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Textbook and Slides Information

These undergraduate senior year elective Nonlinear Control Control
Systems course slides are based mainly on the textbook:

J.J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.

These are intended for the classroom use of the lecturer only; not for sale
under any circumstances.
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INTRODUCTION

Definition 1.1

A system is a group of interacting or interrelated elements that act
according to a set of rules to form a unified whole.

A system can be conceptualized as a mechanism that converts its inputs
into corresponding outputs.

Definition 1.2

A system T is said to be linear if
(1) input u produces output y → input ku produces output ky , for every
input u and every scalar k ; AND
(2) input u1 and u2 produce outputs y1 and y2 respectively → input
u1 + u2 produces output y1 + y2, for every u1 and u2.
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Example 1.1

Figure 1: A typical system with input u and output y
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Example 1.2

Figure 2: A typical system with multi-inputs
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 and multi-outputs
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
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System Outputs

The outputs of a system depend on the specific nature of the system and
its purpose.The outputs can be physical, informational, or a combination
of both. Here are some examples across different domains:
Physical Systems:
A manufacturing system: Outputs could be finished products or
components.
An HVAC system: Outputs could be heated or cooled air.
A transportation system: Outputs could be vehicles reaching their
destinations.
Information Systems:
Computer software: Outputs could be processed data, reports, or
visualizations.
Communication systems: Outputs could be transmitted messages or data
packets.
Search engines: Outputs could be search results or relevant information.
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Biological Systems:
Human body: Outputs could be movement, speech, or biochemical signals.
Ecosystems: Outputs could be the growth of plants, population dynamics,
or nutrient cycles.
Decision-Making Systems:
Artificial intelligence systems: Outputs could be predictions,
recommendations, or decisions.
Financial systems: Outputs could be investment strategies, risk
assessments, or financial reports.
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Inputs in Macroeconomics

In macroeconomics, the following are some of the inputs:
Labor: The human effort, skills, and knowledge employed in the
production of goods and services.
Capital: The physical capital goods, such as machinery, buildings, and
equipment, used in production.
Land: Natural resources, such as land, water, minerals, and other raw
materials, used in production.
Entrepreneurship: The ability to organize and coordinate the other
factors of production to create goods and services.
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Interest rate: Input or output

In macroeconomics, the interest rate is generally considered an output
rather than an input. The interest rate is the price of borrowing or lending
money and is determined by the interaction of supply and demand in the
financial markets.

The interest rate is influenced by various factors in the economy, including
monetary policy set by the central bank, inflation expectations, investment
demand, and the overall level of economic activity. These factors affect
the demand for and supply of loanable funds in the economy, which in turn
determines the prevailing interest rate.
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The course covers the study of dynamic systems, which are characterized
by differential or difference equations.
A dynamic system is a system that changes over time, and its behavior
can be influenced by both internal and external factors. It is a system
where the output at any given time depends not only on the current input
but also on the past inputs and the system’s internal state.

Recall that:
A differential equation is an equation that relates an unknown function to
its derivatives.
Solutions to differential equations are functions, whereas solutions to
algebraic equations are numbers.
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Definition 1.3

A linear ordinary differential equation of order n, in the dependent variable
y and the independent variable x , is an equation that is in, or can be
expressed in, the form

a0(x)
dny

dxn
+a1(x)

dn−1y

dxn−1
+ . . .+an−2(x)

d2y

dx2
+an−1(x)

dy

dx
+an(x)y = b(x)

where a0 is not identically zero.

Functions of x : x2, sin(x), x + 1, 5, 0

Not functions of x : y , 3y , y2, dydx , (
dy
dx )2, x + y , xy

Definition 1.4

A nonlinear ordinary differential equation is an ordinary differential
equation that is not linear.
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Example 1.3

d2y

dx2
+ 5

dy

dx
+ 6y = 0 . . . Linear (1)

d4y

dx4
+ x2 d

3y

dx3
+ x3 dy

dx
= xex . . . Linear (2)

d2y

dx2
+ 5

dy

dx
+ 6y2 = 0 . . . Nonlinear (3)

d2y

dx2
+ 5

dy

dx
+ 6yy = 0 . . . Nonlinear

d2y

dx2
+ 5(

dy

dx
)3 + 6y = 0 . . . Nonlinear (4)

d2y

dx2
+ 5(

dy

dx
)2 dy

dx
+ 6y = 0 . . . Nonlinear

d2y

dx2
+ 5y

dy

dx
+ 6y = 0 . . . Nonlinear (5)

d2y

dx2
+ 5y

dy

dx
+ 6y = 0 . . .Nonlinear
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Definition 1.5

The normal form (aka state-space form) of a linear system of n differential
equations in n unknown functions x1, x2, . . . , xn, is in the following form:

dx1
dt = f1(x1, x2, . . . , xn, t)
dx2
dt = f2(x1, x2, . . . , xn, t)

...
dxn
dt = fn(x1, x2, . . . , xn, t)

 (6)

A compact representation

ẋ = f(x, t)

where

x
4
=


x1

x2
...
xn

 , f(x, t)
4
=


f1(x, t)
f2(x, t)

...
fn(x, t)


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Definition 1.6

The normal form (aka state-space form), in the general case of a linear
system of n differential equations in n unknown functions x1, x2, . . . , xn, is
in the following form:

dx1
dt = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + b1(t)
dx2
dt = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + b2(t)

...
dxn
dt = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + bn(t)

 (7)

A compact representation


ẋ1

ẋ2
...
ẋn

 =


a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
... . . .

...
an1(t) an2(t) . . . ann(t)




x1

x2
...
xn

+


b1(t)
b2(t)

...
bn(t)


ẋ = Ax + B
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A single n-th order linear differential equation can be converted into this
form. Consider

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ a2(t)

dn−2x

dtn−2
+ · · ·+ an−2(t)

d2x

dt2

+an−1(t)
dx

dt
+ an(t)x = F (t) (8)

dnx

dtn
+ a1(t)

dn−1x

dtn−1︸ ︷︷ ︸
xn

+a2(t)
dn−2x

dtn−2︸ ︷︷ ︸
xn−1

+ · · ·+ an−2(t)
d2x

dt2︸︷︷︸
x3

+an−1(t)
dx

dt︸︷︷︸
x2

+an(t) x︸︷︷︸
x1

= F (t)
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dnx

dtn
+ a1(t)

dn−1x

dtn−1︸ ︷︷ ︸
xn

+a2(t)
dn−2x

dtn−2︸ ︷︷ ︸
xn−1

+ · · ·+ an−2(t)
d2x

dt2︸︷︷︸
x3

+an−1(t)
dx

dt︸︷︷︸
x2

+an(t) x︸︷︷︸
x1

= F (t)

Using these definitions, the normal form (i.e., state space form) equivalent
of (8) is

dx1
dt = x2
dx2
dt = x3
...

...
dxn−1

dt = xn
dxn
dt = −an(t)x1 − an−1(t)x2 − · · · − a1(t)xn + F (t)


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Numerical solutions by ode23.m

Consider the first order differential equation

dy

dx
+

2x + 1

x
y = e−2x , y(1) = 2. (9)

We want to find a solution in the interval [1, 5]. Form two m-files: Let
their names be mymain.m and myequation.m.
mymain.m:

[t,x]=ode23(’myequation’,[1,5],2);

plot(t,x,’o’)

myequation.m:

function ydot=myequation(x,y)

ydot=-((2*x+1)/x)*y +exp(-2*x);
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Remarks

The graphics is concatenation of o characters due to the ’o’ option in the
plot command.
Save mymain.m and myequation.m files in the work folder of MATLAB.
In the workplace of MATLAB, type mymain and press enter key. The
graphics obtained is depicted below:

Figure 3: Numerical solution of the 1st order differential equation
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The differential equation (9) is linear and its analytical solution is
y(x) = x

2e
−2x + 14.27

x e−2x . For the purpose of comparison with the
numerical solution we can plot this over the previous graphics by using the
following codes in the workplace of MATLAB (Figure 4):

hold on

x=1:0.1:5

y=exp(-2*x).*x/2+14.27*exp(-2*x)./x

plot(x,y)

Figure 4: Analytical solution of the 1st order differential equation
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MATLAB Operators .* and ./

In the previous slide we used a less frequently encountered the arithmetic
operators .* and ./
The following example illustrates their functions:

>> a=[1 2 3];

>> b=[4 5 6];

>> a.*b

ans =

4 10 18

>> a./b

ans =

0.2500 0.4000 0.5000

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 21 / 379



Now let us modify the files mymain.m and myequation.m to solve the
following second order differential equation in the interval [0, 5]

d2y

dt2
+ 5

dy

dt
+ 4y = sin(t), y(0) = 3; ẏ(0) = 9. (10)

This can be written in the normal form as:

ẋ1 = x2

ẋ2 = −4x1 − 5x2 + sin(t)

}
x1(0) = 3; x2(0) = 9. (11)

Corresponding m-files are formed as shown below:
mymain.m:

[t,x]=ode23(’myequation’,[0,5],[3,9]);

plot(t,x(:,1),’o’,t,x(:,2),’*’)

myequation.m:

function xdot=myequation(t,x)

xdot=[x(2); -4*x(1)-5*x(2)+sin(t)];
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The codes above yields the following graphics:

Figure 5: Numerical solution of the 2nd order differential equation
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Example 1.4

A third order single differential equation

x (3) + 3ẍ + 6x = sin(t)

can be written in the normal form as

ẋ1 = x2

ẋ2 = x3

ẋ3 = −6x1 − 3x3 + sin(t)
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Continued from the previous page

function myNormal

[t y] = ode45(@myEquations, [0 20], [1; 1; 1]);

plot(t, y(:,1))

xlabel(’t’)

ylabel(’x(t)’)

return

function xdot = myEquations(t,y)

X = y(1);

Y = y(2);

Z = y(3);

xdot = [Y;Z; -6*X-3*Z+sin(t)];

return
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Continued from the previous page

Running the function myNormal.m the following graphics is generated:
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NONLINEAR SYSTEM BEHAVIORS

The simple plane pendulum

Assumptions
Pendulum bob of mass m attached to a rigid rod with length L having
negligible mass. Pendulum is confined to swing in a plane.
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Modelling

Speed of the pendulum bob: v = Lθ̇
Kinetic energy of the bob: T = 1

2mv2 = 1
2mL2θ̇2

Potential energy: V = mg(L− L cos θ)
Total energy: E = 1

2mL2θ̇2 + mg(L− L cos θ)

Use conservation of energy: dE
dt = 0→ mL2θ̇θ̈ + mgLθ̇ sin θ = 0. This is

pendulum’s equation of motion (EOM) θ = nπ, n ∈ Z are solutions
corresponding to the pendulum hanging straight down without swinging,
or just balancing straight up. Let us investigate the other solutions. First,
simplify the EOM:

θ̈ +
g

L
sin θ = 0

This differential equation is not easy to solve exactly, so we explore its
properties in some other way.
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θ̈ +
g

L
sin θ = 0

This differential equation is not easy to solve exactly, so we explore its
properties in some other way. Note that, when θ is very small we use the
approximation sin θ ≈ θ. This converts EOM to a linear differential
equation:

θ̈ +
g

L
θ = 0

This has a closed form solution θ(t) = A sin
√

g
L t + B cos

√
g
L t.

Taylor’s expansion of sin x about 0:

sin x = x − x3

3!
+

x5

5!
− · · ·

At x = 0.1: 0.099833 = 0.1− 1.6667× 10−04 + 8.3333× 10−08 − · · ·
At x = 0.05: 0.049979 = 0.05− 2.0833× 10−05 + 2.6042× 10−09 − · · ·
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When θ is not restricted to small angles we can still express the solution
graphically. The appropriate graphics would be θ ↔ θ̇ graphics.
Throughout this course we shall see that dependent variable versus
dependent variable graphics are more useful compared to dependent
variable versus independent variable ones (i.e., θ ↔ θ̇ is more useful
compared to t ↔ θ).
Let us employ the following identity:

θ̈ =
d θ̇

dt
=

d θ̇

dθ

dθ

dt
= θ̇

d θ̇

dθ
Equation of motion becomes:

θ̇
d θ̇

dθ
+

g

L
sin θ = 0

→ θ̇d θ̇ +
g

L
sin θdθ = 0

→
∫
θ̇d θ̇ +

∫
g

L
sin θdθ =

∫
0dθ

→ θ̇2

2
+

g

L
(− cos θ) = c1
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→ θ̇2

2
+

g

L
(− cos θ) = c1

θ̇2 − 2
g

L
cos θ = c (12)

Set up a cartesian phase plane having θ and θ̇ as its axes, and plot the one
parameter family of curves generated by (12) for different values of c . For
this example, (θ, θ̇) is called the state of the system.
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The curves depicted in Figure 6 are known as the phase paths or
trajectories corresponding to the EOM. Complete figure is is called the
phase diagram or phase portrait of the system. Direction of the arrows is
settled by observing that when θ̇ is positive θ must be increasing with time,
and when θ̇ is negative θ must be decreasing with time. (θ, θ̇) = (0, 0) and
(θ, θ̇) = (π, 0) are distinct equilibrium states, at each EP the trajectory is
a single point. Any trajectory starting at EP stays there forever.
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Digression

Figure 7: Effect of translated axes on the coordinates

EOD
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Digression

Consider a single particle having position x and velocity ẋ . Let the
LaGrangian function L be defined by

L
4
= T − V

where T and V are particle’s kinetic and potential energies respectively.
More explicity, one may write it in the form

L =
1

2
mẋ2 − V (x)

The LaGrangian equation
d

dt

∂L

∂ẋ
=
∂L

∂x

leads to

mẍ = −dV (x)

dx

Recognizing the righthand side term as force, it is Newton’s formula
mẍ = F . EOD
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The simple double pendulum

[R. Tedrake, Underactuated Robotics; learning, Planning and Control for
Efficient and Agile Machines, Class notes, MIT, 2009.]

Figure 8: Simple double pendulum
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Figure 9: Simple double pendulum with coordinate axes
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Consider the system in Figure 9 with torque actuation at both joints, and
all of the mass concentrated in two points. Using q = [θ1θ2]T =: [q1q2]T ,
and x1, x2 to denote the locations of m1,m2 respectively, kinematics of
this system are

x1 =

[
l1s1

−l1c1

]
, x2 = x1 +

[
l2s1+2

−l2c1+2

]

ẋ1 =

[
l1q̇1c1

l1q̇1s1

]
, ẋ2 = ẋ1 +

[
l2(q̇1 + q̇2)c1+2

l2(q̇1 + q̇2)s1+2

]
where s1 is shorthand for sin q1, c1+2 is shorthand for cos(q1 + q2), and so
on. From this, we can write the kinetic and potential energies(T and U
respectively):

T =
1

2
ẋT1 m1ẋ1 +

1

2
ẋT2 m2ẋ2

=
1

2
(m1 + m2)l21 q̇

2
1 +

1

2
m2l

2
2 (q̇1 + q̇2)2 + m2l1l2q̇1(q̇1 + q̇2)c2

U = m1gy1 + m2gy2 = −(m1 + m2)gl1c1 −m2gl2c1+2
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Defining L := T − U, and Qi as the generalized force for the joint qi , the
Lagrangian dynamic equations are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi

Taking the partial derivatives ∂T
∂qi
, ∂T∂q̇i and ∂U

∂qi
( ∂U∂q̇i terms are always zero),

then d
dt
∂T
∂q̇i

, and plugging them into Lagrangian reveals the equation of
motion:

(m1 + m2)l21 q̈1 + m2l
2
2 (q̈1 + q̈2) + m2l1l2(2q̈1 + q̈2)c2

−m2l1l2(2q̇1 + q̇2)q̇2s2 + (m1 + m2)l1gs1 + m2gl2s1+2 = τ1

m2l
2
2 (q̈1 + q̈2) + m2l1l2q̈1c2 + m2l1l2q̇

2
1s2 + m2gl2s1+2 = τ2

Simulation:
http://scienceworld.wolfram.com/physics/DoublePendulum.html
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Spring-mass system [core.org.cn]

Example 2.1
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Continued from the previous page

Lagrangian

L = T − V =
1

2
mẋ2 − 1

2
kx2

Lagrange’e Equation:
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

Do the derivatives

∂L

∂q̇i
= mẋ ,

d

dt

(
∂L

∂q̇i

)
= mẍ ,

∂L

∂qi
= −kx

Put it all together

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= mẍ + kx = 0
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A background for the next example

Consider a pendulum of mass m and length ` with angular displacement θ
from the vertical. Its kinetic and potential energies are

K =
1

2
m(`θ̇)2, U = mg`(1− cosθ)
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Example 2.2

Consider a pendulum of mass m and length ` with angular displacement θ
from the vertical. Its kinetic and potential energies are [engr.iupui.edu]:

K =
1

2
m(`θ̇)2, U = mg`(1− cosθ)

The Lagrangian is

L = K − U =
1

2
m(`θ̇)2 −mg`(1− cosθ)

Thus
∂L

∂θ
= −mg` sin θ,

∂L

∂θ̇
= m`2θ̇,

d

dt

(
∂L

∂θ̇

)
= m`2θ̈

So, the EOM is
m`2θ̈ + mg` sin θ = 0
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[ocw.mit.edu]

Example 2.3

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2

V =
1

2
k1x

2
1 +

1

2
k2(x2 − x1)2 +

1

2
k3x

2
2

Apply Lagrange’s equation to L = T − V :
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Apply Lagrange’s equation to L = T − V :

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0

d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= 0

Obtain:

m1
d2x1

dt2
= −k1x1 + k2(x2 − x1)

m2
d2x2

dt2
= −k2(x2 − x1)− k3x2
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Example 2.4

A simplified model of the motion of an underwater vehicle can be written
as

v̇ + |v |v = u

where v is the vehicle velocity and u is the thrust. Responses to the pulses
of amplitude u = 1 and u = 10 are shown in the graphics.

Figure 10: Underwater vehicles response to u = 1
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Figure 11: Underwater vehicles response to u = 10

Observe that 10-folding the input amplitude did not cause response to
10-fold.
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EOM of the underwater vehicle:

v̇ + |v |v = u

Continued from the previous page

steady state response to u = 1 is vs = 1, since |v |v = 1→ vs =
√

1
steady state response to u = 10 is vs ≈ 3.16, since |v |v = 10→ vs =

√
10
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Multiple equilibrium points Nonlinear systems frequently have more
than one equilibrium point (an EP is a point where the system can stay
forever without moving)

Example 2.5

ẋ = −x + x2, x(0) = x0

has the closed form solution

x(t) =
x0e
−t

1− x0 + x0e−t
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x(t) = x0e−t

1−x0+x0e−t

This system has two equilibrium points x = 0 and x = 1, where former is
stable and latter is unstable.
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A linear system can have only one isolated equilibrium point, thus it can
have only one steady state operating point that attracts the state of the
system irrespective of the initial state. A nonlinear system can have more
than one isolated equilibrium point. The state may converge to one of
several steady state operating points, depending on the initial state of the
system.
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Limit cycles

Nonlinear systems can display oscillations of fixed amplitude and fixed
period without external excitation. These oscillations are called limit
cycles. More formally,
”A limit-cycle on a plane or a two-dimensional manifold is a closed
trajectory in phase space having the property that at least one other
trajectory spirals into it either as time approaches infinity or as time
approaches negative infinity. Such behavior is exhibited in some nonlinear
systems. In the case where all the neighbouring trajectories approach the
limit-cycle as time approaches infinity, it is called a stable limit-cycle. If
instead all neighbouring trajectories approach it as time approaches
negative infinity, it is an unstable limit-cycle. Stable limit-cycles imply self
sustained oscillations. Any small perturbation from the closed trajectory
would cause the system to return to the limit-cycle, making the system
stick to the limit-cycle.” [Wikipedia]
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Example 2.6

Van der Pol equation is

mẍ + 2c(x2 − 1)ẋ + kx = 0 (13)

where m, c , k are positive constants. For large values of x damping
coefficient is positive, and damper removes energy from the system. For
small values of x the damping coefficient is negative and damper adds
energy into the system.
When x > 1, all the coefficients of Eq. (13) become positive. This causes
x(t) to decrease. When x < 1, one coefficient of Eq. (13) becomes
negative. This causes x(t) to increase. therefore, the system motion
neither grows unboundedly nor decay to zero. It displays sustained
oscillation independent of the initial condition.
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If a, b, c are real numbers with the same sign, then each root has negative
real part. Corresponding general solutions approach zero. If the coefficient
signs are not the same, then at least one root has a positive real part.
This causes general solution to go to infinity.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 54 / 379



Van der Pol equation

mẍ + 2c(x2 − 1)ẋ + kx = 0 (cf. 13)

is expressed in the state space form as

ẋ1 = x2

ẋ2 = − k
mx1 − 2c

m (x2
1 − 1)x2

(14)

where x1
4
= x and x2

4
= ẋ . For the initial condition (x1, x2) = (0.1, 0), time

graphics and phase graphics are given below.
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Figure 12: Van der Pol equation for m = 1, c = 4, k = 1
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For the Van der Pol equation with m = 1, c = 4, and k = 1; and initial
condition (x1, x2) = (0.1, 0) what is the initial direction of the phase plane
graphics? Recall the Van der Pol equation:

ẋ1 = x2

ẋ2 = − k
mx1 − 2c

m (x2
1 − 1)x2

(cf. 14)

at the given parameters and the initial condition, it equals

ẋ1 = 0
ẋ2 = −1

1 · 0.1−
2·4
1 (0.12 − 1) · 0 = −0.1

As shown in the graphics, initially x2 decreases. For a different set of
parameters and initial condition, time and phase graphics are shown below.
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Figure 13: Van der Pol equation for m = 1, c = 1, k = 4
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Sustained oscillations can also be found in linear systems, in the case of
marginally stable linear systems in response to a sinusoidal inputs.
However, limit cycles in nonlinear systems are different from linear
oscillations in a number of fundamental aspects. First the amplitude of the
self sustained oscillation is independent of the initial condition while the
oscillation of the marginally stable system has its amplitude determined by
its initial conditions. Second, marginally stable linear systems are very
sensitive to changes in system parameters.
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Bifurcations

In practical applications that involve differential equations it very often
happens that the differential equation contains parameters and the value
of these parameters are often only known approximately. In particular they
are generally determined by measurements which are not exact. For that
reason it is important to study the behavior of solutions and examine their
dependence on the parameters. This study leads to the area referred to as
bifurcation theory. It can happen that a slight variation in a parameter can
have significant impact on the solution.
Bifurcation means the splitting of a main body into two parts. In our
context, as the parameters of the nonlinear dynamic systems are changed,
qualitative nature of the d. e. can change, for instance, the stability of EP
can change, and so can the number of EP’s. Values of these parameters at
which the qualitative nature of the system’s motion changes are known as
critical or bifurcation values.
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Example 2.7 (Bifurcations in linear systems)

Consider the system with linear differential equations model

d2y

dt2
+ k

dy

dt
+ y = 0

There is only one bifurcation point above, k = 0. If k crosses this point
stsbility of the system above changes.
In linear systems the bifurcations are related to changes in the stability of
the system.

In NL systems, the change in parameters can cause significant changes in
system behavior and can lead to complex and unpredictable dynamics. For
example, a simple system with a single stable equilibrium point can
undergo a bifurcation, resulting in the emergence of two or more stable
equilibrium points or limit cycles. There are many different types of bif.
that can occur in NL systems, each with its own characteristics and effects
on system behavior. Some of them are: saddle-node bifurcation, Hopf
bifurcation, pitchfork bifurcation, and transcritical bifurcation
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Example 2.8

Duffing Equation
ẍ + αx + x3 = 0

As α varies from positive to negative, one EP splits into three points (i.e.,
0,
√
−α,−

√
−α). This kind is known as pitchfork bifurcation.

Define x := x1, ẋ := x2

The d.e. in the state space form

ẋ1 = x2

ẋ2 = −αx1 − x3
1

Equilibrium points satisfy

0 = x2

0 = −αx1 − x3
1

EP’s corresponding to negative α values : (0, 0), (
√
−α, 0), (−

√
−α, 0)
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Define x := x1, ẋ := x2

The d.e. in the state space form

ẋ1 = x2

ẋ2 = −αx1 − x3
1

Equilibrium points satisfy

0 = x2

0 = −αx1 − x3
1

Reading the figure: For negative α values the system has 3 EP’s, and for
positive α values the system has only one EP. For instance, when α = −2
the three EP’s we have are 0,

√
2,−
√

2 where 0 is unstable EP and√
2,−
√

2 are stable EP’s.
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Example 2.9

We next study the time intervals between successive water drops falling
from a dripping tap.

”We imagine a slowly forming drop at the end of a tap as a mass M
suspended from a spring. As time passes, the mass M of this drop
increases before a fraction of it breaks off at some critical point. This
fraction is thus lost with the remainder (the residue) staying attached to
the tap. Note that the residue recoils upwards after detachment.”
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The differential equation model:

dM
dt = R
dx
dt = v
dv
dt = g − k

M x − b
M v

where
M: mass of the forming drop
x : position (centre of mass) of the forming drop
v : velocity of the drop
R is the flow rate (assumed constant)
k , b and g are the constants determining the strength of the spring, the
strength of the damping and the gravity respectively.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 65 / 379



Continued from the previous page

dM
dt = R
dx
dt = v
dv
dt = g − k

M x − b
M v

Explanation the dynamics
When the position of the forming drop exceeds some fixed threshold xc , a
water drop falls away and we must thus reduce the mass M. Let us take it
that the mass of the falling drop is given by

∆M = αMcvc

where α is some constant and vc and Mc are the velocity and mass of the
forming drop at the threshold xc . The mass of the drop thus suddenly
changes from Mc to Mc −∆M.
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Position of the forming drop x suddenly changes to the new value

x = x0 = xc −
r∆M

Mc

where r = (3∆M/4πρ)1/3 is the radius of the falling drop (ρ: density of
water).

Use the values R = 0.6g/s, g = 980cm/s2, xc = 0.25cm, k =
475dyn/cm, b = 1g/s, α = 0.5s/cm and ρ = 1g/cm3 and initial
conditions x = 0, v = 0 and M = 0.01.

You should see that after some initial transient behaviour, the time
intervals T between each successive drop takes on only two alternating
values. We are thus observing periodic behaviour. Re-running the code
with the values R ∈ (0.7, 0.8), one observes the cases that the time
intervals T doubles for some R. Also, for some R ∈ (0.7, 0.8), chaos occurs.
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An experimental set up

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 68 / 379



Finite escape time

The state of an unstable linear system goes to infinity as time approaches
infinity; a nonlinear system’s state, however, can go to infinity in finite
time.

Example 2.10

Consider the dynamic model

ẋ = −x2, x(0) = −1

Its solution is

x(t) =
1

t − 1

It tends to infinity in a finite time, more specifically, x(t)→ −∞ as t → 1.
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Octave codes for the finite escape time d.e.

function myFE

[t y] = ode45(@myFinEscape, [0 0.98], [-1]);

plot(t, y)

xlabel(’t’)

ylabel(’x(t)’)

grid

return

function xdot = myFinEscape(t,y)

xdot = -y^2;

return

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 70 / 379



Continued from the previous page

Figure 14: Finite escape time: x(t)→ −∞ as t → 1
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Chaos

A nonlinear system can have a more complicated steady state behavior
that is not equilibrium, periodic oscillation, or almost periodic oscillation.
Such behavior is usually referred to as chaos.
”Chaos theory studies the behavior of dynamical systems that are highly
sensitive to initial conditions, an effect which is popularly referred to as the
butterfly effect. Small differences in initial conditions (such as those due
to rounding errors in numerical computation) yield widely diverging
outcomes for chaotic systems, rendering long-term prediction impossible in
general. This happens even though these systems are deterministic,
meaning that their future behavior is fully determined by their initial
conditions, with no random elements involved. In other words, the
deterministic nature of these systems does not make them
predictable. This behavior is known as deterministic chaos, or simply
chaos.” [Wikipedia]
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Chaos in nonlinear systems refers to a phenomenon where small changes in
initial conditions can lead to dramatically different outcomes or trajectories
over time. Nonlinear systems are systems that do not follow a linear
relationship between cause and effect. Instead, the behavior of these
systems can be highly complex and unpredictable.
In chaotic systems, small differences in initial conditions can lead to large
differences in outcomes, making it difficult to predict the behavior of the
system over time. This is known as the butterfly effect, where a butterfly
flapping its wings in one location can potentially cause a hurricane in
another location weeks later.
Chaotic systems can be found in a variety of natural and human-made
systems, including weather patterns, fluid dynamics, population dynamics,
and financial markets. While chaotic systems may appear to be
unpredictable, they often exhibit underlying patterns or structures known
as fractals.
Chaos theory is a branch of mathematics that studies the behavior of
nonlinear systems and seeks to understand and predict their behavior. It
has important applications in a variety of fields, including physics,
engineering, economics, and biology.
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Example 2.11 ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
0 −1.2 −0.4

 x1

x2

x3

+

 0
0
1

 (0.8x1 − x3
1 )
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Figure 15: Chaotic behavior
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Example 2.12

Consider the ordinary differential equation set that models waves in
non-equilibrium substances [M. Rabinovich and A. Fabrikant, 1979 ]

ẋ = y(z − 1 + x2) + γx
ẏ = x(3z + 1− x2) + γy
ż = −2z(α + xy)

where α and γ are constants. Setting α = 1.2 and γ = 0.87 results in
chatic output. however, α = 1.5 and γ = 0.55 results in periodic output.
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function mychaos

[t y] = ode45(@myEqns, [0 60], [-1; 0; 0.5]);

plot(-y(:,1), -y(:,2))

xlabel(’X’)

ylabel(’Y’)

return

function xdot = myEqns(t,y)

alpha = 1.1;

gamma = 0.87;

X = y(1);

Y = y(2);

Z = y(3);

xdot = [Y*(Z - 1 + X^2) + gamma*X; ...

X*(3*Z + 1 - X^2) + gamma*Y; ...

-2*Z*(alpha + X*Y)];

return
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Figure 16: Chaotic behavior
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Figure 17: Periodic behavior
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Subharmonic, harmonic, or almost periodic oscillations

A stable linear system under a periodic input produces an output of the
same frequency. A nonlinear system under periodic excitation can oscillate
with frequencies that are submultiples, or multiples of the input
frequency. It may even generate an almost periodic oscillation.
A harmonic is a signal whose frequency is an integral multiple of the
frequency of some reference signal.
Subharmonic is an oscillation with a frequency equal to an integral
submultiple of some other reference frequency.
We consider complex functions of a real variable. Such a function is
periodic if there is a period T such that for all t, f (t + T ) = f (t).
A number τ is an ε-period for a function f if, for all t,
|f (t)− f (t + τ)| ≤ ε. A function is then almost periodic if, for each
positive ε there is a real number ` such that each real interval of length `
contains an ε-period.
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PHASE PLANE ANALYSIS

Phase plane analysis is a graphical method for studying second order
systems. The basic idea of the method is to generate, in the state space
of a second order system, motion trajectories corresponding to various
initial conditions, and then to examine the qualitative features of the
trajectories.
Phase plane analysis is not restricted to small or smooth nonlinearities, but
applies equally well to strong nonlinearities and to hard nonlinearities.
Hard nonlinearities have nonsmooth i-o relationships.They do not allow
linear approximations. Examples are: Saturation, backlash, deadzone,
hysteresis, friction, switching.
Strong nonlinearities are x3, x4, x5-like terms, which have rapid change
in the output in response to small changes in the input.
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Figure 18: Hard and soft nonlinearities
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Some practical control systems can be approximated as second order
systems, and the phase plane method can be used for their analysis. The
phase plane analysis deals with the graphical study of second order
autonomous (i.e., which do not depend explicitly on the independent
variable) systems described by

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(15)

where x1, x2 are states of the system, and f1, f2 are nonlinear functions of
the states. Geometrically, the state space of this system is a plane having
x1 and x2 as coordinates. This plane is called the phase plane.
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Given a set of initial conditions x(0) = x0
4
=

[
x1(0)
x2(0)

]
, Eq.(15) defines a

solution x(t)
4
=

[
x1(t)
x2(t)

]
. With time t varied from zero to infinity, the

solution x(t) can be represented geometrically as a curve in the phase
plane, such a curve is called a phase plane trajectory. A family of phase
plane trajectories corresponding to various initial conditions is called a
phase portrait of a system.
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Example 3.1

The governing equation of the mass spring system in Figure 16 is a
familiar 2nd order linear differential equation

ẍ + x = 0 (16)

Let the unstreched and uncompressed position of the mass be x = 0 and
let the mass have initial position x0, and initial velocity 0. Then the
solution of the equation is x(t) = x0 cos t, ẋ(t) = −x0 sin t. Eliminating
time t from the above equations, we obtain the equation of the
trajectories x2 + ẋ2 = x2

0 . This represents a circle in the phase plane.
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Figure 19: Phase portrait of the mass-spring system

In the example above, we see that the system trajectories neither converge
to the origin nor diverge to infinity. They simply circle around the origin,
indicating the marginal nature of the system’s stability.
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A major class of 2nd order systems can be described by the differential
equations of the form

ẍ + f (x , ẋ) = 0 (17)

In the state space form, this dynamics can be represented as

ẋ1 = x2

ẋ2 = −f (x1, x2)
(18)

with x1 := x and x2 := ẋ . For this class of 2nd order systems, we have
closed form formulas for the symmetry properties of the phase portrait.
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Singular points

A singular point is an equilibrium point in the phase plane. Since an
equilibrium point is defined as a point where the system states can stay
forever; this implies that ẋ = 0, and using (15),

f1(x1, x2) = 0, f2(x1, x2) = 0 (19)

The values of the equilibrium states can be solved from (19).
For a linear system, there is usually only one singular point or infinitely
many. However, a nonlinear system often has more than one isolated
singular point.
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Example 3.2

Consider the system
ẍ + 0.6ẋ + 3x + x2 = 0

This has two singular points. One at (0,0) and the other is at (-3,0). The
trajectories move toward (0,0) but moving away from (-3,0). So these two
singular points are different in nature.

Figure 20: Phase portrait of ẍ + 0.6ẋ + 3x + x2 = 0
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The system
ẍ + 0.6ẋ + 3x + x2 = 0

can be written in the state space as

ẋ1 = x2

ẋ2 = −0.6x2 − 3x1 − x2
1

Its equilibrium points (in other words, singular points) are found by solving

0 = x2

0 = −0.6x2 − 3x1 − x2
1

The equation set above has two different solutions: (0, 0) and (−3, 0).
Each one is an equilibrium point.
For a phase portrait plotting in MATLAB, one may use any of
pplane5.m-pplane8.m, at

http://math.rice.edu/~dfield/
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From Eq. (15), the slope of the phase trajectory passing through a point
(x1, x2) is determined by

dx2

dx1
=

f2(x1, x2)

f1(x1, x2)
(20)

For (20) to have a definite value, f1 and f2 must be single value functions,
and at the point where we calculate the slope f1 6= 0 must hold.
Stability of NL systems is characterized in terms of their singular points
(EP’s). For instance, for a given nonlinear system, some equilibrium points
may be stable while some others are unstable.
Phase plane analysis is also useful for first order systems. For the 1st order
systems, the phase portrait is composed of a single trajectory.
Now, using (20) we calculate some slopes in the phase portrait of Van der
Pol equation:
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The Van der Pol equation in the state space form is

ẋ1 = x2

ẋ2 = −0.6x2 − 3x1 − x2
1

Recall the slope formula:

dx2

dx1
=

f2(x1, x2)

f1(x1, x2)
(cf. 20)

At the point A the slope is

−0.6x2 − 3x1 − x2
1

x2

∣∣∣∣
(−2,−3)

=
−0.6(−3)− 3(−2)− (−2)2

−3
≈ −1.27

Likewise, at the points B and C we find 1.4 and 2.78 respectively.
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Example 3.3

ẋ = −4x + x3

EP’s: 0,2,-2

Figure 21: Phase portrait of ẋ = −4x + x3
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ẋ = −4x + x3

Examples for determining the arrow direction
At x = −3 corresponding ẋ = −15 implies x is decreasing, therefore the
direction should be towards left.
At x = −1 corresponding ẋ = 1 implies x is increasing, therefore the
direction should be towards right.
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Symmetry about an axis

A phase portrait may have apriori known symmetry properties, which can
simplify its generation and study. Recalling the class of second order
systems:

ẍ + f (x , ẋ) = 0 (cf. 17)

This class can be written in the state space form as

ẋ1 = x2

ẋ2 = −f (x1, x2)

}
(cf. 18)

Slope at (x∗1 , x
∗
2 ) =

−f (x∗1 ,x
∗
2 )

x∗2

Slope at (x∗1 ,−x∗2 ) =
−f (x∗1 ,−x∗2 )
−x∗2
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We have symmetry about the x1 axis if
slope at (x∗1 , x

∗
2 ) = -slope at (x∗1 ,−x∗2 ), ∀(x∗1 , x

∗
2 )

→ −f (x∗1 ,x
∗
2 )

x∗2
= −

(
−f (x∗1 ,−x∗2 )
−x∗2

)
→ f (x∗1 , x

∗
2 ) = f (x∗1 ,−x∗2 ) Symmetry condition about x1

Figure 22: Symmety about the x1 axis
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We have symmetry about the x2 axis if
slope at (x∗1 , x

∗
2 ) = -slope at (−x∗1 , x∗2 ), ∀(x∗1 , x

∗
2 )

→ −f (x∗1 ,x
∗
2 )

x∗2
= −

(
−f (−x∗1 ,x∗2 )

x∗2

)
f (x∗1 , x

∗
2 ) = −f (−x∗1 , x∗2 ) Symmetry condition about x2

Figure 23: Symmety about the x2 axis
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Symmetry about the origin:

f (x∗1 , x
∗
2 ) = −f (−x∗1 ,−x∗2 ) Symmetry condition about the origin

Example 3.4

Mass-spring system has the model

ẋ1 = x2

ẋ2 = −x1

}
(21)

Considering the class given below

ẋ1 = x2

ẋ2 = −f (x1, x2)

}
(cf. 18)

we have f (x1, x2) = x1; it satisfies symmetry conditions about x1, x2 and
the origin.
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Continued from the previous page

Figure 24: Symmetries in the phase portrait of mas-spring system
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Example 3.5

ẋ1 = x2

ẋ2 = −x1 − x2
2

}
Considering the class given below

ẋ1 = x2

ẋ2 = −f (x1, x2)

}
(cf. 18)

we have f (x1, x2) = x1 + x2
2 , f (x1,−x2) = x1 + (−x2)2 → symmetry about

x1.
Since −f (−x1, x2) = −(−x1 + x2

2 ) = x1− x2
2 6= f (x1, x2) = x1 + x2

2 there is
no symmetry about x2.
HW. Verify this by constructing the phase portrait.
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Example 3.6

By noting that ẍ = dẋ
dx

dx
dt the mass spring equation

ẍ + x = 0 (cf. 16)

can be written as

ẋ
d ẋ

dx
+ x = 0

ẋd ẋ + xdx = 0

Integration of this equation yields

ẋ2

2
+

x2

2
= c → ẋ2 + x2 = x2

0

where 2c = x2
0 is an arbitrary positive constant. Most NL systems cannot

be easily solved by any of the techniques we used to solve the mass spring
equations. However for piecewise linear systems the method above can be
conveniently used.
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Example 3.7 (Satellite control)

The satellite is simply a rotational inertia unit controlled by a pair of
thrusters, which can provide either a positive constant torque A or a
negative torque −A. The purpose of the control system is to maintain the
satellite antenna at zero angle by appropriately firing thrusters. The
mathematical model of the satellite is

θ̈ = u

where u is the torque provided by the thrusters and θ is the satellite angle.
Let us examine on the phase plane the behavior of the control system
when the thrusters are fired according to the control law

u(t) =

{
−A if θ > 0
A if θ < 0
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Figure 25: A satellite control system
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Continued from the previous page

As the first step of the phase portrait generation, let us consider the phase
portrait when the thrusters provide a positive torque A. Positive torque is
needed when θ < 0. Under the positive torque A, the dynamics of the
system becomes

θ̈ = A

which implies that θ̇d θ̇ = Adθ. (Recall that θ̈ = θ̇ d θ̇dθ .) Integration of

θ̇d θ̇ = Adθ yields the phase trajectories a family of parabolas

θ̇2 = 2Aθ + c1

where c1 is a constant. Corresponding phase portrait of the system is
shown in Figure 26.
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Figure 26: Phase portrait for θ < 0
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Continued from the previous page

When θ > 0 the thrusters provide negative torque −A. The phase
trajectories are similarly found to be θ̇2 = −2Aθ + c1. Corresponding
phase portrait of the system is shown in Figure 27.
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Figure 27: Phase portrait for θ > 0
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Figure 28: Phase portraits for θ < 0 and θ > 0 together on the same view
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Continued from the previous page

The complete phase portrait of the closed loop system can be obtained
simply by connecting the trajectories on the left half of the phase plane in
Figure 26 with those on the right half of the phase plane in Figure 27, as
shown in Figure 29.
The vertical axis represents a switching line, because the control input and
thus the phase trajectories are switched on that line. It is interesting to see
that starting from a non zero initial angle, the satellite will oscillate in
periodic motions under the action of the thrusters.
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Figure 29: Complete phase portraits when A = 2
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Constructing the phase portraits

Consider the dynamics

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(cf. 15)

At a point (x1, x2) in the phase plane, the slope of the tangent to the
trajectory can be determined by

dx2/dt

dx1/dt
=

f2(x1, x2)

f1(x1, x2)

dx2

dx1
=

f2(x1, x2)

f1(x1, x2)
(cf. 20)
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An isocline is defined to be the locus of the points with given tangent
slope. An isocline with slope α is thus defined to be

dx2

dx1
=

f2(x1, x2)

f1(x1, x2)
= α

This is to say that points on the curve

f2(x1, x2) = αf1(x1, x2)

all have the same tangent slope α.
In the method of isoclines, the phase portrait of a system is generated in
two steps.
In the first step, a field of directions of tangents to the trajectories is
obtained.
In the second step, a phase plane trajectories are formed from the field of
directions.
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Let us explain the isocline method on the mass spring system

ẋ1 = x2

ẋ2 = −x1

}
(cf. 21)

The slope of the trajectories is easily seen to be

dx2

dx1
= −x1

x2

Therefore, the isocline equation for a slope α is

x1 + αx2 = 0

that is, a straight line. Along the line we can draw a lot of short line
segments with slope α. By taking α to be different values, a set of
isoclines can be drawn, and a field of directions of tangents to trajectories
are generated, as shown in Figure 30. To obtain trajectories from the field
of directions, we assume that the tangent slopes are locally constant.
Therefore a trajectory starting from any point in the plane can be found
by connecting a sequence of line segments.
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Figure 30: Field of directions for the mass spring system
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Figure 31: A trajectory on the field of directions for the mass spring system
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Let us use the method of isoclines to study the Van der Pol equation, a
nonlinear equation.
For the Van der Pol equation

ẍ + 0.2(x2 − 1)ẋ + x = 0

an isocline of slope α is defined by

dẋ

dx
= −0.2(x2 − 1)ẋ + x

ẋ
= α.

Therefore, the points on the curve

0.2(x2 − 1)ẋ + x + αẋ = 0

all have the same slope. By taking α of different values, different isoclines
can be obtained, as plotted in Figure 32.
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Figure 32: A trajectory on the field of directions for the Van der Pol equation
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It is interesting to note that there exists a closed curve in the portrait, and
the trajectories starting from both outside and inside both converge to this
curve. This closed curve corresponds to a limit cycle.
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Determining time from phase portraits

Time t does not explicitly appear in the phase plane having x1 and x2 as
coordinates. How long it takes for the system to move from a point to
another point in a phase plane trajectory can be determined. In short time
∆t, the change of x is approximately

∆x = ẋ∆t

where ẋ is the velocity corresponding to the increment ∆x . This implies

∆t =
∆x

ẋ

In order to obtain the time corresponding to the motion from one point to
another point along a trajectory, one should divide corresponding part of
the trajectory into a number of small segments, find the time associated
with each segment, and then add up the results.
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In the limits ∆t → dt and ∆x → dx , so we can write

∆t =
∆x

ẋ
→ dt =

dx

ẋ

Integrating throughout we obtain

t − t0 =

∫ x

x0

1

ẋ
dx .

We plot the phase portrait with new coordinates x and 1
ẋ , then the area

under the resulting curve is the corresponding time interval.
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Example 3.8

For the previously examined mass spring system, when m = k = 1, the
dynamic equations are

ẍ + x = 0

For the initial condition (x(0), ẋ(0)) = (1, 0) its time solution is

x(t) = cos t, ẋ(t) = − sin t

and phase plane solution is

x2 + ẋ2 = 1

Let us see how much time elapsed from x(t) = 0.5 to x(t) = −0.5. Then
we verify it by the newly learned method.
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Continued from the previous page

From the graphics, or analytic calculation, x(t) = 0.5 at t = 1.047 and
x(t) = −0.5 at t = 2.094. So, the time elapsed from x(t) = 0.5 to
x(t) = −0.5 is 1.047 sec.
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Continued from the previous page

Above, we have the trajectory in the phase plane. In the phase plane
x(t) = 0.5 and x(t) = −0.5 points are shown. How much time does the
trajectory need to travel along the trajectory part shown above?
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Continued from the previous page

Above, we have the x ↔ 1
ẋ graphics for x = 0.5→ −0.5. To find the

elapsed time we need to find shaded area:

tf − t0 =

∫ −0.5

0.5
− 1√

1− x2
dx =

∫ 0.5

−0.5

1√
1− x2

dx

= sin−1 x = 0.524− (−0.524) = 1.047 sec

This verifies the previous solution!
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Phase plane analysis of linear systems

Consider the second order linear differential equation

ẍ + aẋ + bx = 0 (22)

Its solution is

x(t) = k1e
λ1t + k2e

λ2t , for λ1 6= λ2

x(t) = k1e
λ1t + k2te

λ1t , for λ1 = λ2

where the constants λ1 and λ2 are the solutions of the characteristic
equation s2 + as +b = (s−λ1)(s−λ2) = 0. The roots could be written as

λ1 =
−a +

√
a2 − 4b

2
, λ2 =

−a−
√
a2 − 4b

2
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For linear systems described by

ẍ + aẋ + bx = 0 (cf. 22)

there is only one singular point (assuming b 6= 0), namely the origin. Note
that (22) has the state space form

ẋ1 = x2

ẋ2 = −bx1 − ax2

Its singular points are obtained by solving

0 = x2

0 = −bx1 − ax2

The trajectory in the vicinity of this singularity point can display quite
different characteristics, depending on the values of a and b. Root
locations and corresponding trajectory behaviors about the origin are given
in the next slide.
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Example 3.9

Consider the differential equation set

ẋ1 = −2x1 − x2

ẋ2 = −3x2

Defining

x
4
=

[
x1

x2

]
The above equations could be written in matrix notation as

ẋ =

[
−2 −1
0 −3

]
x

Writing the equations in this form allows us to express the solutions in
terms of eigenvalues and eigenvectors.
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Continued from the previous page

Obtain a general solution of

ẋ =

[
−2 −1
0 −3

]
x

in terms of eigenstructure. Utilizing this, generate the phase portrait.
A general solution has the form x(t) = k1v1e

λ1t + k2v2e
λ2t when λ1 6= λ2,

where λ1, λ2 are eigenvalues of the system matrix, and v1, v2 are the
corresponding eigenvectors.
The eigenvalues satisfy

det(λI − A) = det

(
λ

[
1 0
0 1

]
−
[
−2 −1
0 −3

])
= det

[
λ+ 2 1

0 λ+ 3

]
= (λ+ 2)(λ+ 3) = 0

→ λ1 = −2, λ2 = −3
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Continued from the previous page

The eigenvector v1 corresponding to λ1 = −2 can be found by solving
(λI − A)v = 0 at λ = −2:[

λ+ 2 1
0 λ+ 3

]
λ=−2

v1 =

[
0
0

]
→
[

0 1
0 1

]
v1 =

[
0
0

]

→ v1 = c1

[
1
0

]
The eigenvector corresponding to λ2 = −3:[

λ+ 2 1
0 λ+ 3

]
λ=−3

v2 =

[
0
0

]
→
[
−1 1
0 0

]
v2 =

[
0
0

]

→ v2 = c2

[
1
1

]

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 133 / 379



Thus the general solution is:

x(t) = c1

[
1
0

]
e−2t + c2

[
1
1

]
e−3t

Plotting the general solution for various initial conditions yields the phase
portrait shown below. Particularly, notice the progress of trajectories
starting on v1 and v2.
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Example 3.10

Consider

ẋ =

[
−3 1
−2 −2

]
x

Its eigenvalues are λ1 = −2.5 + i
√

7
4 and λ2 = −2.5− i

√
7
4 Computing

the eigenvector corresponding to λ1 suffices for the general solution:

V1 = c1

[
1

0.5 + i
√

7
4

]
A solution to the differential equation is:

x(t) =

[
1

0.5 + i
√

7
4

]
e

(−2.5+i
√

7
4

)t
= e−2.5t

[
1

0.5 + i
√

7
4

]
e
i
√

7
4
t

= e−2.5t

[
1

0.5 + i
√

7
4

]
(cos

√
7

4
t + i sin

√
7

4
t)
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Continued from the previous page

x(t) = e−2.5t

[
1

0.5 + i
√

7
4

]
(cos

√
7

4
t + i sin

√
7

4
t)

= e−2.5t


 cos

√
7
4 t

0.5 cos
√

7
4 t −

7
4 sin

√
7
4 t

 +i

 sin
√

7
4 t

0.5 sin
√

7
4 t + 7

4 cos
√

7
4 t


Its real and imaginary parts are always linearly independent. Therefore, the
general solution can be written as their linear combination:

x(t) = c1e
−2.5t

 cos
√

7
4 t

0.5 cos
√

7
4 t −

7
4 sin

√
7
4 t



+c2e
−2.5t

 sin
√

7
4 t

0.5 sin
√

7
4 t + 7

4 cos
√

7
4 t


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Figure 33: Phase portrait for the example of complex eigenvalues case
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Figure 34: Zoomed phase portrait for the example of complex eigenvalues case
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Example 3.11

Stable trajectories may decay faster in certain directions. The one on the
right decays faster horizontally. The on in the middle decays faster in
vertical direction. The one on the left is heading to the origin directly. We
next explain the reason for these behaviors.

Figure 35: Various trajectory behaviors for negative real eigenvalues
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Continued from the previous page

This system has the dynamics ẋ = −4x , ẏ = −y and has a general
solution [

x(t)
y(t)

]
= c1

[
1
0

]
e−4t + c2

[
0
1

]
e−t

∴ The 1st term dies faster; trajectory decays faster in horizontal direction.
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Continued from the previous page

This system has the dynamics ẋ = −x , ẏ = −4y and has a general
solution [

x(t)
y(t)

]
= c1

[
1
0

]
e−t + c2

[
0
1

]
e−4t

∴ The 2nd term dies faster; trajectory decays faster in vertical direction.
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Continued from the previous page

It is an exercise for a student to find out why the system with dynamics
ẋ = −x , ẏ = −y behave in a way different way, compared to the
preceding ones.
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The solution to a two first order linear differential equations when the real
eigenvalues λ1 6= λ2 is

x(t) = c1v1e
λ1t + c2v2e

λ2t

Notice that if, for instance, λ1 < λ2 then the solution may be
approximated as

x(t) ≈ c2v2e
λ2t

Particularly if both λ1 and λ2 are negative,then the motion component in
the v1 direction dies faster, and the motion is represented approximately
by the c2v2e

λ2t component.
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Behavior of nonlinear systems near equilibrium points

Consider the state space system presented below:

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(cf. 15)

Let the point p = (p1, p2) satisfies

0 = f1(x1, x2)
0 = f2(x1, x2)

}
So, the point p = (p1, p2) is an equilibrium point of (15). Also suppose
that f1 and f2 are continuously differentiable. Expand rhs of (15) into its
Taylor series about the point (p1, p2).
Next, we will go off-topic and recall Taylor’s series expansion.
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Digression

Taylor’s expansion formula is a way to approximate a function by a
polynomial series, centered around a specific point. For a function f (x)
and a point a, the Taylor expansion, when exists, is

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)(x − a)2/2! + f ′′′(a)(x − a)3/3! + ...

where f ′(a) is the first derivative of f at a, f ′′(a) is the second derivative
of f at a, and so on.
An example of using Taylor’s expansion formula would be to approximate
the function ex near the point a = 0. In this case, we have

f (x) = ex , f (0) = 1, f ′(0) = e0 = 1, f ′′(0) = e0 = 1, f ′′′(0) = e0 = 1, . . .

So the Taylor expansion of ex at a = 0 is

ex = 1 + x + x2/2! + x3/3! + · · ·
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Taylor’s expansion formula for a two-variable function f (x , y) centered
around (a, b), when exists, can be expressed as

f (x , y) = f (a, b) + (x − a)fx(a, b) + (y − b)fy (a, b) + (x − a)2/2!fxx(a, b)

+(x − a)(y − b)fxy (a, b) + (y − b)2/2!fyy (a, b) + ...

where fx(a, b) denotes the partial derivative of f with respect to x
evaluated at (a, b), fy (a, b) is the partial derivative of f with respect to y
evaluated at (a, b), fxx(a, b) is the second partial derivative of f with
respect to x evaluated at (a, b), and so on.
EOD
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ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(cf. 15)

Expand rhs of (15) into its Taylor series about the point (p1, p2)

ẋ1 = f1(p1, p2) + a11(x1 − p1) + a12(x2 − p2) + hot
ẋ2 = f2(p1, p2) + a21(x1 − p1) + a22(x2 − p2) + hot

where

a11 =
∂f1
∂x1 x1=p1,x2=p2

; a12 =
∂f1
∂x2 x1=p1,x2=p2

;

a21 =
∂f2
∂x1 x1=p1,x2=p2

; a22 =
∂f2
∂x2 x1=p1,x2=p2

and hot denotes higher order terms.
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Since (p1, p2) is an EP, we have

f1(p1, p2) = 0, f2(p1, p2) = 0

Thus

ẋ1 = f1(p1, p2) + a11(x1 − p1) + a12(x2 − p2) + hot
ẋ2 = f2(p1, p2) + a21(x1 − p1) + a22(x2 − p2) + hot

becomes
ẋ1 = a11(x1 − p1) + a12(x2 − p2) + hot
ẋ2 = a21(x1 − p1) + a22(x2 − p2) + hot

Using transformations y1 = x1 − p1; y2 = x2 − p2; the equations become

ẏ1 = a11y1 + a12y2 + hot
ẏ2 = a21y1 + a22y2 + hot
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Higher order terms contain y2
1 , y

2
2 , y1y2, y

2
1 y2, y

3
1 , . . ., and so on. When

(x1, x2) is in the neighborhood of (p1, p2), the variables y1, y2 are in the
neighborhood of the origin. In the neighborhood of the origin hot can be
neglected. The equations become

ẏ1 = a11y1 + a12y2

ẏ2 = a21y1 + a22y2

In matrix notation[
ẏ1

ẏ2

]
=

[
a11 a12

a21 a22

]
︸ ︷︷ ︸

Jacobian matrix of f(x)

[
y1

y2

]

In the neigborhood of the equilibrium points nonlinear system behaves as a
linear system. It exhibits one of the linear system behaviors we have seen.
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Example 3.12

Consider the pendulum equation with friction

ẋ1 = x2

ẋ2 = −10 sin x1 − x2

Noting that

f (x) =

[
f1(x)
f2(x)

]
=

[
x2

−10 sin x1 − x2

]
we linearize them about the EP (0, 0):

∂f

∂x
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1

−10 cos x1 −1

]
→ ∂f

∂x x1=0,x2=0
=

[
0 1
−10 −1

]
This matrix has eigenvalues at −0.5± i3.12. This leads to the linearized
equation [

ẏ1

ẏ2

]
=

[
0 1
−10 −1

] [
y1

y2

]
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Continued from the previous page

Also linearize them about the EP (π, 0):

∂f

∂x x1=π,x2=0
=

[
0 1

10 −1

]
︸ ︷︷ ︸

This matrix has eigenvalues at -3.7 and 2.7. This leads to the linearized
equation [

ẏ1

ẏ2

]
=

[
0 1

10 −1

] [
y1

y2

]
The phase portrait for the nonlinear system is shown in Figure 36.
Trajectory behaviors in the vicinity of the equilibrium points are similar to
those obtained for the linearized models at the corresponding equilibrium
points. Explicitly stating, at the EP (0, 0) linearized model has the
eigenvalues −0.5± i3.12 which correspond to stable focus behavior. On
the other hand, at the EP (π, 0) linearized model has the eigenvalues −3.7
and 2.7 which correspond to unstable node behavior.
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When the Jacobian has all eigenvalues in the closed LHP, or it has at least
one eigenvalue in the closed RHP, then the linearization leads to
conclusion on whether NL system’s EP attracts all neighboring trajectories
or not. Lyapunov’s linearization theorem, in the next page, states this.

Figure 36: Phase portrait for the pendulum with friction
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Basic Sketch of the Lyapunov’s Linearization Theorem

If the linearized system’s coefficient matrix A has all eigenvalues strictly in
the left half complex plane, then in the nonlinear system, the EP attracts
the neighboring trajectories.

If the linearized system’s coefficient matrix A has at least one eigenvalue
strictly in the right half complex plane, then in the nonlinear system, the
EP expels some neighboring trajectories.

If the linearized system is marginally stable (i.e., if no eigenvalues of A are
in the right half complex plane, and at least one of them is on the
imaginary axis), then one cannot conclude anything from the linear
approximation (i.e., the EP maybe attracting neighboring trajectories, or
maybe expelling some of them).
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Example 3.13

Consider the circuit (Figure 37) whose diode characteristics is given by
Figure 38. (This corresponds a 10th degree polynomial with coefficients
[0.0019 −0.0403 0.3280 −1.2512 1.7495 2.3649 − 10.5278 10.8415 −
3.7931 2.5163 − 0.0070] in MATLAB notation)

Figure 37: A nonlinear circuit
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Figure 38: Diode characteristics

The component equations:

ic = C
dV

dt
; vL = L

di

dt
; iR = h(vR)
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The component equations:

ic = C
dV

dt
; vL = L

di

dt
; iR = h(vR)

The circuit equations:

ic + iR − iL = 0
vC − E + RiL + vL = 0

Definitions: x1 := vC , x2 := iL
Circuit equations together with component equations in new variables:

ic = −h(x1) + x2

vL = −x1 + E − Rx2

}
ẋ1 = 1

C {−h(x1) + x2}
ẋ2 = 1

L{−x1 − Rx2 + E}

}
Let C = 1F , L = 1H,R = 2Ω,E = 5V .
Let us find the equilibrium points:

0 = −h(x1) + x2

0 = −x1 − 2x2 + 5
(23)
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We want to find (x1, x2) pairs satisfying both equations in (23). The first
one implies x2 = h(x1), i.e., x2 equals the diode characteristics, and the
second one implies the line x2 = 2.5− 1

2x1. The diode characteristics
graphics and the line together yield the equilibrium points (Figure 40).

Figure 39: EP’s of the circuit
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Figure 40: EP’s of the circuit

Plotting the phase portrait verifies existence of these equilibrium points.
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More on limit cycles

In the phase plane, a limit cycle is defined as an isolated closed curve.
Depending on the motion patterns of the trajectories in the vicinity of the
limit cycle, we categorize limit cycles as
1. Stable limit cycle: All trajectories in the vicinity of the limit cycle
converge to it as t →∞
2. Unstable limit cycle: All trajectories in the vicinity of the limit cycle
diverge from it as t →∞
3. Semistable limit cycle: Some of the trajectories in the vicinity converge
to it, while the others diverge from it as t →∞.
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Figure 41: Stable, unstable and semistable limit cycle
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Theorem 3.1 (Existence of a limit
cycle)

Suppose R is finite region of the plane
lying between two simple closed curves
D1 and D2, and F is the velocity vector
field for the system

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(cf. 15)

If
(i) at each point of D1 and D2, the field
F points toward the interior of R, and
(ii) R contains no critical (equilibrium)
points
then the system (15) has a closed
trajectory lying inside R.
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Example 3.14

ẋ1 = −x2 + x1(1− x2
1 − x2

2 )
ẋ2 = x1 + x2(1− x2

1 − x2
2 )

}
Consider the circles with radii 1

2 and 2
with centers at the origin. Note the
directions of the field lines. Also note
that the only EP is at (0, 0). One can
verify that the unit circle is the limit
cycle.

Point Velocity vector

A : (0.35, 0.35) (ẋ1, ẋ2) = (−0.09, 0.62)

B : (0, 0.5) (ẋ1, ẋ2) = (−0.5, 0.38)

C : (−0.5, 0) (ẋ1, ẋ2) = (−0.38,−0.5)

D : (1.41, 1.41) (ẋ1, ẋ2) = (−5.61,−2.79)

E : (0, 2) (ẋ1, ẋ2) = (−2,−6)
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Continued from the previous page

Figure 42: Existence of a limit cycle for Example 3.14
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Theorem 3.2 (Nonexistence of limit cycle)

Consider the two dimensional autonomous system

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

}
(cf 15)

Suppose D is a simply connected open set of R2. If the expression
∇(f1, f2) = ∂f1

∂x1
+ ∂f2

∂x2
is not identically zero and does not change sign in D,

then there are no periodic orbits (limit cycles) of the autonomous system
(15) in D.

Example 3.15

ẋ1 = x3
1 + x3

2

ẋ2 = 3x1 + x3
2 + 2x2

}
Since ∇F = 3x2 + 3y2 + 2 can’t be zero and does not change sign
anywhere in the xy-plane, there is no closed trajectory in the xy-plane.
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Theorem 3.3

A closed trajectory has a critical point in its interior.

Example 3.16

ẋ = x2 + y2 + 1
ẏ = x2 − y2

}
∇(f1, f2) = 2x − 2y , which is zero along x = y line.By the nonexistence
theorem we are sure that there is no closed trajectory in the region x > y
or x < y , however we have no conclusion about the regions containing
x = y . We can invoke the nonexistence theorem 3.3:
Paraphrase of the last theorem ”No critical point → No surrounding
closed trajectory”.
This system does not have any critical point in the xy-plane, thus it does
not have any closed trajectory in the xy-plane.

Home Exercise Obtain the phase portrait for ẍ + x − x3 = 0. Does it
have a limit cycle?
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LYAPUNOV ANALYSIS

Some definitions The nonlinear system

ẋ = f(x, t) (24)

is said to be autonomous if f does not depend explicitly on time, that is, if
the system’s state equation can be written as

ẋ = f(x). (25)

In particular, LTI systems are autonomous, and the LTV systems are
nonautonomous.
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Example 4.1

ẋ1 = 2x1 + x2

ẋ2 = t2x1

}
nonautonomous

Example 4.2

ẋ1 = x1 + 3x2

ẋ2 = x1 sin x2

}
autonomous
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ẋ = f(x) (cf. 25)

Definition 4.1

A state x∗ is an equilibrium state (or EP) of the system (25) if once x(t) is
equal to x∗ it remains equal to x∗ for all future times. This means, x∗

satisfies
0 = f(x) (26)

EP’s can be found by solving the nonlinear algebraic equations (26). An
LTI system

ẋ = Ax

has a single EP (the origin 0) if A is nonsingular. If A is singular it has an
infinity of EP’s. When A is singular

0 = Ax

has infinitely many solutions. That is, there are infinitely many EP’s.
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Error Dynamics

Consider the differential equation

ẋ = f(x) (cf. 25)

Let the solutions be x∗(t) and x(t) corresponding to the initial conditions
x0 and x0 + δ respectively:

Let x∗(t) be the solution of
(25) corresponding to initial
condition x∗(0) = x0.

ẋ∗ = f(x∗), x∗(0) = x0

Let x(t) be the solution of
(25) corresponding to initial
condition x(0) = x0 + δ.

ẋ = f(x), x(0) = x0 + δ

Let the motion error e be defined as e(t) := x(t)− x∗(t). In other words,
it is the difference between the solutions corresponding to the initial
conditions x0 and x0 + δ. We show that the difference of the solutions
satisfy a differential equation in e. However, this d.e. is not necessariliy
autonomous.
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ẋ = f(x) (cf. 25)

Motion error: e(t) := x(t)− x∗(t).

The error definition leads to

ė = f(x)− f(x∗), e(0) = δ

This may be written as

ė
4
= g(e, t), e(0) = δ

Note that, the error dynamics is nonautonomous. It is illustrated by an
example in the next slide.
Since g(0, t) = 0, the new dynamic system with e as state and g in place
of f, has an equilibrium point at the origin of the state space.
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Example 4.3

Consider the autonomous differential equation ẋ = −x2.

x∗(t) = −1
−1−t is the solution

of the equation corresponding
to initial condition x∗(0) = 1.

x(t) = −1
−0.8−t is the solution

of the equation corresponding
to initial cond. x(0) = 1.25.

Define e(t)
4
= x(t)− x∗(t). Then

ẋ(t)− ẋ∗(t)︸ ︷︷ ︸
ė(t)

= −[x(t)]2 − (−[x∗(t)]2) = [x∗(t)]2 − [x(t)]2︸ ︷︷ ︸
(x∗(t)−x(t))(x∗(t)+x(t))

ė(t) = −e(t)

(
−1

−0.8− t
+ (

−1

−1− t
)

)
, e(0) = 0.25

ė(t) = −e(t)

(
2t + 1.8

t2 + 1.8t + 0.8

)
︸ ︷︷ ︸

g(e,t)

, e(0) = 0.25

The error equation is not autonomous!
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Example 4.4

Consider the autonomous mass spring system

mẍ + k1x + k2x
3 = 0

Let x∗(t) with initial position x∗(0) = x0 satisfies the d. e. Also let x∗∗(t)
with initial position x∗∗(0) = x0 + δx0 satisfies the d. e.

Define the error by e(t)
4
= x∗∗(t)− x∗(t), then the error dynamics is

(mẍ∗∗ + k1x
∗∗ + k2(x∗∗)3)︸ ︷︷ ︸
0

− (mẍ∗ + k1x
∗ + k2x

∗3)︸ ︷︷ ︸
0

= më + k1e + k2[e3 + 3e2x∗(t) + 3ex∗2(t)]︸ ︷︷ ︸
k2((x∗∗)3−(x∗)3)

= 0.

Clearly this is a nonautonomous system.
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Digression: Euclidean Norm

A vector norm on Rn is a function that assigns to each vector v ∈ Rn a
nonnegative real number, called the norm of v and denoted by ||v||,
satisfying
(a) ||v|| ≥ 0, and ||v|| = 0 if and only if v = 0
(b) ||cv|| = |c | · ||v|| for any real number c and vector v.
(c) ||u + v|| ≤ ||u||+ ||v|| for all vectors u and v.

Let v =


x1

x2
...
xn

. A widely used norm, the Euclidean norm, is defined by

||v|| =
√

x2
1 + x2

2 + · · ·+ x2
n .

The Euclidean norm may be viewed as a ”distance” from the origin.
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Let the norm below represent the Euclidean norm.

||x|| < 2 or
√

x2
1 + x2

2 < 2

||x|| = 2 or
√

x2
1 + x2

2 = 2
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Interior of a sphere with radius R:

||x|| < R or
√
x2

1 + x2
2 + x2

3 < R

Surface of a sphere with radius R:

||x|| = R or
√

x2
1 + x2

2 + x2
3 = R

The idea above can be generalized algebraically to more variables. EOD
Notation Let BR denote the spherical region defined by ||x|| < R in the
state space, and SR the sphere itself, ||x|| = R.
Notice that BR is an open set (i.e., not containing the boundaries). This
will be regarded in the proof of Lyapunov’s 2nd theorem.
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Stability

The following stability definitions are for the equilibrium point at the
origin. This definition generalizes to the stability of nonzero equilibrium
points easily.

Definition 4.2

The equilibrium state x = 0 is said to be stable if, for any R > 0, there
exists r > 0 such that if ||x(0)|| < r , then ||x(t)|| < R for all t ≥ 0.
Otherwise the equilibrium point is unstable.
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Example 4.5

The Van der Pol oscillator

ẋ1 = x2

ẋ2 = −x1 + (1− x2
1 )x2

}
has an equilibrium point at the origin. Looking at the phase portrait, if,
for instance, R = 0.1, one cannot find any circle centered at the origin
with radius r such that all trajectories starting in ||x(0)|| < r remain in
||x(t)|| < R for all t ≥ 0.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 177 / 379



Figure 43: In Example 4.5 we can’t keep the trajectory within the specified circle.
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Definition 4.3

An equilibrium point 0 is asymptotically stable if it is stable, and if in
addition there exists some r > 0 such that ||x(0)|| < r implies that
x(t)→ 0 as t →∞.

Definition 4.4

An equilibrium point 0 is exponentially stable if it is stable and if there
exist two strictly positive numbers α and λ such that

∀t > 0, ||x(t)|| ≤ α||x(0)||e−λt

in some ball Br around the origin.

Definition 4.5

If asymptotic (or exponential) stability holds for any initial states, the EP
is said to be asymptotically (or exponentially) stable in the large. It is also
called globally asymptotically (or exponentially) stable.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 179 / 379



Stability of nonzero EP’s

The definitions on stability can be generalized to nonzero equilibrium
points. Consider

ẋ = f(x)

such that
0 = f(xe)

That is, xe is an equilibrium point of f. Let us do a change of variables:
y = x− xe . Then we can write the nonlinear equation as

ẏ = f(y + xe)

This system has equilibrium point at y = 0. One can conclude that the EP
xe of the original system and the EP 0 of the transformed system have
identical stability properties.
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Linearization and local stability

Consider the autonomous system

ẋ = f(x), (cf.25)

where f(x) is continuously differentiable. Using the Taylor’s formula, the
system dynamics can be written as

ẋ = f(0) +

(
∂f

∂x

)
x=0

x + fhot

Noting that 0 is an EP we have f(0) = 0, and fhot stands for the higher
order terms, the above equation becomes

ẋ = Ax (27)

where A :=
(
∂f
∂x

)
x=0

is the Jacobian of f with respect to x at x = 0. The
Eq. (27) is called the linearization of original nonlinear system (25) at
x = 0.
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When
ẋ = f(x), (cf.25)

linearized at x = 0 we obtain

ẋ = Ax (cf. 27)

where A :=
(
∂f
∂x

)
x=0

is the Jacobian of f with respect to x at x = 0.

(
∂f

∂x

)
x=0

=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... · · ·

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


x=0

The Eq. (27) is called the linearization of original nonlinear system (25) at
x = 0.
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In the case of nonhomogeneous nonlinear differential equation

ẋ = f(x,u) (28)

the linearized system at x = 0,u = 0 is

ẋ = Ax + Bu (29)

with A :=
(
∂f
∂x

)
x=0,u=0

and B :=
(
∂f
∂u

)
x=0,u=0

The more explicit

expressions for
(
∂f
∂x

)
x=0,u=0

and
(
∂ f
∂u

)
x=0,u=0

are

(
∂f

∂x

)
x=0,u=0

=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... · · ·

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


x=0,u=0

,

(
∂f

∂u

)
x=0,u=0

=


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
... · · ·

...
∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂um


x=0,u=0
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The following theorem (Lyapunov’s linearization theorem) states some
uses of the linearized systems:

Theorem 4.1

If the linearized system is strictly stable (i.e., if all eigenvalues of A are
strictly in the left half complex plane), then the EP is asymptotically stable
(for the actual nonlinear system).
If the linearized system is unstable (i.e., if at least one eigenvalue of A is
strictly in the right half complex plane), then the EP is unstable (for the
actual nonlinear system).
If the linearized system is marginally stable (i.e., if all eigenvalues of A are
in the left half complex plane, but at least one of them is on the jω axis),
then one cannot conclude anything from the linear approximation (the EP
may be stable, asymptotically stable, or unstable for the nonlinear system).

One should observe that this theorem formalizes the ideas we studied in
the section ”Behavior of nonlinear systems near equilibrium points”
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Recap

Linearized system ẋ = Ax with all eigenvalues of A are strictly in the left
half complex plane → The EP of the actual nonlinear system ẋ = f(x) is
asymptotically stable.

Linearized system ẋ = Ax with at least one eigenvalue of A is strictly in
the right half complex plane → The EP of the actual nonlinear system
ẋ = f(x) is unstable.

Linearized system ẋ = Ax with all eigenvalues of A are in the left half
complex plane, but at least one of them is on the imaginary axis → One
cannot conclude anything from the linear approximation (the EP of the
actual nonlinear system ẋ = f(x) may be stable, asymptotically stable, or
unstable.)
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Example 4.6 [
ẋ1

ẋ2

]
=

[
−4x1 − 2x2 + 4

x1x2

]
Its equilibrium points satisfy[

0
0

]
=

[
−4x1 − 2x2 + 4

x1x2

]
which results in the EP’s (0, 2) and (1, 0). Jacobians at these equilibrium
points are[

−4 −2
x2 x1

]
(0,2)

=

[
−4 −2
2 0

]
→ λ1,2 = −2,−2 ∴ stable

[
−4 −2
x2 x1

]
(1,0)

=

[
−4 −2
0 1

]
→ λ1,2 = −4, 1 ∴ unstable

We note that Jacobian can be constructed at EP’s not necessarily at the
origin, and it leads to the same conclusion.
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Example 4.7

Recall that the simple plane pendulum has
the dynamics

MR2θ̈ + bθ̇ + MgR sin θ = 0

Its equilibrium point (θ, θ̇) = (π, 0) is un-
stable. Let us show it by using lineariza-
tion theorem. The above system could be
linearized by linearizing the nonlinear term
sin θ at the equilibrium point.
At (θ, θ̇) = (π, 0) we can write the Taylor expansion of sin θ as:

sin θ = sinπ + [cos θ]θ=π (θ − π) + h.o.t. = 0 + (−1)(θ − π) + h.o.t.

That is, the linearization gives sin θ = −(θ − π) at (θ, θ̇) = (π, 0). The
linearized equation of the pendulum becomes

MR2θ̈ + bθ̇ −MgR(θ − π) = 0
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Continued from the previous page

The linearized equation of the pendulum becomes

MR2θ̈ + bθ̇ −MgR(θ − π) = 0

θ̈ +
b

MR2
θ̇ − g

R
(θ − π) = 0

Letting θ̃ := θ − π, the system’s linearization about the the EP
(θ, θ̇) = (π, 0) becomes

¨̃θ +
b

MR2
˙̃θ − g

R
θ̃ = 0

∴ The linear approximation is unstable, and therefore so is the nonlinear
system at this EP. We next study the same example using the state space
notation.
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Example 4.8

MR2θ̈ + bθ̇ + MgR sin θ = 0

Define x1
4
= θ, x2

4
= θ̇, and write the d.e. in the state space form

ẋ1 = x2

ẋ2 = − g
R sin x1 − b

MR2 x2

Its equilibrium points are obtained by solving

0 = x2

0 = − g
R sin x1 − b

MR2 x2

The equilibrium points are {(0, 0), (π, 0), (2π, 0), . . .}. Let us linearize the
d.e. at the EP (π, 0):[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x1,x2)=(π,0)

=

[
0 1

− g
R cos x1 − b

MR2

]
(x1,x2)=(π,0)

=

[
0 1
g
R − b

MR2

]
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Continued from the previous page

Using the Jacobian, we write the linearized equation as

ẋ =

[
0 1
g
R − b

MR2

]
x

Eigenvalues of A satisfies

det

(
λ

[
1 0
0 1

]
−
[

0 1
g
R − b

MR2

])
= 0

This results in the characteristic equation:

λ(λ+
b

MR2
)− g

R
= λ2 +

b

MR2
λ− g

R
= 0
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Continued from the previous page

λ(λ+
b

MR2
)− g

R
= λ2 +

b

MR2
λ− g

R
= 0

Because the coefficients of the characteristic equation are not of the same
sign, at least one of its solutions is in the right half complex plane. An
eigenvalue in the RHP means instability of the linear system. Unstable
linear system implies that the EP (π, 0) of the nonlinear system is not
stable.
We did the linearization directly at (x1, x2) = (π, 0). Transforming
(x1, x2) = (π, 0) to (y1, y2) = (0, 0) gives the same result (see the
following exercise).

Home Exercise Redo the example above after transforming the EP (π, 0)
to the origin by the transform (y1, y2) = (x1, x2)− (π, 0).
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Example 4.9

Consider the 1st order system

ẋ = ax + bx5 (30)

Its EP satisfies 0 = ax + bx5. The origin 0 is one of the solutions,

therefore,0 is an equilibrium point of the system. Let f (x)
4
= ax + bx5.

Then (30) can be linearized by

ẋ = f (0) +
df

dx

∣∣∣∣
x=0

x + h.o.t.

This yields
ẋ = ax

Stability of the system depends on a. The system has the following
stability properties:
a < 0: asymptotically stable;
a > 0: unstable;
a = 0: cannot tell from linearization.
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Lyapunov’s Direct Method

Lyapunov’s method is useful in investigating nonlinear systems’ stability
and designing controllers for them. It is based on the observation: if the
total energy of a system is continuously dissipated, then the system,
whether linear or nonlinear, must eventually settle down to an equilibrium
point.
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Example 4.10

Consider the mass-damper-spring sys-
tem

mẍ + bẋ |ẋ |+ k0x + k1x
3 = 0

with bẋ |ẋ | representing nonlinear dis-
sipation, and k0x + k1x

3 representing
nonlinear spring term. Assume that
the mass is pulled away from the nat-
ural length of the spring by a large
distance and then released. Will the
resulting motion be stable?
For the analysis, note that the total mechanical energy of the system is the
sum of its kinetic energy and its potential energy

V (x) =
1

2
mẋ2 +

∫ x

0
(k0x + k1x

3)dx =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4.

What happens to this energy as time progresses?
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Continued from the previous page

The total mechanical energy of the system is the sum of its kinetic energy
and its potential energy

V (x) =
1

2
mẋ2 +

∫ x

0
(k0x + k1x

3)dx =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4.

What happens to this energy as time
progresses?
The time derivative may reveal the an-
swer:

V̇ (x) = mẋẍ + (k0x + k1x
3)ẋ = ẋ(−bẋ |ẋ |) = −b|ẋ |3
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Continued from the previous page

V̇ (x) = mẋẍ + (k0x + k1x
3)ẋ = ẋ(−bẋ |ẋ |) = −b|ẋ |3

This expression reveals that energy is continuously dissipated by the
damper term. Physically, one may predict that the spring finally will settle
down to its original length.
Notice that as long as ẋ 6= 0 (i.e., as long as motion continues), which is
the situation until reaching the EP state, the energy decreases.

Knowing the energy of the system helped us in the analysis. In many
systems we may not have analytic expressions for the energy; and
sometimes energy may have no meaning at all for them. This motivates a
systematic approach independent of the systems’ physics.
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Positive Definite Functions and Lyapunov Functions

The energy function in mass-damper-spring system has two properties.
(1) It is strictly positive unless both state variables x and ẋ are zero:

V (x) =
1

2
mẋ2 +

∫ x

0
(k0x + k1x

3)dx =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4.

(2) It is monotonically decreasing when the variables x and ẋ vary
according to system dynamics. That is, if the solution of

mẍ + bẋ |ẋ |+ k0x + k1x
3 = 0

is used in the energy formula we observe that energy decreases
monotonically. It is quantified by

V̇ (x) = −b|ẋ |3

The first property is formalized by the notion of positive definite functions,
and the second is formalized by Lyapunov functions.
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Definition 4.6

A scalar continuous function V (x) is said to be locally positive definite if
V (0) = 0 and in a ball BR0

x 6= 0→ V (x) > 0

If V (0) = 0 and the above property holds over the whole state space, then
V (x) is said to be globally positive definite.

Example 4.11

Consider
V (x1, x2) = x2

1 + x2
2

Clearly, V (0) = 0 and in any ball BR0 and we have

x 6= 0→ V (x) > 0
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Example 4.12

The mechanical energy of of the pen-
dulum:

V (x) =
1

2
MR2x2

2 + MRg(1− cos x1)

It is locally positive definite in the ball
B2π.
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Example 4.13

The mechanical energy of mass-damper-spring system

V (x) =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4.

is globally positive definite.

Example 4.14

Note that the kinetic energy

Vk =
1

2
mẋ2

is not positive definite, because it is equal to zero for nonzero values of x.
For example, when (x , ẋ) = (a, 0) with a 6= 0 we have Vk(x) = 0.
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The locally pd function V has unique minimum at the origin 0. Actually,
given any function having a unique minimum in a certain ball, we can
construct a locally pd function simply by adding a constant to that
function.

Example 4.15

The function V (x) = x2
1 + x2

2 − 1 is a lower bounded function with a
unique minimum at the origin, and addition of the constant 1 makes it a
pd function.
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Geometrically thinking, consider a pd function V (x) of two state variables
x1 and x2 plotted in a 3d space. It looks like an upward cup (Fig. 44).

Figure 44: A geometric interpretation of a Lyapunov function
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Another geometrical interpretation is as follows. Taking x1 and x2 as
Cartesian coordinates, the level curves V (x1, x2) = Vα typically represents
a set of ovals surrounding the origin, with each corresponding to a positive
value of Vα (Fig. 45).

Figure 45: A level curves interpretation of a Lyapunov function
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Definition 4.7

A function V (x) is said to be negative definite if −V (x) is positive
definite; V (x) is positive semidefinite if V (0) = 0 and V (x) ≥ 0 for x 6= 0;
V (x) is negative semidefinite if −V (x) is positive semidefinite.

ẋ = f(x), (cf.25)

Definition 4.8

If in a ball BR0 , the function V (x) is positive definite and has continuous
partial derivatives, and if its time derivative along any state trajectory of
system (25) is negative semidefinite, i.e., V̇ (x) ≤ 0 then V (x) is said to be
a Lyapunov function for the system (25).
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One should see that as x evolves in time the value of V (x1, x2) points
down the ball (Fig. 46).

Figure 46: A Lyapunov function as x evolves

A geometric interpretation of a Lyapunov function is that in Fig. 46, the
point denoting the value of V (x1, x2) points down a bowl.
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Equilibrium Point Theorems

Lyapunov theorem for local stability

Theorem 4.2

If in a ball BR0 , there exists a scalar function V (x)with continuous first
partial derivatives such that
• V (x) is positive definite (locally in BR0)
• V̇ (x) is negative semidefinite (locally in BR0)
then the equilibrium point 0 is stable. If, actually, the derivative V̇ (x) is
locally negative definite in BR0 , then stability is asymptotic.

In applying the above theorem for analysis of a nonlinear system, one goes
through the two steps of choosing a positive definite function, and then
determining its derivative along the path of the nonlinear system.
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Example 4.16

ẋ = −x + y + xy
ẏ = x − y − x2 − y3

It has an equilibrium point at (0, 0). To see whether it is stable or not, try
the Lyapunov function V = x2 + y2. Then

V̇ = 2xẋ + 2y ẏ
= 2x(−x + y + xy) + 2y(x − y − x2 − y3)
= −2x2 + 4xy − 2y2 − 2y4

= −2(x − y)2 − 2y4

< 0

∴ the equilibrium point (0, 0) is asymptotically stable.
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Example 4.17

A simple pendulum with viscous damping is described by

θ̈ + θ̇ + sin θ = 0 (31)

Consider the following scalar function

V (x) = (1− cos θ) +
θ̇2

2

This function is locally positive definite in the ball B2π. As a matter of
fact, this function represents total energy of the pendulum; sum of its
potential and kinetic energies. Its time derivative is

V̇ (x) = θ̇ sin θ + θ̇θ̈ = θ̇ (sin θ + θ̈)︸ ︷︷ ︸
−θ̇ by (31)

= −θ̇2 ≤ 0

By invoking the above theorem, one concludes that the origin is a stable
EP. However, one cannot draw a conclusion on the asymptotic stability of
the system, because V̇ (x) is only negative semidefinite.
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Example 4.18

Consider the system defined by

ẋ1 = x1(x2
1 + x2

2 − 2)− 4x1x
2
2

ẋ2 = 4x2
1x2 + x2(x2

1 + x2
2 − 2)

has EP at the origin. Given the positive definite function

V (x1, x2) = x2
1 + x2

2

one can find its derivative along the trajectory of the system as

V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = 2(x2
1 + x2

2 )(x2
1 + x2

2 − 2)

Thus V̇ (x) is locally negative definite in the two dimensional ball B2.
Therefore, the above theorem indicates that the origin is asymptotically
stable.
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Digression: Multivariable function’s continuity

A function V : Rn → R is continuous at x0 ∈ Rn if V (x0) exists and

lim
x→x0

V (x) = V (x0)

Using ε, δ style, a consequence of continuity of V at x0 is that for every
given ε > 0 we can find δ > 0 such that for any x in ||x− x0|| < δ we have
|V (x)− V (x0)| < ε.

EOD
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Proof of the Lyapunov Theorem

Recall the hypotheses: In a ball BR0 , there exists a scalar function V (x)
with continuous first partial derivatives such that
• V (x) is positive definite (locally in BR0)
• V̇ (x) is negative semidefinite (locally in BR0)
Let R be a positive number such that R < R0. Then SR , surface of a
sphere with radius R, is inside the ball BR0 . Because V is continuous in
the ball BR0 , it is particularly continuous on SR . The surface SR is closed
and bounded (i.e., compact), therefore, the continuous function V
achieves its minimum on it (Weierstrass theorem). Let the value of this
minimum be m. Since V is positive definite, its minimum m is positive.
Since V is continuous, in particular at the origin, for any m > 0 there
exists a δ > 0 such that

x0 ∈ Bδ → |V (x0)− V (0)| = V (x0) < m︸ ︷︷ ︸
(∗)
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Since V is continuous, in particular at the origin, for any m > 0 there
exists a δ > 0 such that

x0 ∈ Bδ → |V (x0)− V (0)| = V (x0) < m︸ ︷︷ ︸
(∗)

We claim that for the initial condition x0 ∈ Bδ the resulting trajectory
never exits the ball BR , consequently it never exits the ball BR0 . For the
sake of contradiction, suppose that the trajectory exits the ball BR . If
trajectory exits the ball BR then there exists a time T such that it crosses
the surface SR .
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If trajectory exits the ball BR then there exists a time T such that it
crosses the surface SR . Then for the exiting trajectory x∗, we have
V (x∗(T )) ≥ m︸ ︷︷ ︸

(∗∗)

. But the derivative of V with respect to time, that is V̇ , is

negative semi-definite, hence V is non-increasing along the corresponding
trajectory (that is, V (x∗(T )) ≤ V (x∗(t))︸ ︷︷ ︸

(∗∗∗)

, for all 0 ≤ t ≤ T . Particularly

V (x∗(T )) ≤ V (x0)︸ ︷︷ ︸
(∗∗∗)

holds. Therefore, (*), (**), and (***) together imply

m ≤ V (x∗(T )) ≤ V (x0) < m

which is a contradiction, because V (x0) can’t be both smaller than m, and
greater than or equal to m. Hence, the trajectory is contained in the ball
BR (therefore contained in the ball BR0). QED
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Digression: Radially unboundedness

A radially unbounded function is a function f : Rn → R for which
‖x‖ → ∞⇒ f (x)→∞.
The function

f (x) = x2
1 + 2x2

2 + 5x2
3

is radially unbounded. However, the functions

f1(x) = (x1 − x2)2

f2(x) = (x2
1 + x2

2 )/(1 + x2
1 + x2

2 ) + (x1 − x2)2

are not radially unbounded since along the line x1 = x2 , the condition is
not verified even though the second function is globally positive definite.

EOD
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Lyapunov Theorems for Global Stability

Theorem 4.3

Assume that there exists a scalar function V of the state x, with
continuous first order partial derivatives such that
• V (x) is positive definite
• V̇ (x) is negative definite
• V (x)→∞ as ||x|| → ∞
then the equilibrium at the origin is globally asymptotically stable.

The reason for the radial unboundedness condition is to assure that the
contour curves (or the contour surfaces in the case of higher order
systems) V (x) = Vα correspond to closed curves. If the curves are not
closed, it is possible for the state trajectories to drift away from the EP,
even though the state keeps going through contours corresponding to
smaller and smaller Vα’s. For example the positive definite function

V = [
x2

1

1+x2
1

] + x2
2 , the curves V (x) = Vα for Vα > 1 are open curves.

Figure 47 shows that an initial state can diverge from the equilibrium state
at the origin while moving towards lower energy curves.
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Figure 47 shows the divergence of the state while moving toward lower
energy curves.

Figure 47: Radially unboundedness condition
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Example 4.19

Consider
ẋ1 = (x2 − 1)x3

1

ẋ2 = − x4
1

(1+x2
1 )2 − x2

1+x2
2

}
(32)

Let us try the pd function

V (x) =
x2

1

1 + x2
1

+ x2
2

Its time derivative is

V̇ (x) = 2

[
x1

1 + x2
1

− x3
1

(1 + x2
1 )2

]
ẋ1 + 2x2ẋ2

Along the system trajectories it becomes

V̇ (x) = −2
x4

1

(1 + x2
1 )2
− 2

x2
2

1 + x2
2
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Continued from the previous page

V̇ (x) = −2
x4

1

(1 + x2
1 )2
− 2

x2
2

1 + x2
2

V̇ is negative definite, so, the system is asymptotically stable. However, we
cannot conclude that the system is globally asymptotically stable. The pd

function V (x) =
x2

1

1+x2
1

+ x2
2 is not radially unbounded therefore, it does not

satisfy the third condition of the theorem on being globally asymptotically
stable. On the other hand, we cannot conclude that it is not globally
asymptotically stable. Such a conclusion requires further analysis.
performing a further analysis reveals that the system (32) is not globally
asymptotically stable. For instance, for the initial condition
(x1, x2) = (3, 1.5), the trajectory does not go to the origin (see Figure 48)
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Continued from the previous page

Figure 48: Energy curves and trajectories for Example 4.19

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 219 / 379



Example 4.20

Consider the NL system
ẋ + c(x) = 0

where c is any continuous function of the same sign as its scalar argument
x , i.e.,

xc(x) > 0 for x 6= 0

Since c is continuous, it implies c(0) = 0.

Figure 49: The function c(x)
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Continued from the previous page

Consider the Lyapunov function V (x) = x2. This is radially unbounded
since it tends to infinity as |x | → ∞. Its derivative is V̇ = 2xẋ = −2xc(x).
Thus V̇ < 0 as long as x 6= 0, so that x = 0 is a globally asymptotically
stable EP. For instance, the system

ẋ = sin2 x − x︸ ︷︷ ︸
−c(x)

is globally asymptotically convergent to x = 0, since for x 6= 0,

c(x)
4
= x − sin2 x satisfies xc(x) > 0. Similarly, the system

ẋ = −x3︸︷︷︸
−c(x)

is globally asymptotically convergent to x = 0. Notice that this system’s
linear approximation ẋ = 0 · x is inconclusive, even about local stability,
however, the actual nonlinear system is globally asymptotically stable.
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Example 4.21

Consider the system

ẋ1 = x2 − x1(x2
1 + x2

2 )
ẋ2 = −x1 − x2(x2

1 + x2
2 )

The origin of the system is an EP for this system. Let

V (x) = x2
1 + x2

2

The derivative of V along any system trajectory is

V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = −2(x2
1 + x2

2 )2

which is negative definite. Therefore, the origin is a globally asymptotically
stable EP
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Invariant set theorems

Using our previous tools, when V̇ is only negative semidefinite it is not
sufficient for the asymptotic stability. In the case of negative
semidefiniteness we can still draw conclusions on the asymptotic stability
by using the invariant set theorems.

Definition 4.9

A set G is invariant set for a dynamic system if every system trajectory
which starts from a point in G remains in G for all future times.

Example 4.22

Some invariant sets
Any equilibrium point
Whole state space
For an autonomous system, any of the trajectories In the state space
Limit cycles
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In some cases, we can prove asymptotic stability even if V̇ ≤ 0. The
following La Salle’s theorem makes reference to the autonomous system

ẋ = f(x) (cf. 25)

Theorem 4.4

Consider an autonomous system of the form (25), with f continuous , and
let V (x) be scalar function with continuous partial derivatives. Assume
that
• for some L > 0, the region ΩL defined by V (x) < L is bounded
• V̇ (x) ≤ 0 for all x ∈ ΩL.
Let E be the set of all points within ΩL where V̇ (x) = 0, and N be the
largest invariant set in E. Then every solution x(t) originating in ΩL tends
to N as t →∞.
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Highlights of La Salle’s Theorem

• V : D → R is continuously differentable (where D ⊂ Rn)
• The bounded set ΩL is defined by V (x) < L
• V̇ (x) ≤ 0 for all x ∈ ΩL.

• E
∆
= {x ∈ ΩL : V̇ (x) = 0}

• N : largest invariant set in E.
Then every solution starting in ΩL approaches N as t →∞.

Remark Unlike Lyapunov theory, La Salle’s theorem requires V to be
continuously differentiable but not necessarily positive definite.
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Figure 50: La Salle’s theorem definitions
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Example 4.23

For the mass-damper-spring system

mẍ + bẋ |ẋ |+ k0x + k1x
3 = 0

using the energy function

V (x) =
1

2
mẋ2 +

∫ x

0
(k0x + k1x

3)dx =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4.

we can conclude only the marginal stability because V̇ is only negative
semidefinite, i.e.,

V̇ (x) = mẋẍ + (k0x + k1x
3)ẋ = ẋ(−bẋ |ẋ |) = −b|ẋ |3

Now let us use the invariant set theorem. The set E is defined by ẋ = 0,
the collection of states with zero velocity, or the whole horizontal axis in
the phase plane (x , ẋ). The largest invariant set N in it contains only the
origin. Suppose not. ...
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V (x) =
1

2
mẋ2 +

1

2
k0x

2 +
1

4
k1x

4

V̇ (x) = −b|ẋ |3

Let L = 1, then V (x) < 1, i.e., Ω1 is the set of (x , y) pairs satisfying
1
2mẋ2 + 1

2k0x
2 + 1

4k1x
4 < 1 (pink); V̇ (x) = 0, i.e., E, is the set of points

in Ω1 satisfying ẋ = 0 (blue), and the largest invariant set N (green),
equals origin, shown below:
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Continued from the previous page

Now let us use the invariant set theorem. The
set E is defined by ẋ = 0, the collection of
states with zero velocity, or the whole horizon-
tal axis in the phase plane (x , ẋ). The largest
invariant set N in it contains only the origin.
Suppose not. Let N contains a nonzero posi-
tion x1, then the acceleration at that point is
ẍ = −(k0

m )x − (k1
m )x3.

In the state space form, with x1
4
= x and

x2
4
= ẋ , we have

ẋ1 = x2︸︷︷︸
0

, ẋ2 =
1

m
[−k0x1 − k1x

3
1 − bx2|x2|︸ ︷︷ ︸

0

]

This implies that the trajectory immediately
moves out of the set E, and thus also out of
the set N. This causes a contradiction.
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Example 4.24

Consider the system
ẋ1 = −x1 − x2

ẋ2 = x1

This system is linear and its EP at the origin is asymptotically stable. Let
us utilize La Salle’s method for showing the asymptotic stability of the
origin. Let the Lyapunov function candidate be V (x) = x2

1 + x2
2 . Then

V̇ (x) = 2x1(−x1 − x2) + 2x2(x1) = −2x2
1 is negative semidefinite. We can

conclude only the stability of the EP. Let us form a bounded set, for
instance, Ω5 = {(x1, x2) : x2

1 + x2
2 < 5}. Then

E = {(x1, x2) : x1 = 0} ∩ Ω5. On (0, x2), x2 6= 0, vector field is
perpendicular to the x2 axis. Clearly, only the trajectory starting at 0 stays
in E. Thus N = 0. La Salle’s theorem implies that 0 is asymptotically
stable.
We could have, of course, used a better Lyapunov function, for instance,
V (x) = 3x2

1 + x1x2 + 2x2
2 so that we could have reached the asymptotic

stability conclusion directly.
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Example 4.25

Consider the system

ẋ1 = x1(x2
1 + x2

2 − 2)− 4x1x
2
2

ẋ2 = 4x2
1x2 + x2(x2

1 + x2
2 − 2)

For L = 2 the region Ω2 is defined by V (x) = x2
1 + x2

2 < 2, is bounded.
The set E is simply the origin 0, which is an invariant set. . All the
conditions of the local invariant set theorem are satisfied and, therefore,
any trajectory starting within the circle converges to the origin.
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Example 4.26

Consider the system

ẋ1 = x2 − x7
1 [x4

1 + 2x2
2 − 10]

ẋ2 = −x3
1 − 3x5

2 [x4
1 + 2x2

2 − 10]

Notice that the set {(x1, x2) : x4
1 + 2x2

2 − 10 = 0} is invariant since if
(x1, x2) satisfies this once, it satisfies it for all future times. The (x1, x2)
coordinates satisfying x4

1 + 2x2
2 − 10 = 0 form a closed curve (see the next

slide). For the system dynamics given, the x4
1 + 2x2

2 − 10 value never
changes if (x1, x2) is on the closed curve x4

1 + 2x2
2 − 10 = 0. Let us look at

the change in it:

d

dt
(x4

1 + 2x2
2 − 10) = −(4x10

1 + 12x6
2 )(x4

1 + 2x2
2 − 10)

which is zero on the set {(x1, x2) : x4
1 + 2x2

2 − 10 = 0}. The motion on
this invariant set is described by

ẋ1 = x2, ẋ2 = −x3
1
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One can verify that the invari-
ant set x4

1 + 2x2
2 − 10 = 0 is

a closed curve containing the
origin. The contour curves are
shown on the right. Its MAT-
LAB codes are below:

x = -3:0.2:3;

y = -3:0.2:3;

[X,Y] = meshgrid(x,y);

Z = X.^4+2*Y.^2;

figure

contour(X,Y,Z,’ShowText’,’on’)

Figure 51: Contours for x4
1 + 2x2

2
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Continued from the previous page

The invariant set x4
1 + 2x2

2 − 10 = 0 represents a limit cycle, along which
the state vector moves clockwise. The dynamics on this set in state space
form

ẋ1 = x2

ẋ2 = −x3
1

reveals the direction of the motion.
Is this limit cycle attractive? Define a function

V (x) = (x4
1 + 2x2

2 − 10)2

which represents a measure of the distance to the limit cycle. It is 0 on the
limit cycle, and gets larger as (x1, x2) moves away from the LC. For an
arbitrary positive number L, the region ΩL, which surrounds the limit cycle
is bounded. Using our earlier calculation, we obtain

V̇ = −8(x10
1 + 3x6

2 )(x4
1 + 2x2

2 − 10)2
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Continued from the previous page

V̇ = −8(x10
1 + 3x6

2 )(x4
1 + 2x2

2 − 10)2

Thus V̇ is strictly negative, except if

x4
1 + 2x2

2 = 10 or x10
1 + 3x6

2 = 0

in which case V̇ = 0. The first equation is defining the limit cycle while
the second equation is verified only at the origin. Union of these two sets
is E. Since both the limit cycle and the origin are invariant sets the set N
simply consists of their union. Thus all the system trajectories starting in
ΩL converge either to the limit cycle or the origin.
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Continued from the previous page

It can be shown that the origin is unstable. When this is shown, any
trajectory in ΩL can tend to the limit cycle only. The instability of the
origin cannot be shown by linearization, because, the linearized system
(ẋ1 = 0, ẋ2 = 0) is only marginally stable. This does not let us conclude
anything about the stability or instability. Now consider the region Ω100:
This region is V (x) < 100 or, more explicitly, (x4

1 + 2x2
2 − 10)2 < 100. At

the origin:
[
(x4

1 + 2x2
2 − 10)2

]
(0,0)

< 100→ 100 < 100 does not hold,

therefore the origin does not belong to Ω100 (in other words, origin
corresponds to the local maximum of V . Indeed, its value is 100 at the
origin and lower than that in its close neighborhood). The expression
V̇ = 0 is the same as before, However, the points satisfying it don’t have
the point (0, 0) anymore. Therefore, the set E is just the limit cycle, so is
the largest invariant set N in it. Thus, reapplication of the invariant set
theorem shows that any trajectory starting from the region within the limit
cycle, excluding the origin, actually converges to the limit cycle. In
particular this implies that the EP at the origin is unstable.
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ANALYSIS of LTI SYSTEMS BASED ON LYAPUNOV’S
DIRECT METHOD

There is no general way of finding Lyapunov functions for nonlinear
systems. This is a fundamental drawback. To find Lyapunov function one
has to use experience and intuition. However, Lyapunov functions can
systematically be found for stable linear systems.

Definition 4.10

A square matrix M is symmetric if M = MT (In other words, if
∀i , j Mij = Mji ). A square matrix M is skew symmetric if M = −MT (i.e.,
if ∀i , j Mij = −Mji ).
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Fact Any square n × n matrix M can be represented as the sum of a
symmetric matrix and a skew symmetric matrix:

M =
M + MT

2
+

M−MT

2

The first term on the left is symmetric, and the second term is
skew-symmetric.
Fact The quadratic function associated with a skew symmetric matrix is
always zero. Definition of a skew symmetric matrix implies

xTMx = −xTMTx

Since xTMTx is a scalar, the right-hand side of this equation can be
replaced by its transpose. The we have

xTMx = −xTMx

This shows that
∀x, xTMx = 0 (33)
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Actually the property (33) is a necessary and sufficient condition for a
matrix M to be skew symmetric. To demonstrate this apply (33) to the
basis vectors:

eTi Msei = 0, i = 1, 2, . . . , n→ Mii = 0, i = 1, 2, . . . , n

∴ Diagonal elements of a skew symmetric matrix are zero.

Example 4.27

Observe that eTi Mei results in the i-th diagonal element of M.1
0
0

T 1 2 3
4 5 6
7 8 9

1
0
0

 = 1,

0
1
0

T 1 2 3
4 5 6
7 8 9

0
1
0

 = 5, . . .
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Also

[∀(i , j), (ei + ej)
TMs(ei + ej) = 0]→ [∀(i , j), ��Mii +Mij +Mji + �

�Mjj = 0]

Considering that the diagonal elements of a skew symmetric matrix are
zero, we must have

Mij = −Mji , ∀(i , j)

Example 4.28

(e1 + e2)TMs(e1 + e2) =
([

1
0
0

]
+
[

0
1
0

])T [ 0 2 3
−2 0 6
−3 −6 0

] ([
1
0
0

]
+
[

0
1
0

])
= M11 + M12 + M21 + M22

= 0 + 2 + (−2) + 0
= 0
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In our later analysis of linear systems we use xTMx as Lyapunov function
candidates; we assume WLOG M is symmetric. Note that

xTMx = xT (
M + MT

2
+

M−MT

2
)x = xT

M + MT

2
x

Thus we can replace M with M+MT

2 , and the values of xTMx are not
affected by this.

Exercise

For the matrix M =

1 2 3
4 5 6
7 8 9

 compare xTMx with xT ( M+MT

2 )x
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Definition 4.11

A square n × n matrix M is positive definite (p.d.) if

x 6= 0→ xTMx > 0

In other words, a matrix M is positive definite if the quadratic function
xTMx is a positive definite function.
Geometrically, xTMx can be viewed as dot product of x and Mx. Thus,
positive definiteness implies

< x,Mx > = |x| × |Mx| × cosα > 0

where α i the angle between x and Mx. If this angle is less than 900 then
the result < x,Mx >> 0 holds.
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A necessary condition for a square matrix M to be p.d. is that its diagonal
elements be strictly positive. Also, Sylvester’s theorem says that, assuming
M is symmetric, a necessary and sufficient condition for M to be p.d. is
that its principal minors (i.e., M11,M11M22 −M21M12, . . . , det M ) all be
strictly positive. In particular, a symmetric p.d. matrix is always invertible,
because its determinant is nonzero.

Example 4.29

For a 4× 4 matrix, matrix elements used for the principal minors are as
follows:
• � � �
� � � �
� � � �
� � � �

 ,

• • � �
• • � �
� � � �
� � � �

 ,

• • • �
• • • �
• • • �
� � � �



• • • •
• • • •
• • • •
• • • •


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A symmetric positive definite matrix M can always be decomposed as

M = UTΛU (34)

where U is a matrix of eigenvectors and satisfies UTU = I, and Λ is a
diagonal matrix containing the eigenvalues of the matrix M. Let λmin(M)
denote the smallest eigenvalue of M and λmax(M) the largest. Then it
follows from (34) that

λmin(M)||x||2 ≤ xTMx ≤ λmax(M)||x||2
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A square n × n matrix M is said to be positive semidefinite (p.s.d.) if

∀x , xTMx ≥ 0

A matrix inequality of the form M1 > M2 means that M1 −M2 > 0.

Definition 4.12

A matrix M is negative definite iff −M is positive definite.

Definition 4.13

A matrix M is negative semidefinite iff −M is positive semidefinite.
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Lyapunov functions for LTI Systems

Given a linear system of the form ẋ = Ax, consider a Lyapunov function
candidate

V (x) = xTPx

where P is a given p.d. matrix. Differentiating the p.d. function V along
the system trajectory yields :

V̇ (x) = ẋTPx + xTPẋ
= (Ax)TPx + xTP(Ax)

= xTATPx + xTPAx

= xT (ATP + PA)︸ ︷︷ ︸
−Q

x

= −xTQx

Now we need to determine whether the symmetric matrix Q defined above
is p.d. If it is the case then V satisfies the conditions of the basic
Lyapunov theorem (4.2). However, this approach may sometimes lead to
inconclusive results, that is, Q may not be p.d. even for a stable system.
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Example 4.30

Consider

ẋ =

[
0 4
−8 −12

]
︸ ︷︷ ︸

A

x

Take P = I, then V (x) = xT Ix = xTx is the Lyapunov function. This
leads to

−Q = PA + ATP =

[
0 −4
−4 −24

]
The matrix Q is not p.d. Therefore, no conclusion can be drawn from the
Lyapunov function on whether the system is stable or not.
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A conclusive approach
Choose a positive definite matrix Q
Solve for P from the Lyapunov equation ATP + PA = −Q
Check whether P is p.d.
If P is p.d. xTPx is a Lyapunov function for the linear system and global
asymptotic stability is guaranteed. This approach always leads to
conclusive results.
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Theorem 4.5

A necessary and sufficient condition for a LTI system ẋ = Ax to be strictly
stable is that, for any symmetric p.d. matrix Q, the unique matrix P
solution of the Lyapunov equation ATP + PA = −Q be symmetric
positive definite.

The above theorem shows that any p.d. matrix Q can be used to
determine the stability of a linear system. A simple choice of Q is the
identity matrix.
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Example 4.31

Consider

ẋ =

[
0 4
−8 −12

]
︸ ︷︷ ︸

A

x

and take Q = I. Let P be

P =

[
p11 p12

p21 p22

]
Noting the symmetry of P, we have p12 = p21, then the expression
ATP + PA = −Q becomes[

0 −8
4 −12

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 4
−8 −12

]
=

[
−1 0
0 −1

]
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Continued from the previous page

[
0 −8
4 −12

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 4
−8 −12

]
=

[
−1 0
0 −1

]
which takes the form[

f1(p11, p12, p22) f2(p11, p12, p22)
f3(p11, p12, p22) f4(p11, p12, p22)

]
=

[
−1 0
0 −1

]
This has the solution

p11 =
5

16
, p12 = p22 =

1

16

The corresponding matrix

P =
1

16

[
5 1
1 1

]
is p.d., and therefore the linear system is globally asymptotically stable.
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Krasovskii’s Method

Krasovskii’s method suggests a simple form of Lyapunov function for the
autonomous nonlinear systems of the form

ẋ = f(x). (cf. 25)

when the Jacobian A of the system satisfies a certain definiteness
condition.
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ẋ = f(x). (cf. 25)

Theorem 4.6

Consider the autonomous system defined by (25), with the equilibrium
point of interest being the origin. Let A(x) denote the Jacobian matrix of
the system, i.e.,

A(x) =
∂f

∂x

If the matrix F = A + AT is negative definite in a neighborhood Ω, then
the equilibrium point at the origin is asymptotically stable. A Lyapunov
function for this system is

V (x) = fT (x)f(x)

If Ω is the entire state space and, in addition, V (x)→∞ as ||x|| → ∞,
then the equilibrium point is globally asymptotically stable.
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Example 4.32

Consider the nonlinear system

ẋ1 = 6x1 + 2x2

ẋ2 = 2x1 − 6x2 − 2x3
2

We have

A =
∂f

∂x
=

[
−6 2
2 −6− 6x2

2

]
, F = A + AT =

[
−12 4

4 −12− 12x2
2

]
The matrix F is negative definite over the whole state space. Therefore,
the origin is asymptotically stable, and the Lyapunov function candidate is

V (x) = fT (x)f(x) = (−6x1 + 2x2)2 + (2x1 − 6x2 − 2x3
2 )2

Since V (x)→∞ as ||x|| → ∞, the equilibrium state at the origin is
globally asymptotically stable.
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Theorem 4.7

Consider the autonomous system defined by (25), with the equilibrium
point of interest being the origin. Let A(x) denote the Jacobian matrix of
the system. Then a sufficient condition for the origin to be asymptotically
stable is that there exist two symmetric positive definite matrices P and Q
such that ∀x 6= 0, the matrix

F(x) = ATP + PA + Q

is negative semidefinite in some neighborhood Ω of the origin. The
function V (x) = fTPf is then a Lyapunov function for the system. If the
region Ω is the whole state space, and if in addition, V (x)→∞ as
||x|| → ∞, then the system is globally asymptotically stable.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 255 / 379



NONLINEAR CONTROL SYSTEM DESIGN

The objective of the control system design can be stated as follows: Given
a physical system to be controlled and the specifications of its desired
behavior, construct a feedback control law to make the closed loop system
display the desired behavior.
Stabilization Problems Asymptotic Stabilization Problem:
Given a nonlinear dynamic system described by

ẋ = f(x,u, t)

find a control law u such that, starting from anywhere in a region Ω, the
state x tends to 0 as t →∞.
If the control law depends on measurement signals directly, it is said to be
a static control law. If it depends on the measurements through a
differential equation, the control law is said to be a dynamic control law.
For example, in linear control a proportional controller is a static
controller, while a lead lag controller is a dynamic controller.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 256 / 379



Example 5.1

Consider the pendulum on the
right-hand side. Its dynamics
is

J θ̈ −mgl sin θ = τ

where J = ml2. Assume that
our task is to bring the pendu-
lum from a large initial angle,
say θ(0) = 600, to the vertical
up position.
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J θ̈ −mgl sin θ = τ

Continued from the previous page

One choice of stabilizer is

τ = −kd θ̇ − kpθ −mgl sin θ

with kd and kp denoting positive constants. This leads to the following
globally stable closed loop dynamics

J θ̈ + kd θ̇ + kpθ = 0

Another interesting controller is

τ = −kd θ̇ − 2mgl sin θ

which leads to the stable closed loop dynamics

J θ̈ + kd θ̇ + mgl sin θ = 0
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Example 5.2

However, many nonlinear sta-
bilization problems are not
easy to solve. Consider the in-
verted pendulum on the right.
It has the following dynamics:

(M + m)ẍ + ml cos θθ̈ −ml sin θθ̇2 = 0
mẍ cos θ + mlẍ −mg sin θ = 0

A particularly interesting task is to design a controller to bring the inverted
pendulum from a vertical down position at the middle of the lateral track
to a vertical up position at the same lateral point. This seemingly simple
NL control problem is difficult to solve; because, it has two degrees of
freedom and only one input.
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If the task is to drive the state to some nonzero set point xd , then we can
simply transform the problem into a zero point regulation problem by

defining y
4
= x− xd as the state. When the d.e. in y tends to zero, this

means x− xd tends to zero, or x→ xd
Asymptotic tracking problem Given a nonlinear dynamics system
described by

ẋ = f(x,u, t)
y = h(x)

and a desired output trajectory yd , find a control law for the input u such
that starting from any initial state in a region Ω, the tracking errors
y(t)− yd(t) go to zero, while the whole state x is bounded.
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When the closed loop system is such that proper initial states imply zero
tracking error for all time,

y(t) = yd(t), ∀t ≥ 0

the control system is said to be capable of perfect tracking. Asymptotic
tracking implies that perfect tracking is asymptotically achieved.
Exponential tracking convergence is defined similarly.
For nonminimum phase systems perfect tracking and asymptotic tracking
cannot be achieved, as seen in the following example.

Definition 5.1

Minimum Phase Systems have neither poles nor zeros in the RHP.
Otherwise a system is called a nonminimum phase system.
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Example 5.3

Consider the linear system

ÿ + 2ẏ + 2y = −u̇ + u (35)

The system is nonminimum phase because it has a zero at 1. Note that

Y

U
= − s − 1

s2 + 2s + 2
.

Assume that perfect tracking is achieved. Such u satisfies

u̇ − u = −(ÿd + 2ẏd + 2yd)

Under this u, the dynamics (35) becomes

ÿ + 2ẏ + 2y = −u̇ + u = ÿd + 2ẏd + 2yd→ ë + 2ė + 2e = 0

Seemingly error tends to zero, that is, y → yd .
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Assume that perfect tracking is achieved. Such u satisfies

u̇ − u = −(ÿd + 2ẏd + 2yd)

Under this u, the dynamics (35) becomes

ÿ + 2ẏ + 2y = −u̇ + u = ÿd + 2ẏd + 2yd→ ë + 2ė + 2e = 0

Seemingly error tends to zero, that is, y → yd .
Note that, we defined u by

u̇ − u = −(ÿd + 2ẏd + 2yd)︸ ︷︷ ︸
f (t)

The d.e. u̇ − u = f (t) has a solution component et , so, this u is obviously
evergrowing. This is caused by unstable dynamics of u. Above tracking
problem requires infinite control input, which is not practical.
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Specifying the desired behavior

In linear control, the desired behavior of a control system can be
systematically specified either in the time domain (in terms of rise time,
overshoot and settling time corresponding to a step command) or in the
frequency domain (in terms of bandwidths, cut off frequencies, etc. ). In
linear control design, one first lays down the quantitative specifications of
the closed loop control system, and then synthesizes a controller which
meets these specifications. However, systematic specification for nonlinear
systems is much less obvious because the response of NL system to one
command does not reflect its response to another command, and
furthermore frequency domain description is not possible. As a result, for
nonlinear systems, one often looks instead for some qualitative
specifications of the desired behavior in the operating region of interest.
These may be
Stability
Accuracy and speed of response
Robustness
Cost.
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A procedure for control design

Given a physical system to be controlled, one typically goes through the
following standard procedure, possibly few iterations:
1. specify the desired behavior, and select actuators and sensors
2. model the physical plant by a set of differential equations
3. design a control law for the system
4. analyze and simulate the resulting control system
5. implement the control system in hardware.
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Modeling nonlinear system

Modeling is basically the process of constructing a mathematical
description (usually a set of differential equations) for the physical system
to be controlled. Note that more accurate models are not always better
because they may require unnecessarily complex control design and
analysis and more demanding computation. The key here is to keep the
essential effects and discard the insignificant effects in the system
dynamics in the operating range of interest. Second, modeling is more
than obtaining a nominal model for the physical system: it should also
provide some characterization of the model uncertainties, which may be
used for robust design, adaptive design, or merely simulation.
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Model uncertainties are differences between the model and the real
physical system. Uncertainties in parameters are called parametric
uncertainties while the others are called nonparametric uncertainties. For
example, for the model of a controlled mass

mẍ = u

the uncertainty in m is parametric uncertainty, while the neglected motor
dynamics, mesurement noise, sensor dynamics are nonparametric
uncertainties.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 267 / 379



Feedback and feedforward

In NL control design, feedforward is used to cancel the effects of known
disturbances and provide anticipative actions in tracking tasks.
Consider a linear (controllable and observable) minimum phase system in
the form

A(p)y = B(p)u (36)

where
A(p) = a0 + a1p + · · ·+ an−1p

n−1 + pn

B(p) = b0 + b1p + · · ·+ bmp
m

The control objective is to make the output y(t) follow a time-varying
desired trajectory yd(t). We assume that only the output y(t) is measured,

and that yd , ẏd , . . . , y
(r)
d are known with r being the relative degree (excess

of poles over zeros) of the transfer function (thus r = n −m).
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Digression

State controllability
The state of a system, which is a collection of the system’s variables
values, completely describes the system at any given time. In particular,
no information on the past of a system will help in predicting the future, if
the states at the present time are known.
Complete state controllability describes the ability of an external input to
move the internal state of a system from any initial state to any other final
state in a finite time interval.
Observability
A system is said to be observable if, for any possible sequence of state and
control vectors, the current state can be determined in finite time using
only the outputs. EOD
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A(p)y = B(p)u (cf. 36)

A(p) = a0 + a1p + · · ·+ an−1p
n−1 + pn

B(p) = b0 + b1p + · · ·+ bmp
m

Example 5.4

2
d5y

dt5
+

d4y

dt4
+ 3

d3y

dt3
+ 6

d2y

dt2
+ 8

dy

dt
+ 5y = 3

d2u

dt2
+ 4

du

dt
+ u

A(p) = 2p5 + p4 + 3p3 + 6p2 + 8p + 5

B(p) = 3p2 + 4p + 1

Relative degree: r = 5− 2 = 3
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A(p)y = B(p)u (cf. 36)

Continued from the previous page

The control design can be achieved in two steps . First let us take the
control law in the form of

u = v +
A(p)

B(p)
yd (37)

where v is a new input, called ”equivalent” or ”synthetic” input, to be
determined. Substitution of (37) in (36) leads to

A(p)y = B(p)

[
v +

A(p)

B(p)
yd

]
A(p)y = B(p)v + A(p)yd

A(p)(y − yd) = B(p)v

A(p)e = B(p)v
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Continued from the previous page

A(p)y = B(p)

[
v +

A(p)

B(p)
yd

]
A(p)e = B(p)v

where e(t)
4
= y(t)− yd(t) is the tracking error.

Now we have dynamics of the error. We want error to be zero. We design
the equivalent input v accordingly.
The feedforward signal A

B yd can be computed as

A

B
yd = α1y

(r)
d + · · ·+ αryd + w

where the αi (i = 1, . . . , r) are constants obtained from dividing A by B,
and w is the filtered version of yd .
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The feedforward signal A
B yd can be computed as

A

B
yd = α1y

(r)
d + · · ·+ αryd + w

where the αi (i = 1, . . . , r) are constants obtained from dividing A by B,
and w is the filtered version of yd .

Example 5.5

A(p) = p5 + 3p4 + 5p + 1

B(p) = p2 − 2p + 1

A(p)
B(p)yd = (p3 + 5p2 + 9p + 13)yd +

22p − 12

p2 − 2p + 1
yd︸ ︷︷ ︸

w

=
...
y d + 5ÿd + 9ẏd + 13yd + w
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Continued from the previous page

The second step is to construct input u so that the error dynamics is
asymptotically stable. Since e is known (by subtracting the known yd from
the measured y), while its derivatives are not. One can stabilize e by using
standard linear techniques, that is, pole placement together with a
Luenberger observer. A simpler way of deriving the control law is to let

v =
C (p)

D(p)
e

with C and D being polynomials of order (n −m). With this control law,
the closed loop dynamics is

A(p)e = B(p)

[
C (p)

D(p)
e

]
(AD − BC )e = 0

If the coefficients of C and D are chosen properly, the poles of the closed
loop polynomial can be placed anywhere in the complex plane.
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Continued from the previous page

Thus the control law

u =
A

B
yd +

C

D
e

guarantees that the tracking error e(t) remains at zero if initial conditions

satisfy y (i)(0) = y
(i)
d (0), i = 1, . . . , r , and exponentially converges to zero

if the initial conditions do not satisfy these conditions.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 275 / 379



Digression

For a continuous-time linear system

ẋ = A x + B u
y = C x

where x ∈ Rn,u ∈ Rm, y ∈ Rr , the Luenberger observer has the dynamics

˙̂x = Ax̂ + B u + L (y− Cx̂)

The observer error e
4
= x̂− x satisfies the equation

ė = (A− LC) e.

The eigenvalues of the matrix A− LC can be made arbitrarily by
appropriate choice of the observer gain L when the pair [A,C] is
observable. In particular, A− LC can be made Hurwitz, so the observer
error e(t)→ 0 when t →∞. EOD
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FEEDBACK LINEARIZATION

The main idea of the approach is to algebraically transform a nonlinear
system dynamics into a (fully or partly) linear one, so that linear control
techniques can be applied.

Example 6.1

Consider the control of the level h of the fluid tank to a specified level hd .
The control input is the flow u into the tank, and the initial level is h0.
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Continued from the previous page

The dynamic model of the tank is

d

dt

[∫ h

0
A(h)dh

]
= u(t)− a

√
2gh

(38)
where A(h) is the cross section of the
tank and a is the cross section of the
outlet pipe. If the initial level h0 is
quite different from the desired level
hd the control of h involves a nonlin-
ear regulation problem.
The dynamics (38) can be written as

A(h)ḣ = u − a
√

2gh
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Digression: Leibniz’s Rule

A Simplified Version (Applicable to our case)
If f is continuous on [a, b] and if u(x) and v(x) are differentiable functions
of x whose values lie in [a, b] then

d

dx

∫ v(x)

u(x)
f (t)dt = f (v(x))

dv

dx
− f (u(x))

du

dx

A more general version
Let f (x , θ) be a function such that fθ(x , θ) exists, and is continuous. Then,
d
dθ

(∫ b(θ)
a(θ) f (x , θ) dx

)
=
∫ b(θ)
a(θ) fθ(x , θ) dx + f (b(θ), θ)b′(θ)− f (a(θ), θ)a′(θ)

where the partial derivative of f indicates that inside the integral only the
variation of f (x , θ) with θ is considered in taking the derivative. EOD
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Continued from the previous page

A(h)ḣ = u − a
√

2gh

If u(t) is chosen as
u(t) = a

√
2gh + A(h)v

with v being the ”equivalent input” to be specified, the resulting dynamics
is linear

A(h)ḣ = a
√

2gh + A(h)v − a
√

2gh→ ḣ = v

Choosing v as
v = αh̃

with h̃ = h(t)− hd being the level error, and α being a strictly positive
constant, the resulting closed loop dynamics is

ḣ + αh̃ = 0

Since ḣ = (h − hd)′ = ˙̃h, we have ˙̃h + αh̃ = 0
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Continued from the previous page

Choosing v as
v = αh̃

with h̃ = h(t)− hd being the level error, and α being a strictly positive
constant, the resulting closed loop dynamics is

˙̃h + αh̃ = 0

This implies that h̃(t) = Ce−αt , so, h̃→ 0 as t →∞. So the actual input
flow is determined by the nonlinear control law

u(t) = a
√

2gh − A(h)αh̃

Similarly, if the desired level is a known time varying function hd(t), the
equivalent input v can be chosen as

v = ḣd(t)− αh̃

so as to still yield h̃(t)→ 0 as t →∞.
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The idea of feedback linearization, i.e., cancelling the nonlinearities and
imposing a desired linear dynamics, can simply be applied to a class of
nonlinear systems described by the so called ”companion form” or
”controllability canonical form”. A system is said to be in companion form
if its dynamics is represented by

x (n) = f (x) + b(x)u

where u is the scalar control input, x is the scalar output of interest,[
x , ẋ , ẍ , . . . , x (n−1)

]T
is the state vector, and f (x) and b(x) are nonlinear

functions of the states. In state space representation this form can be
written as

d

dt


x1

x2
...

xn−1

xn

 =


x2

x3
...
xn

f (x) + b(x)u


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x (n) = f (x) + b(x)u

Continued from the previous page

For the systems which can be expressed in the controllability canonical
form, using the control input (assuming b to be nonzero)

u =
1

b
[v − f ]

we can cancel the nonlinearities and obtain a simple input output relation

x (n) = v

Thus the control law

v = −k0x − k1ẋ − · · · − kn−1x
(n−1)

with the ki chosen so that the polynomial pn + kn−1p
n−1 + · · ·+ k0 has all

its roots strictly in the left-half plane leads to the exponentially stable
dynamics ...
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x (n) = f (x) + b(x)u

x (n) = v

Continued from the previous page

Thus the control law

v = −k0x − k1ẋ − · · · − kn−1x
(n−1)

with the ki chosen so that the polynomial pn + kn−1p
n−1 + · · ·+ k0 has all

its roots strictly in the left-half plane, leads to the exponentially stable
dynamics

x (n) = −kn−1x
(n−1) − · · · − k0x

or
x (n) + kn−1x

(n−1) + · · ·+ k0x = 0

which implies that x(t)→ 0.
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x (n) = v

Continued from the previous page

For tasks involving the tracking of a desired output xd(t) the control law

v = x
(n)
d − k0e − k1ė − · · · − kn−1e

(n−1)

x (n) = x
(n)
d − k0e − k1ė − · · · − kn−1e

(n−1)

x (n) − x
(n)
d︸ ︷︷ ︸

e(n)

+k0e + k1ė + · · ·+ kn−1e
(n−1) = 0

e(n) + kn−1e
(n−1) + · · ·+ k1ė + k0e = 0

where e(t) is the tracking error, leads to exponentially convergent tracking.
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Example 6.2

Consider the two link robot model
with each joint equipped with a motor
for providing input torque, an encoder
for measuring joint position, and a
tachometer for measuring joint veloc-
ity. The objective of the control de-
sign is to make the joint positions q1

and q2 follow designed position histo-
ries qd1(t) and qd2(t).

Figure 52: 2-link robot manipulator
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Continued from the previous page

The dynamic equations of the robot is[
H11 H12

H21 H22

] [
q̈1

q̈2

]
+

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

] [
q̇1

q̇2

]
+

[
g1

g2

]
=

[
τ1

τ2

]
with q = [q1 q2]T being the two joint angles, τ = [τ1 τ2]T being the joint
inputs, and

H11 = m1l
2
c1

+ I1 + m2[l21 + l2c2
+ 2l1lc2 cos q2] + I2

H22 = m2l
2
c2

+ I2
H12 = H21 = m2l1lc2 cos q2 + m2l

2
c2

+ I2
h = m2l1lc2 sin q2

g1 = m1lc1g cos q1 + m2g [lc2 cos(q1 + q2) + l1 cos q1]
g2 = m2lc2g cos(q1 + q2)

This equation can be compactly expressed as

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ
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[
H11 H12

H21 H22

] [
q̈1

q̈2

]
+

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

] [
q̇1

q̇2

]
+

[
g1

g2

]
=

[
τ1

τ2

]
Continued from the previous page

To achieve the tracking task we use the control[
τ1

τ2

]
=

[
H11 H12

H21 H22

] [
v1

v2

]
+

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

] [
q̇1

q̇2

]
+

[
g1

g2

]
(39)

The robot dynamics now reduces to

q̈ = v

where v = [v1 v2]T . Now choose

v = q̈d − 2λ ˙̃q− λ2q̃

with q̃ = q− qd being the position tracking error, and λ a positive
number.
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The robot dynamics now reduces to

q̈ = v

where v = [v1 v2]T . Now choose

v = q̈d − 2λ ˙̃q− λ2q̃

with q̃ = q− qd being the position tracking error, and λ a positive
number.

Continued from the previous page

Then the tracking error q̃ satisfies

¨̃q + 2λ ˙̃q + λ2q̃ = 0

and converges to zero exponentially. The control law (39) is commonly
called ”computed torque” in robotics. It can be applied to robots with
arbitrary number of joints.
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When the nonlinear dynamics is not in a controllability canonical form, one
may have to use algebraic transformations to first put the dynamics into
the controllability form before using the feedback linearization design.
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Input-State Linearization

Consider the problem of designing the control input u for a single input
nonlinear system of the form

ẋ = f(x, u)

The technique of input-state linearization solves this problem in two steps.

(1) One finds a state transformation z = z(x) and an input transformation
u = u(x, v) so that the nonlinear system dynamics is transformed into an
equivalent linear time invariant dynamics ż = Az + bv .

(2) One uses standard linear techniques (such as pole placement) to
design v .
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Example 6.3

ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = −x2 cos x1 + u cos(2x1)

We want to move system states to (0, 0) from any given initial condition.
For instance, using an input of the form

u =
1

cos(2x1)
[x2 cos x1 + v ]

results in
ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = v

When, for instance, v = −x2 we have

ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = −x2

This linearized only the second equation. Obviously, nonlinearities cannot
be cancelled directly by the control input u.
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Continued from the previous page

ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = −x2 cos x1 + u cos(2x1)

Obviously, nonlinearities cannot be cancelled directly by the control input
u. However, we may use the transformation

z1 = x1

z2 = ax2 + sin x1

then the new state equations are

ż1 = −2z1 + z2

ż2 = −2z1 cos z1 + cos z1 sin z1 + au cos(2z1)

We can cancel the nonlinearities by the control law

u =
1

a cos(2z1)
(v − cos z1 sin z1 + 2z1 cos z1)

which leads to
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Continued from the previous page

ż1 = −2z1 + z2

ż2 = −2z1 cos z1 + cos z1 sin z1 + au cos(2z1)

We can cancel the nonlinearities by the control law

u =
1

a cos(2z1)
(v − cos z1 sin z1 + 2z1 cos z1)

which leads to
ż1 = −2z1 + z2

ż2 = v

Now let us select v as v = −k1z1 − k2z2 with proper choices of feedback
gains. In case v = −2z2 we will have

ż1 = −2z1 + z2

ż2 = −2z2

whose poles are both placed at−2.
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Continued from the previous page

The control input, when = −2z2, is

u =
1

a cos(2z1)
(−2z2 − cos z1 sin z1 + 2z1 cos z1)

In terms of the original variables x1, x2 the control input is

u =
1

a cos(2x1)
(−2ax2 − 2 sin x1 − cosx1 sin x1 + 2x1 cos x1)

The original state x is given from z by

x1 = z1

x2 = (z2 − sin z1)/a

Since both z1 and z2 converge to zero, the original state x converges to
zero.
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Input-output linearization

Consider the system
ẋ = f(x, u)
y = h(x)

(40)

and assume that our objective is to make the output y(t) track a desired
trajectory yd(t) while keeping the whole state bounded, where yd(t) and
its time derivatives up to a sufficiently high order are assumed to be known
and bounded. Apparent difficulty with this model is that output y is only
indirectly related to the input u, through the state variable x and the
nonlinear state equations (40). Therefore it is not easy to design the
control input u to control the tracking behavior of y .

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 296 / 379



Example 6.4

Consider the third order system

ẋ1 = sin x2 + (x2 + 1)x3

ẋ2 = x5
1 + x3

ẋ3 = x2
1 + u

y = x1

(41)

To generate a direct relationship between the output y and the input u, let
us differentiate the output y

ẏ = ẋ1 = sin x2 + (x2 + 1)x3

Since ẏ is not directly related to u let us differentiate again:

ÿ = (x2 + 1)u + f1(x) (42)

where f1(x) is a function of the state defined by

f1(x) = (x5
1 + x3)(x3 + cos x2) + (x2 + 1)x2

1
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Continued from the previous page

ẏ = ẋ1 = sin x2 + (x2 + 1)x3

Let us show that ÿ is as calculated in the preceding slide:

ÿ =
d2y

dt2
=

dy

dx2

dx2

dt
+

dy

dx3

dx3

dt
= (cos x2 + x3)ẋ2 + (x2 + 1)ẋ3

ÿ = (cos x2 + x3)(x5
1 + x3) + (x2 + 1)(x2

1 + u)

ÿ = (cos x2 + x3)(x5
1 + x3) + (x2 + 1)x2

1︸ ︷︷ ︸
f1(x)

+(x2 + 1)u

Since ẏ is not directly related to u let us differentiate again:

ÿ = (x2 + 1)u + f1(x) (cf. 42)
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ÿ = (x2 + 1)u + f1(x) (cf. 42)

Continued from the previous page

Clearly, (42) represents an explicit relationship between y and u. If we
choose the control input to be in the form

u =
1

x2 + 1
(v − f1) (43)

where v is a new input to be determined, the nonlinearity in (42) is
cancelled, and we obtained

ÿ = v

Let e(t) := y(t)− yd(t) and choose the new input v as

v = ÿd − k1e − k2ė

with k1, k2 being positive constants, the tracking error of the closed loop
system is given by

ë + k2ė + k1e = 0 (44)
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Continued from the previous page

ÿ = v

Let e(t) := y(t)− yd(t) and choose the new input v as

v = ÿd − k1e − k2ė

with k1, k2 being positive constants, the tracking error of the closed loop
system is given by

ë + k2ė + k1e = 0 (44)

which represents an exponentially stable dynamics. Therefore, if
e(0) = ė(0) = 0, then e(t) = 0, ∀t > 0, i.e., perfect tracking is achieved;
otherwise, e(t) converges to zero exponentially.
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Continued from the previous page

Recall the control law:

u =
1

x2 + 1
(v − f1) (cf. 43)

Note that the control law is defined everywhere, except at the singularity
points such that x2 = −1.
Full state measurement is necessary for the implementation of the control
law because we use x in computing the u.

If we need to differentiate the output of a system r times to generate an
explicit relationship between the output y and the input u, the system is
said to have ”relative degree of r”. Thus the system in the above
example has relative degree 2. Relative degree in linear systems is defined
as excess of poles over zeros. It can be shown that for a controllable
system of order n, it will take at most n differentiations of any output for
the control input to appear, i.e., r ≤ n.
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Continued from the previous page

ẋ1 = sin x2 + (x2 + 1)x3

ẋ2 = x5
1 + x3

ẋ3 = x2
1 + u

(System dynamics 41)

ë + k2ė + k1e = 0 (Error dynamics 44)

Notice that the error dynamics, which says that we can track yd(t), has
order 2, while the whole system dynamics has order 3 (the same as that of
the plant, because the controller (43) introduces no extra dynamics).
Thus one state is unobservable in input-output linearized dynamics. This
part of the dynamics will be called ”internal dynamics”. For the above
example the internal state is x3.

ẋ3 = x2
1 +

1

x2 + 1
(ÿd − k1e − k2ė − f1)

If this internal dynamics is stable, then our tracking control design problem
has indeed been solved. Otherwise, the above tracking controller is
practically meaningless, ...
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Continued from the previous page

For the above example the internal state is x3.

ẋ3 = x2
1 +

1

x2 + 1
(ÿd − k1e − k2ė − f1)

If this internal dynamics is stable, then our tracking control design problem
has indeed been solved. Otherwise, the above tracking controller is
practically meaningless, because the instability of the internal dynamics
would imply undesirable phenomena such as the burning-up of fuses or the
violent vibration of mechanical members.
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Example 6.5

Consider
ẋ1 = x3

2 + u
ẋ2 = u
y = x1

Assume that the control objective is to make y track yd(t). Differentiation
of y simply leads to the first state equation:

ẏ = ẋ1 = x3
2 + u

Thus, choosing the control law

u = −x3
2 − e(t) + ẏd(t)

yields
ẏ = x3

2 − x3
2 − e(t) + ẏd(t) = −e(t) + ẏd(t)

with defining e
4
= y − yd we get

ė + e = 0 (45)
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Continued from the previous page

... defining e
4
= y − yd we get

ė + e = 0 (cf. 45)

in which e exponentially convergences to zero. This error dynamics is first
order. However, original system dynamics is 2nd order:

ẋ1 = x3
2 + u

ẋ2 = u

One state is missing, equivalently not observable, in the error dynamics. If
the missing part of the dynamics is stable, then the conclusion of the error
dynamics, that is, error approaches zero asymptotically, is valid.
The 1st state equation is used in the error dynamics, therefore, the missing
dynamics is related to the 2nd state equation. We need to use the u in the
2nd equation.
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Continued from the previous page

Apply the same input to the second equation:

ẋ2 + x3
2 = ẏd(t)− e(t) (46)

This is nonautonomous and nonlinear. However, in view of e is bounded
by (45), and ẏd is assumed to be bounded, we have

|ẏd − e| ≤ D

where D is a positive constant. Define f1(t)
4
= ẏd − e(t), then (46)

appears neater:
ẋ2 + x3

2 = f1(t)

How does the solution of this equation behave as t →∞?
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ẋ2 + x3
2 = f1(t)

Continued from the previous page

We claim that |x2| ≤ D
1
3 . It can be justified by noting that

if x2 > D
1
3 then x3

2 > D and ẋ2 = f1(t)− D < 0 and x2 decreases;

and if x2 < −D
1
3 then then x3

2 < D and ẋ2 = f1(t)− D > 0 and x2

increases.
∴ |x2| ≤ D

1
3

Therefore, the chosen u represents a satisfactory tracking control law for
any given trajectory yd such that ẏd is bounded.
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The internal dynamics of linear systems

In general, it is difficult to determine whether the internal dynamics is
stable or not. For a simpler case we consider the stability of internal
dynamics in the linear systems context.

Example 6.6

Consider the simple controllable and observable linear system[
ẋ1

ẋ2

]
=

[
x2 + u
u

]
, y = x1 (47)

where y(t) is required to track a desired output yd(t). Differentiation of
the output yields

ẏ = x2 + u

which explicitly contains u.
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Continued from the previous page

Differentiation of the output yields

ẏ = x2 + u

which explicitly contains u. Thus the control law

u = −x2 + ẏd − (y − yd) (48)

yields the tracking error equation

ė + e = 0

(where e = y − yd) and the internal dynamics

ẋ2 + x2 = ẏd − e(t)
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Continued from the previous page

We see from these equations that while y(t) tends to yd(t) (and ẏ tends
to ẏd), x2 remains bounded. Therefore by the control input (48) tracking
objective is achieved.
Now let us consider a slightly different system:[

ẋ1

ẋ2

]
=

[
x2 + u
−u

]
, y = x1 (49)

The same control law as above yields the same tracking error dynamics,
but now leads to the internal dynamics

ẋ2 − x2 = ẏd − e(t)

This implies that x2, accordingly u, both go to infinity as t →∞.
Therefore, the control input (48) does not achieve the tracking task.
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In the above example the transfer function for the first case is W1 = s+1
s2 ,

and for the second case is W2 = s−1
s2 . Note that W1 is the tf of a

minimum phase system (i.e., all the zeros are in the left half plane), and
W2 is tf of a nonminimum phase system i.e., at least one zero is in the
right half plane. For the above example, we observe that the internal
dynamics is stable for the minimum phase one. It can be shown that this
observation is true for all linear systems.
Digression: Companion form
Given the transfer function

H(s) =
Y (s)

U(s)
=

b0s
2 + b1s + b2

s3 + a1s2 + a2s + a3

we want to express it in controllable (companion) state space form.
Let us write

H(s) =
Y (s)

U(s)
=

(b0s
2 + b1s + b2)Z (s)

(s3 + a1s2 + a2s + a3)Z (s)
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This leads to

Y (s) = (b0s
2 + b1s + b2)Z (s), y = b0z̈ + b1ż + b2z

U(s) = (s3 + a1s
2 + a2s + a3)Z (s), u =

...
z + a1z̈ + a2ż + a3z

Now let x1 = z , x2 = ż , x3 = z̈ , then

ẋ1 = ż = x2

ẋ2 = z̈ = x3

ẋ3 =
...
z = u − a1z̈ − a2ż − a3z

= u − a1x3 − a2x2 − a3x1

The output equations are

y = b0z̈ + b1ż + b2z = b0x3 + b1x2 + b2x1

Now we can use the matrix notation ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a3 −a2 −a1

 x1

x2

x3

+

 0
0
1

 u
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Now we can use the matrix notation ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a3 −a2 −a1

 x1

x2

x3

+

 0
0
1

 u

y =
[
b2 b1 b0

]  x1

x2

x3


EOD
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Example 6.7

Consider the state space model

ż = Az + bu, y = cTz (50)

Let it have one zero (hence two more poles than zeros). Its transfer
function is

Y = cT (sI− A)−1bU =
b0 + b1s

a0 + a1s + a2s2 + s3
U (51)

We can write it companion form as ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1

x2

x3

+

 0
0
1

 u

y =
[
b0 b1 0

]  x1

x2

x3


A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 314 / 379



Continued from the previous page

Let us perform input-output linearization based on this form. First
differentiation yields:

ẏ = b0ẋ1 + b1ẋ2 = b0x2 + b1x3

Second differentiation yields:

ÿ = b0ẋ2 + b1ẋ3 = b0x3 + b1(−a0x1 − a1x2 − a2x3 + u)

It is seen that the input u appears in the second differentiation, which
means that the required number of differentiation s (relative degree) is
indeed the same as the excess of poles over zeros (of course, since the
input output relation of y to u is independent of the choice of the state
variables, it would also take two differentiations for u to appear if we use
the original state space representation (50).
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Continued from the previous page

Thus the control law

u = (a0x − 1 + a1x2 + a2x3 −
b0

b1
x3) +

1

b1
(−k1e − k2ė + ÿd)

where e = y − yd , yields an exponentially stable tracking error

ë + k2ė + k1e = 0

Since this is a second order dynamics, the internal dynamics of our third
order system can be described by only one state equation. For the internal
dynamics x1 can be used, because it can be shown that x1, y , ẏ are related
to x1, x2, x3 through a one to one transformation.
Digression  y

ẏ
x1

 =

 b0 b1 0
0 b0 b1

0 1 0

 x1

x2

x3


Thus x1, y , ẏ are related to x1, x2, x3 through a 1-1 xform. EOD
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Continued from the previous page

The internal dynamics is

ẋ1 = x2 =
1

b1
(y − b0x1)→ ẋ1 +

b0

b1
x1 =

1

b1
y (52)

Since y is bounded (y = e + yd), we see that the internal stability of the
internal dynamics depends on the location of zero −b0

b1
of the tf in (51). If

the system is minimum phase, then the zero is in the left half plane, which
implies that the internal dynamics in (52) is stable, independently of the

initial conditions and of the magnitudes of the desired yd , ẏd , . . . , y
(r)
d

(where r is the relative degree.
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Feedback linearization using Lie derivative notation

Consider the system

ẋ = f(x) + g(x)u (53)

y = h(x) (54)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and y ∈ Rp

is the output vector.The goal is to develop a control input

u = a(x) + b(x)v (55)

that renders a linear input–output map between the new input v and the
output. An outer-loop control strategy for the resulting linear control
system can then be applied.
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Next, we consider the case of feedback linearization of a single-input
single-output (SISO) system. Similar results can be extended to
multiple-input multiple-output (MIMO) systems. In this case, u ∈ R and
y ∈ R. We wish to find a coordinate transformation z = T(x) that
transforms our system (53) into the so-called normal form which will
reveal a feedback law of the form

u = a(x) + b(x)v (56)

that will render a linear input–output map from the new input v ∈ R to
the output y .
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The goal of feedback linearization is to produce a transformed system
whose states are the output y and its first (n-1) derivatives. To understand
the structure of this target system, we use the Lie derivative. Consider the
time derivative of y = h(x), which we can compute using the chain rule,

ẏ =
d h(x)

d t
=

d h(x)

d x
ẋ =

d h(x)

d x
f (x) +

d h(x)

d x
g(x)u

Now we can define the Lie derivative of h(x) along f (x) as,

Lf h(x) =
d h(x)

d x
f (x),

and similarly, the Lie derivative of h(x) along g(x) as,

Lgh(x) =
d h(x)

d x
g(x).
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With this new notation, we may express ẏ as,

ẏ = Lf h(x) + Lgh(x)u

Note that the notation of Lie derivatives is convenient when we take
multiple derivatives with respect to either the same vector field, or a
different one. For example,

L2
f h(x) = Lf Lf h(x) =

d(Lf h(x))

d x
f (x),

and

LgLf h(x) =
d(Lf h(x))

d x
g(x).
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Example 6.8

h(x) =
1

2
(x2

1 + x2
2 ), f (x) =

[
−x2

−x1 − µ(1− x2
1 )x2

]
, g(x) =

[
−x1 − x1x

2
2

−x2 + x2
1x2

]

Lf h(x) =
∂h

∂x
f (x) =

[
x1x2

] [ −x2

−x1 − µ(1− x2
1 )x2

]
= −µ(1− x2

1 )x2
2

Lgh(x) =
∂h

∂x
g(x) =

[
x1x2

] [−x1 − x1x
2
2

−x2 + x2
1x2

]
= −(x2

1 + x2
2 )

Lf Lgh(x) =
∂(Lgh)

∂x
f (x) = −2

[
x1x2

] [ −x2

−x1 − µ(1− x2
1 )x2

]
= 2µ(1−x2

1 )x2
2
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Relative degree

In our feedback linearized system made up of a state vector of the output
y and its first (n-1) derivatives, we must understand how the input u
enters the system. To do this, we introduce the notion of relative degree.
Our system given by (53) is said to have relative degree r at a point x0 if,
LgL

k
f h(x) = 0 ∀x in a neighbourhood of x0 and all k ≤ r − 2

LgL
r−1
f h(x0) 6= 0

Considering this definition of relative degree in light of the expression of
the time derivative of the output y , we can consider the relative degree of
our system (53) to be the number of times we have to differentiate the
output y before the input u appears explicitly. In an LTI system, the
relative degree is the difference between the degree of the transfer
function’s denominator polynomial (i.e., number of poles) and the degree
of its numerator polynomial (i.e., number of zeros).
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Linearization by feedback

For the discussion that follows, we will assume that the relative degree of
the system is n. In this case, after differentiating the output n times we
have,

y = h(x)
ẏ = Lf h(x)
ÿ = L2

f h(x)
...

y (n−1) = Ln−1
f h(x)

y (n) = Lnf h(x) + LgL
n−1
f h(x)u

where the notation y (n) indicates the nth derivative of y . Because we
assumed the relative degree of the system is n, the Lie derivatives of the
form LgL

i
f h(x) for i = 1, . . . , n− 2 are all zero. That is, the input u has no

direct contribution to any of the first (n − 1th derivatives.
The coordinate transformation T(x) that puts the system into normal form
comes from the first (n − 1) derivatives.
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In particular,

z = T(x) =


z1(x)
z2(x)

...
zn(x)

 =


y
ẏ
...

y (n−1)

 =


h(x)
Lf h(x)

...

Ln−1
f h(x)


transforms trajectories from the original x coordinate system into the new
z coordinate system. So long as this transformation is a diffeomorphism,
smooth trajectories in the original coordinate system will have unique
counterparts in the z coordinate system that are also smooth. Those z
trajectories will be described by the new system,

ż1 = Lf h(x) = z2(x)

ż2 = L2
f h(x) = z3(x)

...

żn = Lnf h(x) + LgL
n−1
f h(x)u

.
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Hence, the feedback control law

u =
1

LgL
n−1
f h(x)

(−Lnf h(x) + v)

renders a linear input–output map from v to z1 = y . The resulting
linearized system 

ż1 = z2

ż2 = z3

...

żn = v

is a cascade of n integrators, and an outer-loop control v may be chosen
using standard linear system methodology. In particular, a state-feedback
control law of

v = −Kz ,

where the state vector z is the output y and its first (n-1) derivatives,
results in the LTI system

ż = Az
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ż = Az

with,

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−k1 −k2 −k3 . . . −kn

 .
So, with the appropriate choice of k, we can arbitrarily place the
closed-loop poles of the linearized system.
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Unstable zero dynamics

Feedback linearization can be accomplished with systems that have
relative degree less than n. However, the normal form of the system will
include zero dynamics (i.e., states that are not observable from the output
of the system) that may be unstable. In practice, unstable dynamics may
have deleterious effects on the system (e.g., it may be dangerous for
internal states of the system to grow unbounded). These unobservable
states may be stable or at least controllable, and so measures can be taken
to ensure these states do not cause problems in practice.
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VARIABLE STRUCTURE SYSTEMS

In this section basic principles of the SMC are introduced and several
examples are provided for it. The examples in this section involve the
second order systems which allow usage of phase portraits in the
presentation.
Basically, a sliding mode control system contains two or more feedback
subsystems which each of them has a fixed structure. According to a
control law (alternatively called a decision rule) only one of the feedback
subsystems is employed during the operation of the system. At each region
of the state space, the control mechanism employs a proper fixed feedback
subsystem. These regions are specified by the designer; and their
boundaries are called switching (or discontinuity) surfaces. When a
switching surface is crossed by the system trajectory, the feedback
subsystem just before the crossing is unemployed and a new feedback
subsystem specified for the newly entered region is employed.
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The SMC system may have new valuable properties such that they cannot
be obtained by using any single fixed feedback subsystem alone. For
instance, each of the two fixed feedback subsystems may cause instability
alone. However, switching between them appropriately may result in a
stable system.
In SMC systems, after some transients, the state is restricted to a
switching surface, called the sliding surface. System behavior on this
surface is called the sliding mode. Restricting the states of a dynamic
system to a surface means a static relationship among the state
components. Due to the static relationship, the order of dynamic system
on the surface reduces. Therefore, the system behavior on the surface is
completely characterized by solving a differential equation whose order is
less than that of the unrestricted system. The reduced order differential
equation depends on the surface parameters. Therefore, designer must
select a surface that gives rise to a desired reduced order differential
equation.
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The design of an SMC system has two phases:
(1) Designing the surface parameters causing a desired reduced order
differential equation.
(2) Designing a control law to reach this surface; and once it is reached to
keep the trajectory on it for all subsequent time.
In the following example a simple SMC system is analyzed. Within this
example the basic concepts of the SMC systems are presented.
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Example 7.1

Consider the system model[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

]
u (57)

where x := [x1 x2] ∈ R2 and u ∈ R represent state vector and control input
of the system respectively. The control input has the structure

u =
[
k1 k2

] [x1

x2

]
(58)

that is, u is a linear function of states. Depending on the system states,
the feedback coefficients (k1, k2) assume values from the set
{(2,−1), ((−1, 0)}. The system states and their associated feedback
coefficients are given by
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given by
[k1 k2] = [2 − 1] when s(x(t))x1(t) < 0 (59)

and
[k1 k2] = [−1 0] when s(x(t))x1(t) > 0 (60)

where the switching function s is defined by s(x(t)) := x2(t) + x1(t)a The
region of the state space satisfying condition (59) is shaded in the figure
below. Throughout this example it will be called Region A. The
complementary region in the state space satisfies condition (60), and it
will be called region B.

aFor the sake of simple presentation, the arguments of the functions may be
suppressed after their initial appearance in the text
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The lines S := {(x1, x2) ∈ R : x2 + 0.5x1 = 0} and x1 = 0 will be referred
to as switching lines. It will be shown that, under the control law
(58)-(60)only the line S attracts all the neighboring trajectories, and is
called the sliding line.
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System (57) with feedback (58) can be written as[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

] [
k1 k2

] [x1

x2

]
or [

ẋ1

ẋ2

]
=

[
0 1
k1 k2

] [
x1

x2

]
(61)

We next present the analysis of the system (57)-(60) in a phase portrait
form. This can be done by plotting system trajectories for various initial
conditions. Let us start with the initial condition in Region A, that is, the
initial state (x1(0), x2(0)) satisfies s(x(0))x1(0) < 0. This implies that the
feedback (59) is active. Then the corresponding system can be written as[

ẋ1

ẋ2

]
=

[
0 1
2 −1

] [
x1

x2

]
(62)
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format, is [
x1(t)
x2(t)

]
= c1

[
1
1

]
et + c2

[
1
−2

]
e−2t (63)

where c1, c2 are constant scalars depending on the initial conditions. In the
figure below the phase portrait of this system (62) overlapping on region A
is given.
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The solution of this equation, in eigenstructure Notice that every
trajectory starting in region A leaves the region and crosses into region B.
The exceptions are the ones starting on the line x2 + 2x1 = 0 Note that
this line represents restriction of the solution (63) to its stable mode. The
unstable mode of (63) is the line x2 − x1 = 0, which lies in Region B.
Now consider the remaining case where the initial state (x1(0), x2(0))
satisfies the condition s(x(0))x1 > 0, that is, the condition of being in
Region B. In this region feedback coefficients (k1, k2) equal (−1, 0). This
gives rise to the system dynamics[

ẋ1

ẋ2

]
=

[
0 1
−1 0

] [
x1

x2

]
(64)
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The solution of this equation, in eigenstructure format, is[
x1(t)
x2(t)

]
= c1

[
cos t
− sin t

]
+ c2

[
sin t
cos t

]
(65)

where c1, c2 are constant scalars depending on the initial conditions. On
the phase plane, solution (65) corresponds clockwise circular motions. Its
portion overlapping on Region B is shown below.
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The complete phase portrait of (57)-(60) is obtained by combining the
individual phase portraits obtained for Regions A and B. It is given below.

Looking at the combined phase portrait of the system, observe that the
line S attracts all the trajectories in its neighborhood. Because of this, the
line S is called the ”sliding line” (or ”sliding surface”). Dynamic behavior
of the system on this line is called the ”sliding mode” (or ”sliding regime”).
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Analyzing the phase portrait of the current example, the sliding line, in a
finite time, attracts all the trajectories no only in its neighborhood but also
in the complete state space with the exception of the ones on the line
x2 + 2x1 = 0.
Let us consider the case where a trajectory starts on the sliding line.
Theoretically, this is equivalent to the analysis of the trajectories after the
moment it intercepts the sliding line. Regarding 1st row of Equation (57)

x2 = ẋ1 (66)

and the static relationship x2 + 0.5x1 = 0 between the state components on
the sliding line, one may write the system dynamics on the sliding line as

ẋ1 + 0.5x1 = 0

This has the general solution

x1(t) = Ae−0.5t
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one may write the system dynamics on the sliding line as

ẋ1 + 0.5x1 = 0

This has the general solution

x1(t) = Ae−0.5t

where the arbitrary constant A is the projection of the initial point on the
x1 axis. Using the relationship (66), the other component of the state can
be obtained:

x2(t) = 0.5Ae−0.5t

Noting that both x1 and x2 are decreasing, all the trajectories on the
sliding line tend to the origin. Therefore the sliding mode associated with
the line x2 + 0.5x1 = 0 is stable.
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Example 7.2

For the preceding example, a different switching line may or may not
attract the trajectories in its neighborhood. Consider the system given by
(57)-(58) with a new switching line

S2 = {(x1, x2) ∈ R2 : x2 + 3x1 = 0}

Using this switching line and and the control law (59)-(60) with a
redefined switching function

s(x(t)) := x2(t) + 3x1(t)

we obtained the phase portrait shown below.
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Looking at the phase portrait above, we see that the switching line
x2 + 3x1 = 0 does not attract all the trajectories in its neighborhood.
However, it can be shown that if the control strategy is redesigned
appropriately then this line attracts all the neighboring trajectories. So, it
can be a stable sliding line.
Not all the lines can be a stable sliding line by designing the control law.
Some are pre-qualified for being stable. We should choose the switching
line appropriately so that it can work as a stable sliding line.
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Designing a Stable Sliding Surface

Consider the LTI system
ẋ = Ax + Bu (67)

where x ∈ Rn and u ∈ Rare the state vector and the control input
respectively. The sliding surface to be designed is represented by

S
4
= {x ∈ R : Gx = 0} (68)

where G ∈ R1×n. The set (68) represents a surface on the n-dimensional
plane. We want to find an input ueq so that any trajectory that starts on

S will stay on it for ever. Define the function s as s
4
= Gx and note that

s = 0 means x is on the surface S .
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Let at some time x satisfies s = 0. Now, if ṡ = 0 then x keeps staying on
S afterwards. We want to find u that satisfies

ṡ = Gẋ = G(Ax + Bueq) = 0

This results in
ueq = −(GB)−1GAx

4
= [k1 k2]x

The ”equivalent control input” ueq keeps the trajectory on the surface S
for all subsequent times. The coefficient matrix −(GB)−1GA is called the
”equivalent feedback matrix”. For the inverse to be defined we assume
invertibility of GB.
Le us find out how the trajectories behave on the surface S . To find out
the answer we use the equivalent input ueq in (67).
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ẋ = Ax + B(−(GB)−1GAx) = [A− B(GB)−1GA]x
4
= [A + BFeq]x (69)

This is the dynamics restricted to the sliding surface. On the sliding
surface, the trajectory may or may not go to the origin of the state space.
If it approaches the origin then we call it a stable sliding line. We find out
the stability by analyzing the system dynamics restricted to the sliding line.
It is

ẋ = [A + BFeq]x

The above system is stable if all the eigenvalues of A + BFeq are in the
negative half of complex plane.
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DESCRIBING FUNCTION ANALYSIS

Motivations
Describing function method reveals some frequency response features of
nonlinear systems.
It is an analysis based on approximation and it facilitates prediction
nonlinear behavior.
Its main use is to predict the limit cycles in nonlinear systems.
”It is only an approximation method, there exists inaccurate predictions:
a. There exists difference between the prediction values and actual values
in amplitude and frequency of limit cycle.
b. The limit cycle predicted by the describing function method may not
exist.
c. The actual exist limit cycle may not be predicted by the describing
function.”
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Van der Pol Equation

Example 8.1

We want analyze this system. We start with the i-o relationship in the
time domain.
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Consider the linear block with the transfer function X
U = µ

s2−µs+1
. In the

differential equation domain it is

µu = ẍ − µẋ + x

Tracking the signal flow from the output of the linear block reveals that
u = −x2ẋ . Thus the differential equation above becomes

−µx2ẋ = ẍ − µẋ + x

ẍ + µ(x2 − 1)ẋ + x = 0

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 350 / 379



Continued from the previous page

ẍ + µ(x2 − 1)ẋ + x = 0, (Van der Pol Equation)

Now let us assume that the signal at the output of the linear block is
sinusoidal: x(t) = A sinwt. Tracking the signal in the direction of the
arrows we see that u = −x2ẋ = −A2 sin2(wt)Aw cos(wt)

→

u = −A3w
2 [(1− cos(2wt)) cos(wt)]

= −A3w
2 [cos(wt)− cos(wt)+cos(3wt)

2 ]

= −A3w
2 [ cos(wt)−cos(3wt)

2 ]
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Linear blocks input is u = −A3w
2 [ cos(wt)−cos(3wt)

2 ]. This has two different
frequency components, one at w and the other at 3w . However, at the
output of the block we assumed that the only frequency component is at
w . This may be explained by noting that the linear block has a low pass
property, so it blocks the signal at 3w . Because of this, we may view the
signal u as

u = −A3w

4
cos(wt) =

A2w

4

d

dt
(−A sin(wt)) =

A2

4

d

dt
(−x)
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u =
A2

4

d

dt
(−x)

Now let us investigate what has been done by the nonlinear block. Clearly
it differentiates the input and multiplies by the gain A2w

4 . The combined
effect of differentiation and amplification in the frequency domain is

N(A,w)
4
=

A2(iw)

4

The term N(A,w) is called describing function of the nonlinear block
above.
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The term N(A,w) is called describing function of the nonlinear block
above. In some sense, it may be viewed as nonlinear block’s transfer
function. Notice that it depends on both the magnitude and frequency of
the input signal.
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x = A sin(wt)
= G (iw)u
= G (iw)N(A,w)(−x)

Thus
[1 + G (iw)N(A,w)]x = 0

[1 +
A2iw

4

µ

(iw)2 − µ(iw) + 1
]x = 0

Equating real and imaginary parts of the above equation to zero yields
A = 2 and w = 1.
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Our assumption that x = A sinwt holds true when A = 2 and w = 1.
For the stability analysis of the system let us write the characteristic
equation of the linear approximation:

1 +
A2s

4

µ

s2 − µs + 1
= 0

Its eigenvalues are:

λ1,2 = −1

8
µ(A2 − 4)±

√
1

64
µ2(A2 − 4)2 − 1
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λ1,2 = −1

8
µ(A2 − 4)±

√
1

64
µ2(A2 − 4)2 − 1

When A = 2, the eigenvalues are real, ±iw , as expected.
When A > 2, we have eigenvalues with negative real part, therefore, the
amplitude decreases to A = 2.
When A < 2, we have eigenvalues with positive real part, therefore, the
amplitude increases to A = 2.
Thus the limit cycle corresponding to the amplitude A = 2 is stable.

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 357 / 379



Fourier Series

A periodic function u(t) = u(t + T ) has a Fourier series representation

u(t) = a0
2 +

∑∞
1 (an cos nwt + bn sin nwt)

= a0
2 +

∑∞
1

√
a2
n + b2

n sin[nwt + arctan an
bn

]

where w = 2π
T and

an(w) =
2

T

∫ T

0
u(T ) cos(nwt)dt, bn(w) =

2

T

∫ T

0
u(T ) sin(nwt)dt
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e(t) = A sin(wt) results in

u(t) =
a0

2
+
∞∑
1

√
a2
n + b2

n sin[nwt + arctan
an
bn

]

y(t) ≈ |G (iw)|
√

a2
n + b2

n sin[nwt + argG (iw) + arctan
an
bn

]
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Definition of Describing Function

The describing function is

n(A,w) =
b1(w) + ia(w)

A

If G is low pass and a0 = 0, then

û = |N(A,w)|A sin(wt + argN(A,w))

can be used instead of u(t) to analyze the system.
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Example 8.2

Describing function of a relay
Describing function of a relay

Let φ
4
= 2π

T t then dt = T
2πdφ; integration

factor becomes 1
π and integral limits become

0 to 2π.

a1 =
1

π

∫ 2π

0
u(φ) cosφdφ = 0

b1 =
1

π

∫ 2π

0
u(φ) sinφdφ

=
2

π

∫ π

0
H sinφdφ =

4H

π

The describing function is

N(A) =
4H

πA
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Odd static nonlinearities

If f and g are odd static nonlinearities with describing functions Nf and
Ng , then

Im Nf (A,w) = 0

Nf (A,w) = Nf (A)

Nαf (A) = αNf (A)

Nf +g (A) = Nf (A) + Ng (A)
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Periodic Solutions

y = G (iw)u = −G (iw)N(A)y → y(1 + G (iw)N(A)) = 0

For this system to have nonzero response we must have

1 + G (iw)N(A) = 0

This is the periodicity condition. In an other arrangement

G (iw) = − 1

N(A)
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Example 8.3

Given G (s) = 3
(s+1)3 and u = sgn e, find the limit cycles if any exists.

For the relay N(A) = 4
πA which is real. Therefore,

G (iw) = − 1

N(A)

holds for a real G (iw). Plotting G (iw), one observes that it is real
(crossing the real axis) at −0.375 Now we have −0.375 = − 1

N(A)

→ A = 0.478 The real axis crossing of G (iw) occurs at w = 1.75
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Example 8.4

Let e = A sinwt = A sinφ and H = D. For φ ∈ (0, π) we have{
A sinφ, φ ∈ (0, φ0) ∪ (π − φ0, π)
D, φ ∈ (φ0, π − φ0)

where φ0 = arcsin D
A .

a1 =
1

π

∫ 2π

0
u(φ) cosφdφ = 0
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a1 =
1

π

∫ 2π

0
u(φ) cosφdφ = 0

b1 =
1

π

∫ 2π

0
u(φ) sinφdφ

=
4

π

∫ π
2

0
u(φ) sinφdφ

=
4A

π

∫ φ0

0
sin2 φdφ+

4D

π

∫ π

2

φ0

sinφdφ

=
A

π
(2φ0 + sin 2φ0)
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APPENDIX A
SOLVING IMPLICIT DIFFERENTIAL EQUATIONS BY MATLAB

A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 368 / 379



Example 9.1

Consider the differential equation

dx

dt
+ 3x = 0, x(0) = 5

It has the solution x(t) = 5e−3t .

For every A ∈ R, initial condition x(0) = A results in a solution.
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For every A ∈ R, initial condition x(0) = A results in a solution. However,
if we require additional condition ẋ(0) = B, for some B ∈ R we may or
may not find a solution for the differential equation.

For the above example, the initial condition is x(0) = 5 which resulted in
the solution x(t) = 5e−3t . This automatically implies that ẋ(0) = −15.
The reason is

ẋ(0) = −3× 5e−3t
}
t=0

= −15

Now assume that a differential equation solving software asks you provide
ẋ(0) as well as x(0). Then we need to provide a consistent (x(0), ẋ(0))
pair.

Implicit differential equation solver of MATLAB requires redundantly many
initial conditions for the solution process. Consistency of these initial
conditions is the responsibility of the user.
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Explicit differential equations have the form

ẋ = f(x, t)

On the other hand, implicit differential equations have the form

f(x, ẋ, t) = 0

Example 9.2

ẋ1 = 2x1 + x1x
2
2 + 1

ẋ2 = x2
1 + x2

(Explicit DE)

Example 9.3

ẋ1 + ẋ2x1 + x2 + ẋ2 = 0
x1x

3
2 + ẋ1 + ẋ2x1 = 0

(Implicit DE)
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Example 9.4

Consider
mẍ + kx = 0, x(0) = 1, ẋ(0) = 0

We may write it in state space form by defining x1
4
= x and x2

4
= ẋ :

ẋ1 = x2

ẋ2 = − k
mx1

When k = 2 and m = 3, its solution t ↔ x1 is
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Let us write the equation in the implicit form

ẋ1 − x2 = 0
mẋ2 + kx1 = 0

For a numerical solution we may use ode15i solver of MATLAB:

f=@(t,x,xd)[xd(1)-x(2); 3*xd(2)+2*x(1)];

x0=[1 0]; xd0=[5 3];

x0F=[1 1]; xd0F=[];

[x0 xd0]=decic(f,0,x0,x0F,xd0,xd0F);

r=ode15i(f,[0 10],x0,xd0);

plot(r.x, r.y(1,:))

It uses ode15i.
It is a one file program.
It uses MATLAB routine ”decic” for generating a consistent ẋ .
r .x and r .y are time and solution vectors respectively.
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Example 9.5

Consider
ẍ + ÿ + x = 0
ẋ + 3ÿ + y = 0

We want to write the above equations as a set of 1st order equations. The

routine ode15i requires this. Define x1
4
= x , x2

4
= ẋ , x3

4
= y , and x4

4
= ẏ :

ẋ1 = x2

ẋ3 = x4

ẋ2 + ẋ4 + x1 = 0
x2 + 3ẋ4 + x3 = 0


Now we are done, but we can go further to write it in the explicit form.

ẋ1 = x2

ẋ3 = x4

ẋ2 + ẋ4 = −x1

3ẋ4 = −x2 − x3


Let us write this in matrix notation.A. Karamancıoğlu (Eskişehir Osmangazi University)Electrical Engineering Department November 1, 2023 374 / 379



Continued from the previous page
1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 1



ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 0 1
−1 0 0 0
0 −1 −1 0



x1

x2

x3

x4



→


ẋ1

ẋ2

ẋ3

ẋ4

 =


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 1


−1 

0 1 0 0
0 0 0 1
−1 0 0 0
0 −1 −1 0



x1

x2

x3

x4



→


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
−1 1 1 0
0 0 0 1
0 −1 −1 0



x1

x2

x3

x4


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APPENDIX B
EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR NONLINEAR

DIFFERENTIAL EQUATIONS
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Definition 9.1

A function f(t, x) satisfies the Lipschitz condition at (t0, x0) if the
inequality

||f(t, x)− f(t, y)|| ≤ L||x− y||

is satisfied for all (t, x) and (t, y) for the same fixed L ∈ R+ in the
neighborhood of (t0, x0). Then we call the function f locally Lipschitz at
(t0, x0).

The inequality may be written in the form

||f(t, x)− f(t, y)||
||x− y||

≤ L

which provides the intuition that the locally Lipschitz function f has a
bounded slope in the neighborhood of (t0, x0).
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Theorem 9.1

If f(t, x) is piecewise continuous in t and satisfies the Lipschitz condition

||f(t, x)− f(t, y)|| ≤ L||x− y||

in the neighborhood of (t0, x0), then there exits some δ > 0 such that the
differential equation

ẋ = f(t, x), x(t0) = x0

has a unique solution over [t0, t0 + δ].
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Example 9.6

f (x) = x
1
3 is not locally Lipschitz at x = 0 since its slope f ′(x) = 1

3x
− 2

3

tends to ∞ as x → 0.
Consider

ẋ = x
1
3 , x(0) = 0

Sufficient condition for existence and uniqueness of a solution, that is x
1
3 is

locally Lipschitz, is not satisfied. Thus the differential equation may or
may not have a unique solution. An analysis shows that this d.e. does not
have a unique solution. The solutions

x(t) = (
2t

3
)

3
2

and
x(t) = 0

both satisfy the differential equation and its initial condition.
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