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Discrete Probability

CSC-2259 Discrete Structures
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Sample Space:

Introduction to Discrete Probability

2

}6,5,4,3,2,1{S

Unbiased die

All possible outcomes
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Experiment: procedure that yields events

Event: any subset of sample space

}5,2{2 E

Throw die

}3{1 E
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Probability of event      :E

||

||

space sample of size

setevent  of size
)(

S

E
Ep 

Note that: 1)(0  Ep

since ||||0 SE 
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What is the probability that 
a die brings 3?

5

6
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||
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)( 

S

E
Ep

}3{E

}6,5,4,3,2,1{SSample Space:

Event Space:

Probability:

What is the probability that 
a die brings 2 or 5?
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2

||

||
)( 

S

E
Ep

}5,2{E

}6,5,4,3,2,1{SSample Space:

Event Space:

Probability:

7

Two unbiased dice

)}6,6(,),3,1(),2,1(),1,1{( S

Sample Space: 36 possible outcomes

First die Second die
Ordered pair

What is the probability that 
two dice bring (1,1)?
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36

1

||

||
)( 

S

E
Ep

)}1,1{(E

Sample Space:

Event Space:

Probability:

)}6,6(,),3,1(),2,1(),1,1{( S
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What is the probability that 
two dice bring same numbers?

9

36

6

||

||
)( 

S

E
Ep

)}6,6(),5,5(),4,4(),3,3(),2,2(),1,1{(E

Sample Space:

Event Space:

Probability:

)}6,6(,),3,1(),2,1(),1,1{( S
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Player picks a set of 6 numbers 
(order is irrelevant)

Game with unordered numbers

Game authority selects
a set of 6 winning numbers out of 40 

What is the probability that a player wins?

Number choices: 1,2,3,…,40
i.e. winning numbers: 4,7,16,25,33,39

i.e. player numbers: 8,13,16,23,33,40 
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380,838,3
6

40
|| 








S

}33,39}4,7,16,25,{{E

}},8,5,4,3,2,1{},,7{1,2,3,4,56},1,2,3,4,5,{{   

40} ofout  numbers 6 with subsets all{



S

Winning event:

a single set with the 6 winning numbers

Sample space:

1|| E
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Probability that player wins:

380,838,3

1

6

40

1

||

||
)( 











S

E
EP
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13 kinds of cards (2,3,4,5,6,7,8,9,10,a,k,q,j),
each kind has 4 suits (h,d,c,s)

Player is given hand with 4 cards

A card game

Deck has 52 cards

What is the probability that the cards
of the player are all of the same kind?
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Event: }}j,j,j,{j,},,3,3,3{3},,2,2,2{2{ scdhscdhscdh E

13|| E

Sample Space:

}},,3,2,2{2},,3,2,2{2},,2,2,2{2{    

52} ofout  cards 4 of sets possible all{

dcdhhcdhscdh 

S

each set of 4 cards is of
same kind

725,270
234

49505152

!48!4

!52

4

52
|| 













S
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Probability that hand has 4 same kind cards:

725,270

13

4

52

13

||

||
)( 











S

E
EP
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Game with ordered numbers

Player picks a set of 5 numbers 
(order is important)

Game authority selects from a bin 5 balls 
in some order labeled with numbers 1…50 

Number choices: 1,2,3,…,50
i.e. winning numbers: 37,4,16,33,9

i.e. player numbers: 40,16,13,25,33 

What is the probability that a player wins?
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Sampling without replacement:

200,251,2454647484950
!45

50

)!550(

!50
)5,50(|| 


 PS

5-permutations of 50 ballsSample space size:

After a ball is selected 
it is not returned to bin

Probability of success:
200,251,245

1

||

||
)( 

S

E
EP
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Sampling with replacement:

000,500,31250|| 5 S

5-permutations of 50 balls
with repetition

Sample space size:

After a ball is selected 
it is returned to bin

Probability of success:
000,500,312

1

||

||
)( 

S

E
EP
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Probability of Inverse: )(1)( EpEp 

Proof: ESE 

)(1
||

||
1

||

||||

||

||
)( Ep

S

E

S

ES

S

ES
Ep 







End of Proof
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Example: What is the probability that 
a binary string of 8 bits contains
at least one 0?

}00000000,,00111111,,10111111,01111111{ E

}11111111{E

82

1
1

||

||
1)(1)( 

S

E
EpEp
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Probability of Union:

)()()()( 212121 EEpEpEpEEp 

Proof: |||||||| 212121 EEEEEE 

)()()(                  

||

||

||

||

||

||
                   

||

||||||

||

||
)(

2121

2121

211121
21

EEpEpEp

S

EE

S

E

S

E

S

EEEE

S

EE
EEp












End of Proof

SEE 21,
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Example: What is the probability that 
a binary string of 8 bits
starts with 0 or ends with 11?

}01111111,,00000001,00000000{1 E

Strings that start with 0:

7

1 2|| E (all binary strings with 7 bits 0xxxxxxx)

}11111111,,00000111,00000011{2 E

Strings that end with 11:

6

2 2|| E (all binary strings with 6 bits xxxxxx11)
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}01111111,,00000111,000000011{21 EE

Strings that start with 0 and end with 11:

5

21 2|| EE (all binary strings with 5 bits 0xxxxx11)

8

5

8

1

4

1

2

1

2

2

2

2

2

2
                   

||

||

||

||

||

||
                   

)()()()(

8

5

8

6

8

7

2121

212121








S

EE

S

E

S

E

EEpEpEpEEp

Strings that start with 0 or end with 11:

Probability Theory
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Sample space:

Probability distribution function    :

},,,{ 21 nxxxS 

1)(0  ixp





n

x

ixp
1

1)(

p
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Notice that it can be: )()( ji xpxp 

Example: Biased Coin

Heads (H) with probability 2/3
Tails (T) with probability 1/3

Sample space: },{ THS 

3

2
)( Hp

3

1
)( Tp 1

3

1

3

2
)()(  TpHp
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Uniform probability distribution: 

n
xp i

1
)( 

Sample space: },,,{ 21 nxxxS 

Example: Unbiased Coin
Heads (H) or Tails (T) with probability 1/2

},{ THS 
2

1
)( Hp

2

1
)( Tp
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Probability of event      :





k

i

ixpEp
1

)()(

SxxxE k  },,,{ 21 

E

For uniform probability distribution:
||

||
)(

S

E
Ep 
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Example: Biased die }6,5,4,3,2,1{S

7

2
)6(

7

1
)5()4()3()2()1(  pppppp

What is the probability 
that the die outcome is 2 or 6? }6,2{E

7

3

7

2

7

1
)6()2()(  ppEp
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Combinations of Events:

)(1)( EpEp 

)()()()( 212121 EEpEpEpEEp 

Complement:

Union:

Union of disjoint events: 








i

i

i

i EpEp )(
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Conditional Probability

first coin is TailsCondition:

Question: What is the probability that 
there is an odd number of Tails,
given that first coin is Tails?

Three tosses of an unbiased coin

Tails Heads Tails
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},,,,,,,{ HHHHHTHTHHTTTHHTHTTTHTTTS 

},,,{ THHTHTTTHTTTF 

Sample space:

Restricted sample space given condition:

first coin is Tails
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Event without condition:

Event with condition:

Odd number of Tails 

},,,{ HHTHTHTHHTTTE 

},{ THHTTTFEEF 

first coin is Tails



9

Konstantin Busch - LSU 33

Given condition, 
the sample space changes to

5.0
8/4

8/2

)(

)(

||/||

||/||

||

||
)( 










Fp

FEp

SF

SFE

F

FE
Ep F

},,,{ THHTHTTTHTTTF 

},{ THHTTTFEEF 

F

(the coin is unbiased)
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Notation of event with condition:

)(

)(
)|()(

Fp

FEp
FEpEp F




FEEF |

event       givenE F
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Conditional probability definition:

Given sample space      with
events      and       (where                )
the conditional probability of      given       is:

E F
S

0)( Fp
E F

)(

)(
)|(

Fp

FEp
FEp




(for arbitrary probability distribution)
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Example: What is probability that a family
of two children has two boys
given that one child is a boy

Assume equal probability to have boy or girl

Condition:
one child is a boy

Sample space: },,,{ GGGBBGBBS 

},,{ GBBGBBF 
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Event:

both children are boys

}{BBE 

Conditional probability of event:

3

1

4/3

4/1

}),,({

})({

)(

)(
)|( 




GBBGBBp

BBp

Fp

FEp
FEp
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Independent Events

Events        and       are independent iff:
1E 2E

)()()( 2121 EpEpEEp 

)()|( 121 EpEEp 

Equivalent definition  (if                  ):0)( 2 Ep
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Example: 4 bit uniformly random strings
: a string begins with 1
: a string contains even 1

1E

2E

}1111,1110,1101,1100,1011,1010,1001,1000{1 E

}1111,1100,1010,1001,0110,0101,0011,0000{2 E

8|||| 21  EE
2

1

16

8
)()( 21  EpEp

}1001,1010,1100,1111{21 EE

4|| 21 EE )()(
2

1

2

1

4

1

16

4
)( 2121 EpEpEEp 

Events      and      are independent 1E 2E
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Bernoulli trial: Experiment with two outcomes: 
success or failure

Success probability: p

Failure probability: pq 1

3

2
)(  Hpp

3

1
)(  Tpq

Example: Biased Coin

Success = Heads Failure = Tails 
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Independent Bernoulli trials:

the outcomes of successive Bernoulli trials
do not depend on each other

Example: Successive coin tosses
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Throw the biased coin 5 times

What is the probability to have 3 heads?

Heads probability:
3

2
p

Tails probability:
3

1
q

(success)

(failure)
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Total numbers of ways to arrange in sequence
5 coins with 3 heads:










3

5

HHHTT

HTHHT

HTHTH

THHTH

 
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Probability that any particular sequence has
3 heads and 2 tails is specified positions:

23qp

p

For example:

p p q q

p ppq q

HTHTH
p ppq q

23qppqpqp 

HTHHT
23qppqppq 

HHHTT
23qppppqq 
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Probability of having 3 heads:

23232323

3

5
qpqpqpqp 








 

1st

sequence
success
(3 heads)

2nd

sequence
success
(3 heads)

sequence
success
(3 heads)










3

5 st
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Throw the biased coin 5 times

Probability to have exactly 3 heads:

0086.0
3

1

3

2

!2!3

!5

3

5
23

23 
























qp

All possible ways to arrange in sequence 5 coins with 3 heads

Probability to have 3 heads and 2 tails
in specified sequence positions
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Theorem: Probability to have      successes
in      independent Bernoulli trials: 

knkqp
k

n











k
n

Also known as 
binomial probability distribution:

knkqp
k

n
pnkb 









),;(

Konstantin Busch - LSU 48

Proof:

End of Proof

knkqp
k

n











Total number of
sequences with 

successes and
failures

Probability that 
a sequence has

successes and
failures

in specified positions

k
kn

k
kn

Example:
SFSFFS…SSF
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Example: Random uniform binary strings
probability for 0 bit is 0.9
probability for 1 bit is 0.1

1937102445.0)1.0()9.0(
8

10
),;( 28 

















 knkqp

k

n
pnkb

What is probability of 8 bit 0s out of 10 bits?

9.0p 1.0q 8k 10n

i.e. 0100001000
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Birthday Problem

Birthday collision: two people have birthday
in same day

How many people should be in a room 
so that the probability of birthday collision 
is at least ½?

Problem:

Assumption: equal probability to be born in any day
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If the number of people is 367 or more
then birthday collision is guaranteed by 
pigeonhole principle

366 days in a year

Assume that we have                     people366n
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np :probability that      people have 
all different birthdays

n

We will compute

np1 :probability that there is
a birthday collision among     peoplen

It will helps us to get
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}366,,2,1{}366,,2,1{}366,,2,1{  S

1st person’s
Birthday
choices

Sample space: 

2nd person’s
Birthday
choices

nth person’s
Birthday
choices

)}366,,366,366(),1,,1,2(),1,,1,1{( S

nS 366366366366||  

Cartesian product

Sample space size:
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Event set:

)}1,,365,366(,),365,,1,366(),366,,2,1{( E

each person’s birthday is different

1st person’s
birthday

2nd person’s
birthday

nth person’s
birthday

Sample size:

)1366(364365366
)!366(

!366
),366(|| 


 n

n
nPE 

#choices #choices #choices
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nn

n

S

E
p

366

)1366(364365366

||

|| 




Probability of no birthday collision

Probability of birthday collision:
np1

22n 475.01  np

23n 506.01  np
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Probability of birthday collision:
np1

23n 506.01  np

Therefore: 23n people have probability 
at least ½ of birthday collision
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The birthday problem analysis can be used 
to determine appropriate hash table sizes
that minimize collisions

Hash function collision: )()( 21 khkh 
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Randomized algorithms:
algorithms with randomized choices
(Example: quicksort) 

Monte Carlo algorithms:
randomized algorithms whose output 
is correct with some probability
(may produce wrong output)

Las Vegas algorithms:
randomized algorithms whose output 
is always correct (i.e. quicksort)
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Primality_Test(      ) {
for(        to    ) {

if (Miller_Test(      ) == failure)
return(false)   // n is not prime 

}
return(true) // most likely n is prime 

}

)1ber(random_num ,n,b 

n,b

n,k
k1i

A Monte Carlo algorithm
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Miller_Test(      ) {

for (         to      ) {
if (                     or                         ) 

return(success)
}
return(failure)

}

n,b
tn- s21

0j 1s-
odd is ,log,0, tnsts 

n)(bt mod1 n)(b tj

mod12 
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A prime number     passes the 
Miller test for every

n

nb1

A composite number     passes the 
Miller test in range 
for fewer than       numbers

n

nb1

4

n

false positive with probability: 
4

1
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If the primality test algorithm returns false
then the number is not prime for sure

If the algorithm returns true then the 
answer is correct (number is prime)
with high probability:

1
1

1
4

1
1 










n

k

for nk 4log

Bayes’ Theorem
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)()|()()|(

)()|(
)|(

FpFEpFpFEp

FpFEp
EFp




Applications: Machine Learning
Spam Filters

0)( Ep 0)( Fp
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Bayes’ Theorem Proof:

)(

)(
)|(

Ep

FEp
EFp




)(

)(
)|(

Fp

FEp
FEp




)()|()( EpEFpFEp 

)()|()( FpFEpFEp 

)()|()()|( FpFEpEpEFp 

)(

)()|(
)|(

Ep

FpFEp
EFp 
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)()( FEFEE 

 )()( FEFE

)()()( FEpFEpEp 

)()|()( FpFEpFEp 

)()|()( FpFEpFEp 

)()|()()|()( FpFEpFpFEpEp 
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)(

)()|(
)|(

Ep

FpFEp
EFp 

)()|()()|()( FpFEpFpFEpEp 

)()|()()|(

)()|(
)|(

FpFEpFpFEp

FpFEp
EFp




End of Proof
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Box 1 Box 2

Example: Select random box
then select random ball in box

If a red ball is selected, 
what is the probability it was taken from box 1?

Question:

Konstantin Busch - LSU 68

:E select red ball

:E select green ball

:F

:F

select box 1

select box 2

Question probability: ?)|( EFP

If a red ball is selected, 
what is the probability it was taken from box 1?

Question:
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)()|()()|(

)()|(
)|(

FpFEpFpFEp

FpFEp
EFp




Bayes’ Theorem:

We only need to compute:

)|()|()()( FEpFEpFpFp
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:E select red ball

:E select green ball

:F

:F

select box 1

select box 2

Box 1 Box 2

5.02/1)( Fp 5.02/1)( Fp

Probability
to select box 1

Probability
to select box 2
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:E select red ball

:E select green ball

:F

:F

select box 1

select box 2

Box 1 Box 2

...777.09/7)|( FEp ....428.07/3)|( FEp

Probability to select 
red ball from box 1

Probability to select 
red ball from box 2
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)()|()()|(

)()|(
)|(

FpFEpFpFEp

FpFEp
EFp




5.02/1)( Fp 5.02/1)( Fp

...777.09/7)|( FEp ....428.07/3)|( FEp

644.0
428.0777.0

777.0

5.0428.05.0777.0

5.0777.0
)|( 







EFp

Final 
result
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What if we had more boxes?

Generalized Bayes’ Theorem:





n

i

ii

jj

j

FpFEp

FpFEp
EFp

1

)()|(

)()|(
)|(

nFFFS  21Sample space

mutually exclusive events

Spam Filters
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Training set: Spam (bad) emails 

Good emails 

B

G

A user classifies each email 
in training set as good or bad
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Find words that occur in     and    B G

)(wnB

number of spam emails 
that contain word w

)(wnG

number of good emails
that contain word w

||

)(
)(

B

wn
wp B

||

)(
)(

G

wn
wq G

Probability that 
a spam email 
contains w

Probability that 
a good email 
contains w
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:S

A new email X arrives

Event that X is spam

Event that X contains word w

What is the probability that X is spam
given that it contains word     ?w

:E

?)|( ESP

Reject if this probability is at least 0.9
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)()|()()|(

)()|(
)|(

SpSEpSpSEp

SpSEp
ESp




We only need to compute:

)|()|()()( SEpSEpSpSp

0.5 0.5
||

)(
)(

B

wn
wp B

||

)(
)(

G

wn
wq G

simplified
assumption Computed from training set
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Example:

“Rolex” occurs in 250 of 2000 spam emails

“Rolex” occurs in 5 of 1000 good emails

If new email contains word “Rolex”
what is the probability that it is a spam?

Training set for word “Rolex”:
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“Rolex” occurs in 250 of 2000 spam emails

“Rolex” occurs in 5 of 1000 good emails

250)( RolexnB

5)( RolexnG

125.0
2000

250

||

)(
)( 

B

Rolexn
Rolexp B

005.0
1000

5

||

)(
)( 

G

Rolexn
Rolexq G
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If new email X contains word “Rolex”
what is the probability that it is a spam?

:S Event that X is spam

Event that X contains word “Rolex” :E

?)|( ESP
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)()|()()|(

)()|(
)|(

SpSEpSpSEp

SpSEp
ESp




We only need to compute:

)|()|()()( SEpSEpSpSp

0.5 0.5 125.0)( Rolexp 005.0)( Rolexq

simplified
assumption

Computed from training set
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...961.0
13.0

125.0

5.0005.05.0125.0

5.0125.0
)|( 




ESp

New email is considered to be spam because:

9.0961.0)|( ESp spam threshold
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)|()|()|()|(

)|()|(
)|(

2121

21
21

SEpSEpSEpSEp

SEpSEp
EESp




Better spam filters use two words:

Assumption:       and       are independent1E
2E

the two words appear 
independent of each other


