ge 0$$

Total number of solutions:

$$\binom{n+r-1}{r}$$

Is equal to number of ways to distribute the indistinguishable objects into the boxes

Konstantin Busch - LSU 89