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Complex Numbers

A complex number is an ordered pair (a, b), where a, b ∈ R, but we will
write this as a + bi . The set of all complex numbers is denoted by C:

C = {a + bi : a, b ∈ R}.

If a ∈ R, we identify a + 0i with the real number a. Thus we can think of
R as a subset of C. Addition and multiplication on C are de�ned by

(a + bi) + (c + di) = (a + c) + (b + d)i ,

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

where a, b, c, d ∈ R.
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C satis�es the following properties:
commutativity
w + z = z + w and wz = zw for all w , z ∈ C;
associativity
(z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3) for all z1, z2, z3 ∈ C;
identities
z + 0 = z and z1 = z for all z ∈ C;
additive inverse
for every z ∈ C, there exists a unique w ∈ C such that z + w = 0;
multiplicative inverse
for every z ∈ C with z 6= 0, there exists a unique w ∈ C such that zw = 1;
distributive property
λ(w + z) = λw + λz for all λ,w , z ∈ C.
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For z ∈ C, we let −z denote the additive inverse of z . Thus −z is the
unique complex number such that

z + (−z) = 0.

Subtraction on C is de�ned by

w − z = w + (−z)

for w , z ∈ C. For z ∈ C with z 6= 0, we let 1/z denote the multiplicative
inverse of z . Thus 1/z is the unique complex number such that

z

(
1

z

)
= 1.

Division on C is de�ned by

w

z
= w

(
1

z

)
for w , z ∈ C with z 6= 0.
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Fields

The most common way to formalize this is by de�ning a �eld as a set
together with two operations, usually called addition and multiplication,
and denoted by + and ·, respectively, such that the following axioms hold;
subtraction and division are de�ned implicitly in terms of the inverse
operations of addition and multiplication:
Closure of F under addition and multiplication
For all a, b ∈ F , both a + b and a · b are in F .
Associativity of addition and multiplication
For all a, b, and c in F , the following equalities hold:
a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c .
Commutativity of addition and multiplication
For all a and b in F , the following equalities hold: a + b = b + a and
a · b = b · a.
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Additive and multiplicative identity
There exists an element of F , called the additive identity element and
denoted by 0, such that for all a in F , a + 0 = a. Likewise, there is an
element, called the multiplicative identity element and denoted by 1, such
that for all a in F , a · 1 = a. For technical reasons, the additive identity
and the multiplicative identity are required to be distinct.
Additive and multiplicative inverses
For every a in F , there exists an element −a in F , such that a + (−a) = 0.
Similarly, for any a in F other than 0, there exists an element a−1 in F ,
such that a · a−1 = 1. (The elements a + (−b) and a · b−1 are also denoted
a− b and a

b , respectively.) In other words, subtraction and division
operations exist.
Distributivity of multiplication over addition
For all a, b and c in F , the following equality
holds:a · (b + c) = (a · b) + (a · c)
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Example 1 (A �eld with four elements)
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Why must be the additive and multiplicative identities in a �eld be
di�erent?
If F is any �eld for which

1F = 0F

we have, for any x ∈ F

x = x1F = x0F = 0F

so F has only one element, 0F ; if we want to avoid the trivial case

F = {0F},

we must assume that
1F 6= 0F .
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How do we know that x0F = 0F for any x ∈ F

We have:
0F = 0F + 0F ,

since 0F is the additive identity. Then

x0F = x(0F + 0F ) = x0F + x0F ,

by the distributive law.
Add additive inverse of x0F to both sides:

x0F + (−x0F ) = x0F + x0F + (−x0F ),

0F = x0F + (x0F + (−x0F )),

0F = x0F + 0F ,

Thus, we obtain
x0F = 0F .
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Vector Spaces

The vector space R2, which one can think of as a plane, consists of all
ordered pairs of real numbers:

R2 = {(x , y) : x , y ∈ R}.

The vector space R3 , which one can think of as ordinary space, consists of
all ordered triples of real numbers:

R3 = {(x , y , z) : x , y , z ∈ R}.

To generalize R2 and R3 to higher dimensions, suppose n is a nonnegative
integer. A list of length n is an ordered collection of n objects (which
might be numbers, other lists, or more abstract entities) separated by
commas and surrounded by parentheses. Many mathematicians call a list
of length n an n-tuple. (x1, . . . , xn).
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Thus a list of length 2 is an ordered pair and a list of length 3 is an ordered
triple. For j ∈ {1, . . . , n}, we say that xj is the j th coordinate of the list
above. Thus x1 is called the �rst coordinate, x2 is called the second
coordinate, and so on.
Sometimes we will use the word list without specifying its length.
Remember, however, that by de�nition each list has a �nite length that is a
nonnegative integer, so that an object that looks like

(x1, x2, . . .),

which might be said to have in�nite length, is not a list. A list of length 0
looks like this: (). We consider such an object to be a list so that some of
our theorems will not have trivial exceptions.
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We de�ne F n to be the set of all lists of length n consisting of elements of
F :

F n = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}.

As another example, C4 is the set of all lists of four complex numbers:

C4 = {(z1, z2, z3, z4) : z1, z2, z3, z4 ∈ C}.

Usual addition is de�ned on F n by adding corresponding coordinates:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Often the mathematics of F n becomes cleaner if we use a single entity to
denote a list of n numbers, without explicitly writing the coordinates. Thus
the commutative property of addition on F n should be expressed as

x + y = y + x

for all x , y ∈ F n , rather than the more cumbersome

(x1, . . . , xn) + (y1, . . . , yn) = (y1, . . . , yn) + (x1, . . . , xn)

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling17 June 3, 2023 14 / 218



Usual scalar multiplication for a ∈ F and (x1, . . . , xn) ∈ F n is de�ned as

a(x1, . . . , xn) = (ax1, . . . , axn)

Vector Space
We de�ne a vector space to be a set V along with an addition and a scalar
multiplication on V that satisfy the properties below. By an addition on V
we mean a function that assigns an element u + v ∈ V to each pair of
elements u, v ∈ V . By a scalar multiplication on V we mean a function
that assigns an element av ∈ V to each a ∈ F and each v ∈ V .
Formally, a vector space is a set V along with an addition on V and a
scalar multiplication on V such that the following properties hold:
commutativity

u + v = v + u for all u, v ∈ V ;
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associativity

(u + v) + w = u + (v + w) and (ab)v = a(bv) for all u, v ,w ∈ V

and all a, b ∈ F ;

additive identity

there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;

additive inverse

for every v ∈ V , there exists w ∈ V such that v + w = 0;

multiplicative identity

1v = v for all v ∈ V ;

distributive properties

a(u+v) = au+av and (a+b)u = au+bu for all a, b ∈ F and all u, v ∈ V
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Properties of Vector Spaces

1.2 Proposition A vector space has a unique additive identity.
Proof: Suppose 0 and 0′ are both additive identities for some vector space
V . Then

0′ = 0′ + 0 = 0,

where the �rst equality holds because 0 is an additive identity and the
second equality holds because 0′ is an additive identity. Thus 0′ = 0,
proving that V has only one additive identity. �
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1.3 Proposition Every element in a vector space has a unique additive
inverse.
Proof: Suppose V is a vector space. Let v ∈ V . Suppose that w and w ′

are additive inverses of v . Then

w = w + 0 = w + (v + w ′) = (w + v) + w ′ = 0 + w ′ = w ′.

Thus w = w ′, as desired. �
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1.4 Proposition 0v = 0 for every v ∈ V .
Proof: For v ∈ V , we have

0v = (0 + 0)v = 0v + 0v .

Adding the additive inverse of 0v to both sides of the equation above gives
0 = 0v , as desired. �
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1.5 Proposition a0 = 0 for every a ∈ F .
Proof: For a ∈ F , we have

a0 = a(0 + 0) = a0 + a0.

Adding the additive inverse of a0 to both sides of the equation above gives
0 = a0, as desired. �
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1.6 Proposition (−1)v = −v for every v ∈ V .
Proof: For v ∈ V , we have

v + (−1)v = 1v + (−1)v = (1 + (−1)) v = 0v = 0.

This equation says that (−1)v , when added to v , gives 0. Thus (−1)v
must be the additive inverse of v , as desired. �
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Example 2

The set R3 with the �eld R, under the usual addition of vectors and usual
multiplication of vectors by scalars form a vector space.

Let

 a1
a2
a3

 ,
 b1

b2
b3

 ∈ R3. Their sum

 a1
a2
a3

+

 b1
b2
b3

 =

 a1 + b1
a2 + b2
a3 + b3


is in R3. This shows that the set is closed under usual addition. For any
k ∈ R

k

 a1
a2
a3

 =

 ka1
ka2
ka3


is in R3. This shows that the set is closed under scalar muliplication.
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Example 2 (cont.)

Obviously, the commutativity is satis�ed: a1
a2
a3

+

 b1
b2
b3

 =

 b1
b2
b3

+

 a1
a2
a3


for all a1, a2, a3, b1, b2, b3 ∈ R. It is straightforward to show that
associativity holds.

Additive identity is

 0
0
0

 .
For

 a1
a2
a3

 ∈ R3, corresponding additive inverse is

 −a1−a2
−a3


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Example 2 (cont.)

1 ∈ R works as multiplicative identity:

1 ·

 a1
a2
a3

 =

 1 · a1
1 · a2
1 · a3

 =

 a1
a2
a3

for all a1, a2, a3 ∈ R.

Satisfaction of the distributive properties is shown in a straightforward way.

Since all the axioms are satis�ed, the vector set R3, the �eld R, usual
addition of vectors, and usual multiplication of vectors by scalars form a
vector space.

This example can be generalized to the vector sets Rn, for any natural
number n.
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Example 3

The set of 2× 2 matrices with real entries, the �eld R, under the usual
addition of matrices and usual multiplication of matrices by scalars form a
vector space.

Example 4

The set of real-valued continuous functions in the interval [0, 1], the �eld
R, under the usual addition of functions and usual multiplication of
functions by scalars form a vector space.

Example 5

The set of all polynomials with real coe�cients, the �eld R, under the
usual addition of polynomials and usual multiplication of polynomials by
scalars form a vector space.
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Subspaces

A subset U of V is called a subspace of V if U is also a vector space (using
the same addition and scalar multiplication as on V). For example,

{(x1, x2, 0) : x1, x2 ∈ F}

is a subspace of F 3.
If U is a subset of V , then to check that U is a subspace of V we need
only check that U satis�es the following:

Subspace Test
additive identity
0 ∈ U
closed under addition
u, v ∈ U implies u + v ∈ U;
closed under scalar multiplication
a ∈ F and u ∈ U implies au ∈ U.
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Example 6

Vector space R2 has the following subspaces: Zero vector: {0}, all the
straight lines passing through the origin, R2 itself.
In particular, consider a line passing through the origin. 0 is on it. Scalar
multiple of any point on the line is also on the line. Sum of any two vectors
on the line is also on the line. So, any line passing through the origin
passes the subspace test.

Example 7

Vector space R3 has the following subspaces: Zero vector: {0}, all the
straight lines passing through the origin, all the planes passing through the
origin, R3 itself.
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Example 8

Set of polynomials with real coe�cients having degree less than or equal to
5 is a subspace of the vector space of all polynomials with real coe�cients,
under usual polynomial addition and usual multiplication of polynomial by a
scalar.

Example 9

Set of polynomials with real coe�cients having degree equal to 5, call it U,
is not a subspace of the vector space of all polynomials with real
coe�cients, under usual polynomial addition and usual multiplication of
polynomial by a scalar.
To show this, consider the polynomials p1(s) = s5 + s4 + 2 and
p2(s) = −s5 + s2 + 3 in U as a counterexample. Their sum s4 + s2 + 5 is
not in U. Since U is not closed under vector addition, it cannot be a
subspace.
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Sums and Direct Sums

Suppose U1, . . . ,Um are subspaces of V . The sum of U1, . . . ,Um, denoted
U1 + · · ·+ Um, is de�ned to be the set of all possible sums of elements of
U1, . . . ,Um. More precisely,

U1 + · · ·+ Um = {u1 + · · ·+ um : u1 ∈ U1, . . . , um ∈ Um}.

Note that if U1, . . . ,Um are subspaces of V , then the sum U1 + · · ·+ Um is
a subspace of V .

Example 10

Suppose U is the set of all elements of F 3 whose second and third
coordinates equal 0, and W is the set of all elements of F 3 whose �rst and
third coordinates equal 0:

U = {(x , 0, 0) ∈ F 3 : x ∈ F} and W = {(0, y , 0) ∈ F 3 : y ∈ F}.

Then U + W = {(x , y , 0) : x , y ∈ F}.
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Example 11

Let

U = {(x , 0, 0) ∈ F 3 : x ∈ F} and W = {(y , y , 0) ∈ F 3 : y ∈ F}.

Then U + W = {(x , y , 0) : x , y ∈ F}.

De�nition Let V be a vector space, U ⊂ V a subset. Smallest subspace of
V that contains U is the intersection of all U-containing subspaces of V .

Suppose U1, . . . ,Um are subspaces of V . Clearly U1, . . . ,Um are all
contained in U1 + · · ·+ Um. Conversely, any subspace of V containing
U1, . . . ,Um must contain U1 + · · ·+ Um. Thus U1 + · · ·+ Um is the
smallest subspace of V containing U1, . . . ,Um.
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Suppose U1, . . . ,Um are subspaces of V such that V = U1 + · · ·+ Um.
Thus every element of V can be written in the form

u1 + · · ·+ um,

where each uj ∈ Uj . Consider cases where each vector in V can be uniquely
represented in the form above. We give it a special name: direct sum.

Speci�cally, we say that V is the direct sum of subspaces U1, . . . ,Um,
written

V = U1 ⊕ · · · ⊕ Um,

if each element of V can be written uniquely as a sum u1 + · · ·+ um,
where each uj ∈ Uj .
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Example 12

Suppose U is the subspace of F 3 consisting of those vectors whose last
coordinate equals 0, and W is the subspace of F 3 consisting of those
vectors whose �rst two coordinates equal 0:

U = {(x , y , 0) ∈ F 3 : x , y ∈ F} and W = {(0, 0, z) ∈ F 3 : z ∈ F}.

Then F 3 = U ⊕W .
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Example 13

Consider the following three subspaces of F 3:
U1 = {(x , y , 0) ∈ F 3 : x , y ∈ F};
U2 = {(0, 0, z) ∈ F 3 : z ∈ F};
U3 = {(0, y , y) ∈ F 3 : y ∈ F}.
Clearly F 3 = U1 + U2 + U3 because an arbitrary vector (x , y , z) ∈ F 3 can
be written as

(x , y , z) = (x , y , 0) + (0, 0, z) + (0, 0, 0),

where the �rst vector on the right side is in U1, the second vector is in U2,
and the third vector is in U3. However, F

3 does not equal the direct sum of
U1,U2,U3 because the vector (x , y , z) can be expressed also as

(x , y , z) = (x , y − z , 0) + (0, 0, 0) + (0, z , z),
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U1 = {(x , y , 0) ∈ F 3 : x , y ∈ F};
U2 = {(0, 0, z) ∈ F 3 : z ∈ F};
U3 = {(0, y , y) ∈ F 3 : y ∈ F}.

Example 13 (cont.)

Two di�erent ways of writing (x , y , z)

(x , y , z) = (x , y , 0) + (0, 0, z) + (0, 0, 0),

(x , y , z) = (x , y − z , 0) + (0, 0, 0) + (0, z , z),

A numerical example:

(4, 5, 6) = (4, 5, 0) + (0, 0, 6) + (0, 0, 0),

(4, 5, 6) = (4,−1, 0) + (0, 0, 0) + (0, 6, 6),
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U1 = {(x , y , 0) ∈ F 3 : x , y ∈ F};
U2 = {(0, 0, z) ∈ F 3 : z ∈ F};
U3 = {(0, y , y) ∈ F 3 : y ∈ F}.

Example 13 (cont.)

According to a theorem, if (0, 0, 0) could be written in two di�erent ways,
then so could (x , y , z). Using this, F 3 does not equal the direct sum of
U1,U2,U3 because the vector (0, 0, 0) can be written in two di�erent ways
as a sum u1 + u2 + u3, with each uj ∈ Uj . Speci�cally, we have

(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1)

and, of course,

(0, 0, 0) = (0, 0, 0) + (0, 0, 0) + (0, 0, 0),

where the �rst vector on the right side of each equation above is in U1, the
second vector is in U2, and the third vector is in U3.
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1.8 Proposition Suppose that U1, . . . ,Un are subspaces of V . Then
V = U1 ⊕ · · · ⊕ Un if and only if both the following conditions hold:
(a) V = U1 + · · ·+ Un;
(b) the only way to write 0 as a sum u1 + · · ·+ un, where each uj ∈ Uj , is
by taking all the uj 's equal to 0.

Proof First suppose that V = U1 ⊕ · · · ⊕Un. Clearly (a) holds (because of
how sum and direct sum are de�ned). To prove (b), suppose that
u1 ∈ U1, · · · , un ∈ Un and

0 = u1 + · · ·+ un.

Then each uj must be 0 (this follows from the uniqueness part of the
de�nition of direct sum because 0 = 0 + · · ·+ 0 and 0 ∈ U1, . . . , 0 ∈ Un ),
proving (b).
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Now suppose that (a) and (b) hold. Let v ∈ V . By (a), we can write

v = u1 + · · ·+ un

for some u1 ∈ U1, . . . , un ∈ Un. To show that this representation is unique,
suppose that we also have

v = v1 + · · ·+ vn,

where v1 ∈ U1, . . . , vn ∈ Un. Subtracting these two equations, we have

0 = (u1 − v1) + · · ·+ (un − vn).

Clearly u1 − v1 ∈ U1, . . . , un − vn ∈ Un, so the equation above and (b)
imply that each uj − vj = 0. Thus u1 = v1, . . . , un = vn, as desired. �
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1.9 Proposition Suppose that U and W are subspaces of V . Then
V = U ⊕W if and only if V = U + W and U ∩W = {0}. �
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Span and Linear Independence

A linear combination of a list (v1, . . . , vm) of vectors in V is a vector of
the form

a1v1 + · · ·+ amvm,

where a1, . . . , am ∈ F . The set of all linear combinations of (v1, . . . , vm) is
called the span of (v1, . . . , vm), denoted span(v1, . . . , vm). In other words,

span(v1, . . . , vm) = {a1v1 + · · ·+ amvm : a1, . . . , am ∈ F}.

If span (v1, . . . , vm) equals V , we say that (v1, . . . , vm) spans V . A vector
space is called �nite dimensional if some list of vectors in it spans the
space. For example, F n is �nite dimensional because

((1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1))

spans F n.
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Example 14

Consider the list ((1, 0, 0), (0, 1, 0)) in R3.
(6, 2, 0) is a linear combination of the vectors in the list.
(2, 1, 3) is not a linear combination of the vectors in the list.
Span of the list, geometrically, is all the points on the xy plane of the xyz
coordinate system.

Example 15

Consider the list ((1, 1, 1), (2, 1, 4)) in R3.
(3, 2, 5) is in the span of the list.
(3, 3, 0) is not in the span of the list.

Example 16

Consider the list ((1, 1, 1), (2, 1, 4), (0, 1, 1)) in R3. Span of the list equals
R3.
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A vector space that is not �nite dimensional is called in�nite dimensional.

Example 17

P(F ), the set ol all polynomials with coe�cients in F is in�nite
dimensional. In a set notation, it is

P(F ) = {a0 + a1x + a2x
2 + a3x

3 + · · ·+ amx
m : m ∈ N; a0, a1, a2, a3, . . . am ∈ F}

It is not possible to form a list using vectors in P(F ) that spans P(F ).

Example 18

The vector space F∞, consisting of all sequences of elements of F , is also
in�nite dimensional. In a set notation, it is

F∞ = {(x1, x2, x3, . . .) : x1, x2, x3, . . . ∈ F}

It is not possible to form a list using vectors in F∞ that spans F∞.
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Example 19

Real valued continuous functions on [a, b] form a vector space with respect
to usual addition and multiplication by scalars. There is no list of vectors in
this space which spans the space. Thus, it is an in�nite dimensional vector
space.

Example 20

R4 is a �nite dimensional vector space. For instance, the list


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




spans the vector space R4.
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Suppose v1, . . . , vm ∈ V and v ∈ span(v1, . . . , vm). By the de�nition of
span, there exist a1, . . . , am ∈ F such that

v = a1v1 + · · ·+ amvm.

Consider the question of whether the choice of a's in the equation above is
unique. Suppose â1, . . . , âm is another set of scalars such that

v = â1v1 + · · ·+ âmvm.

Subtracting the last two equations, we have

0 = (a1 − â1)v1 + · · ·+ (am − âm)vm.

Thus we have written 0 as a linear combination of (v1, . . . , vm). If the only
way to do this is the obvious way (using 0 for all scalars), then each aj − âj
equals 0, which means that each aj equals âj (and thus the choice of a's
was indeed unique)
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A list (v1, . . . , vm) of vectors in V is called linearly independent if the
only choice of a1, . . . , am ∈ F that makes a1v1 + · · ·+ amvm equal 0 is
a1 = · · · = am = 0. For example,

((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0))

is linearly independent in F 4.

A list of vectors in V is called linearly dependent if it is not linearly
independent. In other words, a list (v1, . . . , vm) of vectors in V is linearly
dependent if there exist a1, . . . , am ∈ F , not all 0, such that
a1v1 + · · ·+ amvm = 0.
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Example 21

Consider the list ((1, 1, 0), (0, 2, 4)) in R3. Linear independence equation

c1(1, 1, 0) + c2(0, 2, 4) = (0, 0, 0)

reveals that the list is linearly independent.

Example 22

Consider the list ((1, 1, 0), (0, 2, 4), (1, 3, 4)) in R3. Linear independence
equation

c1(1, 1, 0) + c2(0, 2, 4) + c3(1, 3, 4) = (0, 0, 0)

has nontrivial solutions (for example c1 = 1, c2 = 1, c3 = −1), therefore,
the list is linearly dependent.
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2.4 Linear Dependence Lemma If (v1, . . . , vm) is linearly dependent in V
and v1 6= 0, then there exists j ∈ {2, . . . ,m} such that the following hold:
(a) vj ∈ span(v1, . . . , vj−1);
(b) if the j−th term is removed from (v1, . . . , vm), the span of the
remaining list equals span(v1, . . . , vm).
Proof Suppose (v1, . . . , vm) is linearly dependent in V and v1 6= 0. Then
there exist a1, . . . , am ∈ F , not all 0, such that

a1v1 + · · ·+ amvm = 0.

Not all of a2,3 , . . . , am can be 0 (because v1 6= 0). Let j be the largest
element of {2, . . . ,m} such that aj 6= 0. Then

vj = −a1
aj
v1 − · · · −

aj−1
aj

vj−1, (1)

proving (a).
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To prove (b), suppose that u ∈ span(v1, . . . , vm). Then there exist
c1, . . . , cm ∈ F such that

u = c1v1 + · · ·+ cmvm.

In the equation above, we can replace vj with the right side of (1), which
shows that u is in the span of the list obtained by removing the j−th term
from (v1, . . . , vm). Thus (b) holds. �
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Example 23

Consider the list of vectors

L
∆
=




1
0
0
0

 ,


2
3
0
0

 ,


3
3
0
0

 ,


6
5
8
1




The third vector is a linear combination of the preceding two. According to
the linear dependence lemma, we conclude that the list above is linearly
dependent.
According to the lemma


1
0
0
0

 ,


2
3
0
0

 ,


6
5
8
1




also spans L.
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Theorem 1

In a �nite-dimensional vector space, the length of every linearly
independent list of vectors is less than or equal to the length of every
spanning list of vectors.

Proof Suppose that (u1, . . . , um) is linearly independent in V and that
(w1, . . . ,wn) spans V . We need to prove that m ≤ n. We do so through
the multistep process described below; note that in each step we add one
of the u's and remove one of the w 's.
Step 1
The list (w1, . . . ,wn) spans V , and thus adjoining any vector to it produces
a linearly dependent list. In particular, the list (u1,w1, . . . ,wn) is linearly
dependent. Thus by the linear dependence Lemma 2.4, we can remove one
of the w 's so that the list B (of length n) consisting of u1 and the
remaining w 's spans V .
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Step j
The list B (of length n) from step j − 1 spans V , and thus adjoining any
vector to it produces a linearly dependent list. In particular, the list of
length (n + 1) obtained by adjoining uj to B , placing it just after
u1, . . . , uj−1, is linearly dependent. By the linear dependence Lemma 2.4,
one of the vectors in this list is in the span of the previous ones, and
because (u1, . . . , uj) is linearly independent, this vector must be one of the
w 's, not one of the u's. We can remove that w from B so that the new list
B (of length n) consisting of u1, . . . , uj and the remaining w 's spans V .
After step m, we have added all the u's and the process stops. If at any
step we added a u and had no more w 's to remove, then we would have a
contradiction. Thus there must be at least as many w 's as u's. �
2.7 Proposition Every subspace of a �nite-dimensional vector space is
�nite dimensional. �
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Bases

A basis of V is a list of vectors in V that is linearly independent and spans
V . For example,

((1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1))

is a basis of F n, called the standard basis of F n.
2.8 Proposition A list (v1, . . . , vn) of vectors in V is a basis of V if and
only if every v ∈ V can be written uniquely in the form

v = a1v1 + · · ·+ anvn, (2)

where a1, . . . , an ∈ F .
Proof First suppose that (v1, . . . , vn) is a basis of V . Let v ∈ V . Because
(v1, . . . , vn) spans V , there exist a1, . . . , an ∈ F such that (2) holds. To
show that the representation in (2) is unique, suppose that b1, . . . , bn are
scalars so that we also have

v = b1v1 + · · ·+ bnvn.
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Subtracting the last equation from (2), we get

0 = (a1 − b1)v1 + · · ·+ (an − bn)vn.

This implies that each aj − bj = 0 (because (v1, . . . , vn) is linearly
independent) and hence a1 = b1, . . . , an = bn. We have the desired
uniqueness, completing the proof in one direction.
For the other direction, suppose that every v ∈ V can be written uniquely
in the form given by (2). Clearly this implies that (v1, . . . , vn) spans V . To
show that (v1, . . . , vn) is linearly independent, suppose that a1, . . . , an ∈ F
are such that

0 = a1v1 + · · ·+ anvn.

The uniqueness of the representation (2) (with v = 0) implies that
a1 = · · · = an = 0. Thus (v1, . . . , vn) is linearly independent and hence is a
basis of V . �
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Example 24

((1, 1, 1), (1, 1, 0), (1, 0, 0)) is a basis for R3. Every element in R3 is a
unique linear combination of this list.

Example 25

((1, 1, 1), (1, 1, 0), (1, 0, 0), (3, 2, 1)) is not a basis for R3. Even though this
list spans R3, it is not linearly independent. Every element of R3 is
expressed as many di�erent linear combinations of this list.
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Theorem 2

Every spanning list in a vector space can be reduced to a basis of the
vector space.

2.11 Corollary Every �nite-dimensional vector space has a basis.

Theorem 3

Every linearly independent list of vectors in a �nite dimensional vector
space can be extended to a basis of the vector space.

2.13 Proposition Suppose V is �nite dimensional and U is a subspace of
V . Then there is a subspace W of V such that V = U ⊕W .
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Dimension

Theorem 4

Any two bases of a �nite-dimensional vector space have the same length.

The dimension of a �nite-dimensional vector space is de�ned to be the
length of any basis of the vector space.

2.15 Proposition If V is �nite dimensional and U is a subspace of V , then
dimU ≤ dimV .

2.16 Proposition If V is �nite dimensional, then every spanning list of
vectors in V with length dimV is a basis of V .

2.17 Proposition If V is �nite dimensional, then every linearly
independent list of vectors in V with length dimV is a basis of V .

Theorem 5

If U1 and U2 are subspaces of a �nite-dimensional vector space, then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).
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Example 26

Let U1 and U2 be subspaces of R4 de�ned by

U1 = span




1
0
0
0

 ,


0
1
0
0


 , U2 = span




0
1
0
0

 ,


0
0
1
0




U1 ∩ U2 = span




0
1
0
0




dim U1=2, dim U2=2, dimU1 ∩ U2=1. Applying the theorem:

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2),

dim(U1 + U2) = 2 + 2− 1 = 3.
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A Remark

A vector space is a set V together with operations + : V × V → V and
· : F × V → V that satisfy certain conditions, where F is a �eld.

One may notice that these conditions makes (V ,+) into an Abelian group
(i.e., commutative group). This means that if you take V and remove the
scalar multiplication operator, the elements of V forms a group and
commute with each others.
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A vector space structure could be extended to more involved structures.
For instance, a vector space that has a notion of size, or the norm, of
objects in that space is called normed space.
A norm || · || is a function that has the following properties.
It returns nonnegative values, and only the zero vector has zero norm:

||u|| ≥ 0 ∀u ∈ V , ||u|| = 0→ u = 0

The norm of a vector multiplied by a scalar is itself scaled:

αu|| = |α|||u||,∀α ∈ F , u ∈ V

The triangle inequality holds:

||u + v || ≤ ||u||+ ||v || ∀u, v ∈ V

A normed vector space is also a metric space. There is a notion of distance
between objects and it is just the norm of the di�erence of them:

d(u, v) = ||u − v |||

This also induces a topology so we can talk about concepts such as
continuity and convergence.
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A Banach space is a vector space with a metric that allows the
computation of vector length and distance between vectors and is complete
in the sense that a Cauchy sequence of vectors always converges to a
well-de�ned limit that is within the space.

A Cauchy sequence is a sequence whose terms become very close to each
other as the sequence progresses. Formally, the sequence {an}∞n=0 is a
Cauchy sequence if, for every ε > 0, there is an N > 0 such that

m, n > N → ||an − am|| < ε

If a space has an inner product which generates the norm then it is an inner
product space. If an inner product space is complete, which is the same
thing as a Banach space with an inner product it is called a Hilbert space.
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Linear Combinations in Vector Spaces

Consider two coordinate frames CF1 and CF2 in R2. CF2 is obtained by
rotating CF1 by 90 degrees in the CCW direction.

For the vectors v1 = (1, 0) and v2 = (0, 1) in CF1, we �nd their linear
combination 2v1 + 3v2, then express the result in CF2.
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For the vectors v1 = (1, 0) and v2 = (0, 1) in CF1, we �nd their linear
combination 2v1 + 3v2, then express the result in CF2.

In CF2 we obtained the vector (3,−2).
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A recap:
1) v1 and v2 are expressed in CF1: (v1 = (1, 0) and v2 = (0, 1))
2) Their linear combination 2v1 + 3v2 in CF1 is (2, 3).
3) In CF2 it is (3,−2)
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Let us expreess v1 and v2 in CF2. And do the linear combination operation
there.
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1) v1 and v2 in CF2 are w1 = (0,−1) and w2 = (1, 0))
2) Their linear combination 2w1 + 3w2 in CF2 is (3,−2).
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Linear combination followed by basis change EQUALS basis changes
followed by linear combination.
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Linear Combinations of Points

The result we obtained in the previous section is not valid if CF2 is obtained
by translating CF1. Consider such coordinate frames presented below:
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A digression

Vectors are identi�ed with their direction and magnitude. In this sense,
u, v , and w below are equivalent. When positions matter, it is more
convenient to use points.

EOD
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We have two points given: p1 and p2. Linear combination 2p1 + 3p2 is
shown on CF1 as (2, 3). This point is (1, 2) on CF2.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling71 June 3, 2023 68 / 218



Points p1 and p2 are (0,−1) and (−1, 0) on CF2. The same linear
combination 2p1 + 3p2 equals (−3,−2).

Linear combination followed by translation equals (1, 2). However,
translations followed by linear combination equals (−3,−2).
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For the points p1 and p2, this time we have di�erent weights 0.3 and 0.7.
Linear combination 0.3p1 + 0.7p2 is shown on CF1 as (0.3, 0.7). This point
is (−0.7,−0.3) on CF2.
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Points p1 and p2 are (0,−1) and (−1, 0) on CF2. The same linear
combination 0.3p1 + 0.7p2 equals (−0.7,−0.3).

Linear combination followed by translation EQUALS translations followed
by linear combination!!!
The reason for equality is that the sum of the weights equals 1.
Repeat this for di�erent p1 and p2; and for di�erent weights as long as
their sum equals 1, reach the same result.
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Sum of a Point and a Vector

We duplicate R3 into two copies: the �rst copy corresponding to points,
where we forget the vector space structure, and the second copy
corresponding to vectors, where the vector space structure is important.
De�nition. Given any point a = (a1, a2, a3) and any vector v = (v1, v2, v3),
their sum results in a point:

a + v = (a1 + v1, a2 + v2, a3 + v3),

which can be thought of as the result of translating a to b using the vector
v . This action + : R3 × R3 → R3 satis�es

a + 0 = a,

(a + u) + v = a + (u + v),

and for any two points a, b, there is a unique vector
−→
ab such that

b = a +
−→
ab
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Figure 1: Sum of point A and vector V results point B

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling76 June 3, 2023 73 / 218



A�ne Space

We consider two (distinct) sets E and
−→
E , where E is a set of points (with

no structure) and
−→
E is a vector space (of vectors) acting on the set E .

De�nition An a�ne space is either the degenerate space reduced to the

empty set, or a triple < E ,
−→
E ,+ > consisting of a nonempty set E (of

points), a vector space
−→
E (of translations, or vectors), and an action

+ : E ×
−→
E → E , satisfying the following conditions.

(A1) a + 0 = a, for every a ∈ E .

(A2) (a + u) + v = a + (u + v), for every a ∈ E , and every u, v ∈
−→
E .

(A3) For any two points a, b ∈ E , there is a unique u ∈
−→
E such that

a + u = b.
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Figure 2: An example for (a + u) + v = a + (u + v)
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The unique vector u ∈
−→
E such that a + u = b is denoted by

−→
ab, or

sometimes by b − a. We even write b = a + (b − a).

The dimension of the a�ne space < E ,
−→
E ,+ > is the dimension dim(

−→
E )

of the vector space
−→
E . It is denoted by dim(E ).

Note that −−−−−→
a(a + v) = v (3)

for all a ∈ E and all v ∈
−→
E . Adding a to both sides of (3), we have

a +
−−−−−→
a(a + v) = a + v

Because a + v is obtained by a unique v , we conclude
−−−−−→
a(a + v) = v .

Notation
An :=< Rn,Rn,+ >
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Example 27

Consider the subset L of A2 consisting of all points (x , y) satisfying

x + y − 1 = 0

De�ne the action + : L× R→ L of R on L de�ned such that for every
point (x , 1− x) on L and any u ∈ R,

(x , 1− x) + u = (x + u, 1− x − u)

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling80 June 3, 2023 77 / 218



Example 27 (cont.)

De�ne the action + : L× R→ L of R on L de�ned such that for every
point (x , 1− x) on L and any u ∈ R,

(x , 1− x) + u = (x + u, 1− x − u)

This action makes L into an a�ne space. For example, for any two points
a = (a1, 1− a1) and b = (b1, 1− b1) on L, the unique (vector) u ∈ R such
that b = a + u is u = b1 − a1 .
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Example 28

Consider the subset H of A3 consisting of all points (x , y , z) satisfying the
equation x + y + z − 1 = 0. The set H is the plane passing through the
points (1, 0, 0), (0, 1, 0), and (0, 0, 1). The plane H can be made into an
a�ne space by de�ning the action + : H × R2 → H of R2 on H de�ned

such that for every point (x , y , 1− x − y) on H and any

(
u
v

)
∈ R2

(x , y , 1− x − y) +

(
u
v

)
= (x + u, y + v , 1− x − u − y − v).
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Example 29

Consider the subset P of A3 consisting of all points (x , y , z) satisfying the
equation

x2 + y2 − z = 0.

The set P is a paraboloid of revolution, with axis Oz . The surface P can
be made into an a�ne space by de�ning the action + : P ×R2 → P of R2

on P de�ned such that for every point (x , y , x2 + y2) on P and any(
u
v

)
∈ R2

(x , y , x2 + y2) +

(
u
v

)
= (x + u, y + v , (x + u)2 + (y + v)2)
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Chasles's Identity

Given any three points a, b, c ∈ E , since c = a +−→ac, b = a +
−→
ab and

c = b +
−→
bc , we get

c = b +
−→
bc = (a +

−→
ab) +

−→
bc = a + (

−→
ab +

−→
bc)

Thus −→
ab +

−→
bc = −→ac

which is known as Chasles's identity
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Notation

Let Q = {3, 5, 9} the ∑
i∈Q

i2 = 32 + 52 + 92

Alternative representation of the set {a3, a8, a11, ad} is

(ai )i∈Q where Q = {3, 8, 11, d}.

Alternative representation of the set {−−→a1a3,−−→a1a7,−−→a1a8,−−→a1a9} is

(−−→a1aj)j∈S−{1} where S = {1, 3, 7, 8, 9}.
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A�ne Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination.
The corresponding concept in a�ne geometry is that of an a�ne
combination, also called a barycenter.
Lemma Given an a�ne space E , let (ai )i∈I be a family of points in E , and
let (λi )i∈I be a family of scalars. For any two points a, b ∈ E , the following
properties hold:
(1) If

∑
i∈I λi = 1, then

a +
∑
i∈I

λi
−→aai = b +

∑
i∈I

λi
−→
bai .

(2) If
∑

i∈I λi = 0, then ∑
i∈I

λi
−→aai =

∑
i∈I

λi
−→
bai .

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling86 June 3, 2023 83 / 218



Lemma Given an a�ne space E , let (ai )i∈I be a family of points in E , and
let (λi )i∈I be a family of scalars. For any two points a, b ∈ E , the following
properties hold:
(1) If

∑
i∈I λi = 1, then

a +
∑
i∈I

λi
−→aai = b +

∑
i∈I

λi
−→
bai .

Proof By Chasle's identity, we have

a +
∑
i∈I

λi
−→aai = a +

∑
i∈I

λi (
−→
ab +

−→
bai ),

= a + (
∑
i∈I

λi )
−→
ab +

∑
i∈I

λi
−→
bai ,

= a +
−→
ab +

∑
i∈I

λi
−→
bai ,

= b +
∑
i∈I

λi
−→
bai ,
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Lemma Given an a�ne space E , let (ai )i∈I be a family of points in E , and
let (λi )i∈I be a family of scalars. For any two points a, b ∈ E , the following
properties hold:
(2) If

∑
i∈I λi = 0, then ∑

i∈I
λi
−→aai =

∑
i∈I

λi
−→
bai .

Proof We also have∑
i∈I

λi
−→aai =

∑
i∈I

λi (
−→
ab +

−→
bai ),

= (
∑
i∈I

λi )
−→
ab +

∑
i∈I

λi
−→
bai ,

=
∑
i∈I

λi
−→
bai ,

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling88 June 3, 2023 85 / 218



Thus, by the Lemma, for any family of points (ai )i∈I in E , for any family
(λi )i∈I of scalars such that

∑
i∈I λi = 1, the point

x = a +
∑
i∈I

λi
−→aai

is independent of the choice of the origin a ∈ E . The term "origin"
signi�es that the vectors −→aai in the above expression have the same initial
point a.

The point x is function of the points ai which, in the sequel, we call them
control points.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling89 June 3, 2023 86 / 218



Example 30

Let
λ1 = 0.2, λ2 = 0.4, λ3 = −0.6. Notice that

∑
i λi = 0. According to the

previous lemma

λ1
−→
AB + λ2

−→
AC + λ3

−→
AD = (−1.2, 1.4)

are equal in both �gures, even though A's in the �gures are positioned
di�erently.
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De�nition For any family of points (ai )i∈I in E , for any family (λi )i∈I of
scalars such that

∑
i∈I λi = 1, and for any a ∈ E , the point

x = a +
∑
i∈I

λi
−→aai (4)

(which is independent of a ∈ E , by a previous Lemma) is called the
barycenter (or barycentric combination, or a�ne combination) of the
points ai assigned the weights λi , and it is denoted by

x =
∑
i∈I

λiai (5)

Note that (5) is a point. Since barycentric combination is independent of
the pivot, it could be viewed as barycentric combination with 0 pivot:

x =
∑
i∈I

λiai = 0 +
∑
i∈I

λi
−→
0ai
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x = a +
∑
i∈I

λi
−→aai (cf. 4)

Given a family of weighted points ((ai , λi ))i∈I , where
∑

i∈I λi = 1, we say
that the point

∑
i∈I λiai is the barycenter of the family of weighted points

((ai , λi ))i∈I .
Note that the barycenter x of the family of weighted points ((ai , λi ))i∈I is
the unique point such that

−→ax =
∑
i∈I

λi
−→aai , for every a ∈ E

The above expression is obtained from (4) by moving a to the left of the
equation. Setting a = x in the equation, the point x is the unique point
such that ∑

i∈I
λi
−→xai = 0

∴ Vectors with initial points at the barycenter and endpoints at ai 's add up

to zero.
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Digression: Convex Combination

Given a �nite number of points x1, . . . , xn in a real vector space, a convex
combination of these points is a point of the form

α1x1 + α2x2 + · · ·+ αnxn

where the real numbers αi satisfy αi ≥ 0 and α1 + α2 + · · ·+ αn = 1.

Given three points x1, x2, x3 in a
plane as shown in the �gure, the
point P is a convex combination of
the three points, while Q is not. Q
is, however, an a�ne combination of
the three points
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Example 31

Barycenters:

g1 =
1

4
a +

1

4
b +

1

2
c =

1

2

(
1

2
a +

1

2
b

)
+

1

2
c

g2 = −a + b + c = −a + 2

(
1

2
b +

1

2
c

)
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Example 32

Let (a,b,c,d) be a sequence of points in A2. Observe that
(1− t)3 + 3t(1− t)2 + 3t2(1− t) + t3 = 1, since the sum on the left-hand
side is obtained by expanding (t + (1− t))3 = 1 using the binomial
formula. Thus,

(1− t)3a + 3t(1− t)2b + 3t2(1− t)c + t3d

is a well-de�ned a�ne combination. Then, we can de�ne the curve
F : A→ A2 such that

F (t) = (1− t)3a + 3t(1− t)2b + 3t2(1− t)c + t3d .

Such a curve is called a Bézier curve, and (a, b, c , d) are called its control
points.
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A�ne Subspaces

De�nition Given an a�ne space < E ,
−→
E ,+ > a subset V of E is an a�ne

subspace (of < E ,
−→
E ,+ > ) if for every family of weighted points

((ai , λi ))i∈I in V such that
∑

i∈I λi = 1, the barycenter
∑

i∈I λiai belongs
to V .
The subspace associated with an a�ne subspace is often called its

direction. That is, in the triple < E ,
−→
E ,+ >, the subspace

−→
E is the

direction.

Example 33

Consider the subset U of R2 de�ned by

U = {(x , y) ∈ R2 : ax + by = c}

U is an a�ne subspace of A2. In fact, it is just a usual line in A2
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Lemma
Let < E ,

−→
E ,+ > be an a�ne space.

(1) A nonempty subset V of E is an a�ne subspace i� for every point

a ∈ V , the set
−→
Va

∆
= {−→ax : x ∈ V } is a subspace of

−→
E .

∴ Va is the set of all the vectors having their initial point at a ∈ V , and

endpoint at all possible points in V .

Consequently, all the points in V could be expressed as V = a +
−→
Va.

Removing the restriction of the vector initial points to a, we obtain

−→
V = {−→xy : x , y ∈ V }

which is a subspace of
−→
E , and

−→
Va =

−→
V for all a ∈ E . Thus, V = a +

−→
V .

(2) For any subspace
−→
V of

−→
E and for any a ∈ E , the set V = a +

−→
V is an

a�ne subspace.

By the dimension of the a�ne subspace V , we mean the dimension of−→
V . An a�ne subspace of dimension 1 is called a line, and an a�ne
subspace of dimension 2 is called a plane.
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We say that two a�ne subspaces U and V are parallel if their directions−→
U and

−→
V are identical.

→ U = a +
−→
U and V = b +

−→
U for any a ∈ U and any b ∈ V

Thus V is obtained from U by the translation
−→
ab :

U +
−→
ab = a +

−→
U +

−→
ab = a +

−→
ab +

−→
U = b +

−→
U = V

Example 34

Given the a�ne space < E ,
−→
E ,+ >, let a ∈ E and −→u ∈

−→
E . We have seen

that a +−→u is a point in E . Consider the sums a +
−→
E . What we obtain is

the set of points E .
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Example 35

−→
U is a one dimensional subspace of R2. P1 and P2 are a�ne subspaces of

< U,
−→
U ,+ > which equal 5 +

−→
U and 2 +

−→
U respectively. A�ne subspaces

P1 and P2 are parallel. P1 is obtained from P2 by translating 5-2 (i.e., 3)
units.
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Example 36

In R3, the upper plane (in blue) P2 is not a vector subspace, since 0 6∈ P2

and a + b /∈ P2; it is an a�ne subspace. Its direction (the linear subspace
associated with this a�ne subspace) is the lower (green) plane P1, which is
a vector subspace. Although a and b are in P2, their di�erence is a
displacement vector, which does not belong to P2, but belongs to vector
space P1.
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We say that three points a,b,c are collinear if the vectors
−→
ab and −→ac are

linearly dependent.

We say that four points a,b,c,d are coplanar if the vectors
−→
ab, −→ac and

−→
ad

are linearly dependent.

Lemma Given an a�ne space < E ,
−→
E ,+ >, for any family (ai )i∈I of

points in E :
The set V of barycenters

∑
i∈I λiai is the smallest a�ne subspace

containing (ai )i∈I .

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling101 June 3, 2023 98 / 218



Lemma Given an a�ne space < E ,
−→
E ,+ >, let (ai )i∈I be a family of

points in E . If the family (−−→aiaj)j∈(I−{i}) is linearly independent for some
i ∈ I , then (−−→aiaj)j∈(I−{i}) is linearly independent for every i ∈ I .

Example 37

Let (a1, a2, a3, a4) be a family of points in R3 that equals 1
2
5

 ,
 1

1
2

 ,
 3

1
5

 ,
 2

1
3


The family

(−−→a1a2,−−→a1a3,−−→a1a4) =

 0
−1
−3

 ,
 2
−1
0

 ,
 1
−1
−2


is linearly independent. According to the Lemma, so are (−−→a2a1,−−→a2a3,−−→a2a4),
(−−→a3a1,−−→a3a2,−−→a3a4), and (−−→a4a1,−−→a4a2,−−→a4a3).
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De�nition Given an a�ne space < E ,
−→
E ,+ >, a family (ai )i∈I of points in

E is a�nely independent if the family (−−→aiaj)j∈(I−{i}) is linearly
independent for some i ∈ I .

Example 38

Given the family of points (a1, a2, a3, a4, a5), to �nd out their a�ne
independence it is su�cient to check linear independence of vectors using
any point as a pivot. Below, a1 is used as a pivot.

(−−→a1a2,−−→a1a3,−−→a1a4,−−→a1a5)
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Lemma
Given an a�ne space < E ,

−→
E ,+ >.

Let (a0, . . . , am) be a family of m + 1 points in E .
Let x ∈ E , and assume that x =

∑m
i=0 λiai , where

∑m
i=0 λi = 1.

Then, the family (λ0, . . . , λm) such that x =
∑m

i=0 λiai is unique i� the
family (−−→a0a1, . . . ,−−→a0am ) is linearly independent.

Note that "the family (−−→a0a1, . . . ,−−→a0am ) is linearly independent" can
alternatively be expressed as "the family of points (a0, . . . , am) is a�nely

independent".
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De�nition Given two a�ne spaces < E ,
−→
E ,+ > and < E ′,

−→
E ′,+′ >, a

function f : E → E ′ is an a�ne map i� for every family ((ai , λi ))i∈I of
weighted points in E such that

∑
i∈I λi = 1, we have

f

(∑
i∈I

λiai

)
=
∑
i∈I

λi f (ai ) (6)

Example 39

Let f (v)
∆
= Av + b where A and b are constant matrices of compatible

sizes. We show that f is an a�ne map. We do this by calculating both
sides of (6) for the function f , and showing that they are equal.
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f

(∑
i∈I

λiai

)
=
∑
i∈I

λi f (ai ) (cf. 6)

Example 39 (cont.)

LHS: f (v) = f (
∑
i∈I

λiai ) = A(
∑
i∈I

λiai ) + b =
∑
i∈I

λiAai + b

RHS:
∑
i∈I

λi f (ai ) =
∑
i∈I

λi (Aai + b) =
∑
i∈I

λiAai +
∑
i∈I

λib

=
∑
i∈I

λiAai +

(∑
i∈I

λi

)
b =

∑
i∈I

λiAai + 1 · b =
∑
i∈I

λiAai + b

This shows that Av + b is an a�ne map.
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A�ne map Av + b is combination of linear transformation f1(v) = Av and
a follow-up translation f2(v) = b.

It can be shown that every a�ne map T can be expressed in the form

T (x)
∆
= Ax + T (0) for some matrix A and the vector T (0). We next show

this.
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A�ne Map de�nition -Revisit

De�nition Given two a�ne spaces < E ,
−→
E ,+ > and < E ′,

−→
E ′,+′ >, a

function f : E → E ′ is an a�ne map i� for every family ((ai , λi ))i∈I of
weighted points in E such that

∑
i∈I λi = 1, we have

f

(∑
i∈I

λiai

)
=
∑
i∈I

λi f (ai )

f (λ1a1 + · · ·+ λmam) = λ1f (a1) + · · ·+ λmf (am)
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Every a�ne map T : Ω→ Rk is expressed in the form T (x) = Ax + b,
where A and b are constant matrices having compatible sizes.
Let {p0, p1, ..., pm} be an a�nely independent family of points in Rn and
let Ω denote the a�ne set it spans. We de�ne a unique linear map L on
Rn. Note that {p0, p1, ..., pm} being a�ne independent means that the m
vectors

b1
∆
= p1 − p0, . . . , bm

∆
= pm − p0

are linearly independent. Since every bi is in Rn, we have m ≤ n. If m = n,
these vectors form a basis of Rn; if m < n, adjoin vectors bm+1, . . . , bn
such that b1, . . . , bn becomes a basis of Rn.
De�ne the linear map L by

L(bi ) =

{
0 for m < i ≤ n
T (pi )− T (p0) for 1 < i ≤ m

This determines a unique linear map L : Rn → Rk .
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De�ne the linear map L by

L(bi ) =

{
0 for m < i ≤ n
T (pi )− T (p0) for 1 < i ≤ m

L is de�ned by its actions on a basis of Rn. Its values are chosen in Rk .
Thus L : Rn → Rk is a unique linear map which we will analyze its action

on a point in Ω. So,let x
∆
=
∑m

i=0 tipi ∈ Ω (that is, t0 + ...+ tm = 1) and
analyze L(x).
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Let x
∆
=
∑m

i=0 tipi ∈ Ω (that is, t0 + ...+ tm = 1)

L(x) = L(
∑m

i=0 tipi )
= L (

∑m
i=0 ti (pi − p0) +

∑m
i=0 tip0)

= L (
∑m

i=0 ti (pi − p0) + (
∑m

i=0 ti )p0)
= L (

∑m
i=1 ti (pi − p0) + p0)

= L (
∑m

i=1 tibi + p0)
=
∑m

i=1 tiL(bi ) + L(p0)
=
∑m

i=1 ti [T (pi )− T (p0)] + L(p0)
=
∑m

i=0 ti [T (pi )− T (p0)] + L(p0)
=
∑m

i=0 tiT (pi )− (
∑m

i=0 ti )T (p0) + L(p0)

=
∑m

i=0 tiT (pi )− T (p0) + L(p0), De�ne y0
∆
= T (p0)− L(p0)

= T (
∑m

i=0 tipi )− y0
= T (x)− y0

We have obtained
L(x) = T (x)− y0

where L : Rn → Rk is a linear map, T : Ω→ Rk is an a�ne map, and
y0 ∈ Rk is a constant vector.
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We have obtained
L(x) = T (x)− y0

where L : Rn → Rk is a linear map, T : Ω→ Rk is an a�ne map, and
y0 ∈ Rk is a constant vector. This leads to the conclusion that every a�ne
map can be expressed as

T (x) = L(x) + y0

i.e., sum of a linear map and a translation.
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Certain geometric properties are preserved, or invariant, under any a�ne
transformation. If a geometric �gure φ possesses a property that is
invariant under a�ne transformations, then the image, f (φ), under any
a�ne transformation f will also have that property.

Theorem 6

Let f (x) = Ax + b be an a�ne transformation. Then f
(1) maps a line to a line,
(2) maps a line segment to a line segment,
(3) preserves the property of parallelism among lines and line segments,
(4) maps an n-gon to an n-gon,
(5) maps a parallelogram to a parallelogram,
(6) preserves the ratio of lengths of two parallel segments, and
(7) preserves the ratio of areas of two �gures.
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A�ne transformations preserve parallelism

A�ne transformations are transformations that preserve parallelism,
meaning that if two lines are parallel before the transformation, they will
remain parallel after the transformation.

Let's suppose we have two lines in a two-dimensional space, given by their
direction vectors −→u and −→v , respectively. These lines are parallel if and only
if their direction vectors are linearly dependent, that is, if there exists a
scalar λ such that −→u = λ−→v .

Let l1 = u0 + t−→u and l2 = v0 + t−→v , t ∈ R, be parallel lines. Then
−→u = λ−→v for some λ ∈ R. Let's apply an a�ne transformation to these
lines, given by a matrix A and a translation vector b. The transformed lines

will be given by A(l1) +
−→
b and A(l2) +

−→
b , respectively.
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A(l1) +
−→
b = A(u0 + t−→u ) +

−→
b = Au0 +

−→
b + tA−→u = p1 + t−→u1

A(l2) +
−→
b = A(v0 + t−→v ) +

−→
b = Av0 +

−→
b + tAλ−→u = p2 + tλ−→u1

Direction vectors of the transformed lines are t−→u1 and tλ−→u1 which are
multiple of each other. This shows that the images of l1 and l2 under an
a�ne transformation are parallel.
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A�ne transformations preserve lines

Let the line L be de�ned by L(t) = u0 + t−→u . Let the a�ne transformation

be T (x) = Ax +
−→
b . Then

T (L(t)) = A(L(t)) +
−→
b

= A(u0 + t−→u ) +
−→
b

= Au0 +
−→
b + t

−→
Au

The image above is a line through Au0 +
−→
b with direction

−→
Au.
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Composition of A�ne transformations is an A�ne

Transformation

Let the a�ne transformations T1(x) = A1x +
−→
b1 and T2(x) = A2x +

−→
b2

have compatible sizes for the composition T (x)
∆
= T1(T2(x)). Then

T (x) = T1(T2(x))

= A1(A2x +
−→
b2) +

−→
b1

= A1A2x + A1
−→
b2 +

−→
b1

= Ax +
−→
b

where A
∆
= A1A2 and b

∆
= A1

−→
b2 +

−→
b1. This shows that T is also an a�ne

transformation.
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A single matrix representation of A�ne Transformations

Example 40

Consider the a�ne transformation

P(v) =

[
1 2
3 4

]
v +

[
5
6

]
This could be written as Px

Py

1

 =

 1 2 5
3 4 6
0 0 1

 vx
vy
1


This representation allows one to combine sequential a�ne transformations
by simply multiplying matricies.
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Lagrange Interpolation and Neville's Algorithm

Equation of the line P(t) passing through the two points P0 and P1 in
a�ne space:

P(t) = P0 + t(P1 − P0)

The curve P(t) passes through P0 at t = 0 and P1 at t = 1. Moreover, as
t varies, the points on P(t) extend in the direction along the vector from
P0 to P1; thus, these points lie along the line in a�ne space generated by
P0 and P1. Rearranging terms, we can rewrite this as

P(t) = (1− t)P0 + tP1

Equation above is called linear interpolation.
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Now we want a line P01(t) to pass through P0 at t = t0 and through P1 at
t = t1.

P01(t) =
t1 − t

t1 − t0
P0 +

t − t0
t1 − t0

P1

Notice that the coe�cients of P0 and P1 are precisely the barycentric
coordinates of the point P01(t) with respect to the points P0 and P1, so
linear interpolationis just another way of deriving barycentric coordinates
along a line.
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P01(t) =
t1 − t

t1 − t0
P0 +

t − t0
t1 − t0

P1

P01(t) =
1

t1 − t0
[(t1 − t)P0 + (t − t0)P1]

Apex term can be normalized at the end of the process.
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Suppose we now have three points P0,P1,P2 in a�ne space that we wish
to interpolate at the parameters t0, t1, t2.

P01(t) =
t1 − t

t1 − t0
P0 +

t − t0
t1 − t0

P1

P12(t) =
t2 − t

t2 − t1
P1 +

t − t1
t2 − t1

P2

P(t) =

{
P01(t) t ≤ t1
P12(t) t ≥ t1

To generate a smooth curve, apply linear interpolation to the two curves
P01(t) and P12(t):

P012(t) =
t2 − t

t2 − t0
P01 +

t − t0
t2 − t0

P12
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P012(t) =
t2 − t

t2 − t0
P01 +

t − t0
t2 − t0

P12

Note that
P012(t0) = P01(t0) = P0

P012(t2) = P12(t2) = P2
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What if we want to interpolate four points P0,P1,P2,P3 at parameter
values t0, tl , t2, t3? We already know how to build quadratic curves to
interpolate portions of this data. We can construct P012(t) to interpolate
P0,P1,P2 at t0, tl , t2 and Pl23(t) to interpolate P1,P2,P3 at tl , t2, t3.
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The algorithm for computing P0123(t) is called Neville's algorithm. The
curves generated by Neville's algorithm are called Lagrange interpolating
polynomials.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling126 June 3, 2023 123 / 218



Theorem 7

Given a�ne points P0, . . . ,Pn and distinct parameters t0, . . . , tn, there is a
polynomial curve P0...n(t) of degree n that interpolates the given points at
the speci�ed parameters. That is, P0,...,n(tk) = Pk , k = 0, . . . , n.
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De Casteljau's Algorithm

Neville's algorithm is a dynamic programming procedure for computing
points along a polynomial interpolant.
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The same triangular structure with easier evaluation algorithm as easy as
possible, let us perform the same linear interpolation at each node. The
algorithm represented below is called de Casteljau's evaluation
algorithm, and the curves that emerge at the apex of this diagram are
called Bézier curves.
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Quadratic Bézier curve B(t):

B(t) = B2
0 (t)P0 + B2

1 (t)P1 + B2
2 (t)P2

Cubic Bézier curve B(t):

B(t) = B3
0 (t)P0 + B3

1 (t)P1 + B3
2 (t)P2 + B3

3 (t)P3

where P0,P1,P2,P3 are the control points and Bn
k (t) are the blending

functions de�ned by

Bn
k (t) =

n!

k!(n − k)!

(t − a)k(b − t)n−k

(b − a)n

t is the parameter speci�ed between a and b. When a = 0 and b = 1, the
cubic Bézier curve becomes

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (7)
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Example 41

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (cf. 7)
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Example 42

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (cf. 7)
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Example 43

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (cf. 7)
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B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (cf. 7)
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Quadratic Bézier curve B(t):

B(t) = B2
0 (t)P0 + B2

1 (t)P1 + B2
2 (t)P2

Example 44
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Quadratic Bézier curve B(t):

B(t) = B2
0 (t)P0 + B2

1 (t)P1 + B2
2 (t)P2

Example 45
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Example 46

Let P0 =

[
−4
4

]
and P1 =

[
4
−5

]
.

Their linear interpolation (1− t)P0 + tP1 in matrix notation

(1− t)

[
−4
4

]
+ t

[
4
−5

]
, 0 ≤ t ≤ 1

is equivalently viewed as two scalar equations:

−4(1− t) +4t
4(1− t) −5t

where 0 ≤ t ≤ 1
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B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

Example 47

Let P0 =

[
−4
4

]
, P1 =

[
4
−5

]
, P2 =

[
4
5

]
, and P3 =

[
−4
−5

]
.

This yields the cubic Bezier curve[
Bx(t)
By (t)

]
= (1− t)3

[
−4
4

]
+3t(1− t)2

[
4

−5

]
+3t2(1− t)

[
4

5

]
+ t3

[
−4
−5

]

Bx(t) = (1− t)3(−4) + 3t(1− t)24 + 3t2(1− t))4 + t3(−4)

By (t) = (1− t)34 + 3t(1− t)2(−5) + 3t2(1− t))5 + t3(−5)
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B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

In the formula above, blending functions are multiplied by the control
points P0,P1,P2,P3. Thus, we can write expressions for x and y
components of the Bézier curve B as:[

Bx(t)
By (t)

]
= (1− t)3

[
P0,x

P0,y

]
+3t(1− t)2

[
P1,x

P1,y

]
+3t2(1− t)

[
P2,x

P2,y

]
+ t3

[
P3,x

P3,y

]

Bx(t) = (1− t)3P0,x + 3t(1− t)2P1,x + 3t2(1− t))P2,x + t3P3,x

By (t) = (1− t)3P0,y + 3t(1− t)2P1,y + 3t2(1− t))P2,y + t3P3,y
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Bx(t) = (1− t)3P0,x + 3t(1− t)2P1,x + 3t2(1− t))P2,x + t3P3,x

By (t) = (1− t)3P0,y + 3t(1− t)2P1,y + 3t2(1− t))P2,y + t3P3,y

In a matric notation, we have

Bx(t) =
[
1 t t2 t3

] 
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1




P0,x

P1,x

P2,x

P3,x



By (t) =
[
1 t t2 t3

] 
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1




P0,y

P1,y

P2,y

P3,y


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Quadratic Bézier curve

B(t) = (1−t)2P0+2(1−t)tP1+t2P2 = (1−2t+t2)P0+(2t−2t2)P1+t2P2

Bx(t) =
[
1 t t2

]  1 0 0
−2 2 0
1 −2 1

 P0,x

P1,x

P2,x


By (t) =

[
1 t t2

]  1 0 0
−2 2 0
1 −2 1

 P0,y

P1,y

P2,y


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Casteljau Algorithm

q0(t) = (1− t)p0 + tp1

q1(t) = (1− t)p1 + tp2

q2(t) = (1− t)p2 + tp3
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r0(t) = (1− t)q0(t) + tq1(t)

r1(t) = (1− t)q1(t) + tq2(t)
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p(t) = (1− t)r0(t) + tr1(t)
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Example 48
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Example 48 (cont.)
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Example 48 (cont.)
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Example 48 (cont.)
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Example 49
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Recap

If T is an a�ne transformation, then you can compute a point on a
transformed Bezier curve in two ways:
(1) calculate a point P(t) on the original curve, and then transform this
point get a new point T(P(t);
(2) transform the control points Pi to get new ones T (Pi ,) construct a
Bézier curve from these, and calculate the point at parameter value t on
this curve
The result of these two calculations will be the same point.
In short, you can transform the curve just by transforming its control points.
In symbols

T

(∑
i

φmi (t)Pi

)
=
∑
i

φmi (t)T (Pi )

Here φmi is the i-th Bernstein polynomial of degree m.
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A Remark

Let quadratic Bezier curves be

f (t) = A(1− t)2 + B(1− t)t + Ct2

g(t) = D(1− t)2 + E (1− t)t + Ft2

where A,B,C ,D,E ,F are control points.
Let's say that you evaluate f and g for some value t and linearly
interpolate between those two values by some amount u. The result is
always the same as the function below:

h(t) = G (1− t)2 + H(1− t)t + It2

where

G = A(1− u) + D(u), H = B(1− u) + E (u), I = C (1− u) + F (u)
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Bezier Clipping Algorithm

Given two Bezier curves it is desired to �nd their intersection position if it
exists. Except some special cases Bezier Clipping algorithm provides a
solution to this problem.

Source: Curve intersection using Bézier clipping, T. Sederberg, and T.
Nishita, Comput. Aided Des., 22 (9): 538-549 (1990)
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De�ne fatline as the region between two parallel lines. Denote by L the line
passing through P0 and P3. Let the normalized equation for this line be

ax + by + c = 0, a2 + b2 = 1
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Distance d(x , y) from (x , y) to the line L is an a�ne transformation:

d(

[
x
y

]
) =

[
a b

] [ x
y

]
+ c = ax + by + c (8)

Denote by di = d(xi , yi ) the signed distance from Pi = (xi , yi ) to L.
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Fatline may more precisely be de�ned as

{(x , y) : dmin ≤ d(x , y) ≤ dmax}

where dmin = min{d0, d1, d2, d3} and dmax = max{d0, d1, d2, d3}.
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{(x , y) : dmin ≤ d(x , y) ≤ dmax}
where dmin = min{d0, d1, d2, d3} and dmax = max{d0, d1, d2, d3}.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling156 June 3, 2023 153 / 218



For a tighter fatline,
if d1d2 > 0 use dmin = 3

4
min{0, d1, d2}, dmax = 3

4
max{0, d1, d2}.

If d1d2 < 0, use dmin = 4
9

min{0, d1, d2}, dmax = 4
9

max{0, d1, d2}.
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Now, we have a tight fatline containing the cubic Bezier curve Q, and the
cubic Bezier curve P . The curves P and Q intersect each other as shown
below.
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Parts of P that lie outside the fatline
are clipped out. Because those parts
cannot intersect Q. We want to
determine parts of P that lie outside
the fatline. Control points of P have
distance to L calculated by (8):

di
∆
= d(Pi ) =

[
a b

]
Pi + c
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Noting that P(t) has the form

P(t) =
3∑

i=0

PiB
3
i (t)

using (8), any point on P(t) has
distance to L that equals

d(t) =
3∑

i=0

diB
3
i (t)

This has the form of cubic Bezier
curve.
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Now form a cubic Bezier curve
having the control points
Di = (ti , di ) such that ti = 0, 1

3
, 2
3
, 1.

For the data in the �gure they are
(0,−5), (1

3
,−1), (2

3
, 2), (1, 3). Using

these control points the
corresponding nonparametric Bezier
curve is

D(t) = (t, d(t)) =
3∑

i=0

DiB
n
i (t)
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Nonparametric Bezier curve

D(t) = (t, d(t)) =
3∑

i=0

DiB
n
i (t)

In this example, it is certain that
P(t) lies outside the fatline for
t < 0.25 and t > 0.75
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Parts of P that lie outside the fatline are clipped out. Because those parts
cannot intersect Q. This makes surviving curve P ′ shorter. We construct a
fatline for P ′ and clip parts of Q that lie outside the fatline.
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Parts of P where d(t) ≥ dmax and d(t) ≤ dmin are clipped out.
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We alternate the roles of P and Q and repeat the process. In few steps, a
satisfactorily accurate intersection point is obtained.
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Bézier curve and the control points

Cubic Bézier curve points and the control points are related through a
linear algebraic equation set. This equation set yields the control points if
four distinct parameters and corresponding points on the cubic Bezier curve
are known. For convenience in calculations, the parameter values are
chosen as t = 0, 1

3
, 2
3
, 1.

Note that, the curve points corresponding to the parameter values t = 0
and t = 1 directly present the control points without any computation:
B(0) = P0 and B(1) = P3, where B is the Bezier curve function, and Pi is
the i-th control point. This reduces problem to solving for two control
points P1 and P2 only.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling166 June 3, 2023 163 / 218



Cubic Bézier curve has the form

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

In terms of components of the curve and control points in two dimensions,
it is

(Bx(t),By (t)) = (1− t)3(P0,x ,P0,y ) + 3t(1− t)2(P1,x ,P1,y )+

3t2(1− t)(P2,x ,P2,y ) + t3(P3,x ,P3,y )

Let some points on the curve be B(0) = (b0,x , b0,y ), B(1
3

) = (b1,x , b1,y ),
B(2

3
) = (b2,x , b2,y ), B(1) = (b3,x , b3,y ) Writing an equation for each point

we obtain four equation sets. Consider �rst components of each set:
b0,x
b1,x
b2,x
b3,x

 =
1

27


27 0 0 0
8 12 6 1
1 6 12 8
0 0 0 27




P0,x

P1,x

P2,x

P3,x


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
b0,x
b1,x
b2,x
b3,x

 =
1

27


27 0 0 0
8 12 6 1
1 6 12 8
0 0 0 27




P0,x

P1,x

P2,x

P3,x


Using the above equation, �rst components of the control points are
calculated as

P0,x

P1,x

P2,x

P3,x

 =
1

6


6 0 0 0
−5 18 −9 2
2 −9 18 −5
0 0 0 6




b0,x
b1,x
b2,x
b3,x


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We redo the same work the second components:
b0,y
b1,y
b2,y
b3,y

 =
1

27


27 0 0 0
8 12 6 1
1 6 12 8
0 0 0 27




P0,y

P1,y

P2,y

P3,y




P0,y

P1,y

P2,y

P3,y

 =
1

6


6 0 0 0
−5 18 −9 2
2 −9 18 −5
0 0 0 6




b0,y
b1,y
b2,y
b3,y


If it is in the 3D space, we can also do it the third components.
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Bézier Curve Properties

1. Polynomial Parametrization
In the de Casteljau algorithm, the only operations we perform involving the
functions along the edges are addition and multiplication. Since the
functions along the edges are linear polynomials, it follows that a Bézier
curve with n + 1 control points is a polynomial curve of degree n because
there are n levels from the control points at the base to the curve at the
apex of the triangle. Since Bézier curves are polynomial curves, all the
tools we know for polynomials apply.
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2. A�ne Invariance
Let T be an a�ne map. And let Pi be the i-th control point of n-th degree
bezier curve. Then

T

(
n∑

i=0

PiB
n
i (t)

)
=

n∑
i=0

T (Pi )B
n
i (t)

In particular, for the cubic Bezier curve with a = 0 and b = 1, we express
this as

T
[
(1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

]
=

(1− t)3T (P0) + 3t(1− t)2T (P1) + 3t2(1− t)T (P2) + t3T (P3)

Recall the de�nition that given two a�ne spaces < E ,
−→
E ,+ > and

< E ′,
−→
E ′,+′ >, a function f : E → E ′ is an a�ne map i� for every family

((ai , λi ))i∈I of weighted points in E such that
∑

i∈I λi = 1, we have

f

(∑
i∈I

λiai

)
=
∑
i∈I

λi f (ai ) (cf. 6)
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3. Convex Hull Property
A set S of points in a�ne space is said to be convex if, whenever P and Q
are points in S , the entire line segment from P to Q lies in S.

The intersection S of a collection of convex sets {Si} is a convex set
because if P and Q are points in S , they must also be points in each of the
sets Si . Since, by assumption, the sets Si are convex, the entire line
segment from P to Q lies in each set Si . Hence the entire line segment
from P to Q lies in the intersection S , so S too is convex.
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The convex hull of a set of points is de�ned as the smallest convex
polygon, that encloses all of the points in the set. Convex means that the
polygon has no corner that is bent inwards.
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A convex set is a set of points such that, given any two points A, B in that
set, the line AB joining them lies entirely within that set.
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A Bézier curve will always be completely contained inside of the Convex
Hull of the control points.
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4. Symmetry
Replacing t by a + b − t reverses the order of the parameter domain. As
the parameter t varies from a to b, the curve B[Po,...,P n ](a + b- t)
traverses the same points as B[P0, . . . ,Pn](t) but in the direction from b
to a rather than from a to b. Thus B[P0, . . . ,Pn](a + b − t) is essentially
the same curve as B[P0, . . . ,Pn](t) but with opposite orientation.
Similarly, reversing the order of the control points of a Bézier curve
generates the same Bézier curve but with opposite orientation. Analytically
this means that B[Pn, . . . ,P0](t) = B[P0, . . . ,Pn](a + b − t), a < t < b.

To prove the symmetry, simply replace t by a + b − t in the de Casteljau
diagram and observe that the new diagram is the mirror image of the de
Casteljau diagram for B[Pn, . . . ,P0](t).
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5. Interpolation of End Points
Unlike Lagrange polynomials, Bézier curves generally do not interpolate all
their control points. But Bézier curves always interpolate their �rst and
last control points. In fact,

B[P0, . . . ,Pn](a) = P0 and B[P0, . . . ,Pn](b) = Pn

Set t = a in de Casteljau's algorithm and observe that all the labels on
left-pointing arrows become zero while all the labels on right-pointing
arrows become one.
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If k 6= 0, then any path from Pk to the apex of the triangle must traverse
at least one left-pointing arrow, so there is no contribution from Pk to the
value of the curve at t = a. On the other hand, when t = a all the labels
on the single path from P0 to the apex of the triangle are one. Hence
B[P0, . . . ,Pn](a) = P0. A similar argument for t = b shows that
B[P0, . . . ,Pn](b) = Pn.
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6. Variation Diminishing
Bezier curves exhibit a variation diminishing property. Informally this means
that the Bezier curve will not "wiggle" any more than the control polygon
does. In other words, the curve will not wiggle unless the designer
speci�cally introduces wiggling in the control polygon.
If a line is drawn through the curve, the number of intersections with the
curve will be less than or equal to the number of intersections with the
control polygon.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling179 June 3, 2023 176 / 218



A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling180 June 3, 2023 177 / 218



7. Control points determine the curve

New orientation and translation do not change the curve shape.
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>>drawBezierCurve([0 0;1 2;3 3;6 0], 'linewidth', 2, 'color', 'g');

>>hold on

>>plot([0 1 3 6],[0 2 3 0])

>>hold on

>>drawBezierCurve([8 1 ;6 2;5 4;8 7], 'linewidth', 2, 'color', 'g');

>>hold on

>>plot([8 6 5 8],[1 2 4 7])

Octave codes for the Bezier curves in the �gure above.
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8. Degree Elevation
Increase the degree of a Bézier curve without changing its shape. Suppose
we have a Bézier curve of degree n de�ned by n + 1 control points
P0,P1,P2, ...,Pn and we want to increase the degree of this curve to n + 1
without changing its shape. Since a degree n + 1 Bézier curve is de�ned by
n + 2 control points, we need to �nd such a new set of control points.
Obviously, P0 and Pn must be in the new set because the new curve also
passes through them. Therefore, what we need is only n new control points.
Let the new set of control points be Q0,Q1,Q2, ...,Qn+1. Noting that
Q0 = P0 and Qn+1 = Pn, the other control points are computed as follows:

Qi =
i

n + 1
Pi−1 +

(
1− i

n + 1

)
Pi , 1 ≤ i ≤ n
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Example 50

To elevate the degree, note the following:

B(t) = (1− t)B(t) + tB(t)
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Shape preserving linear maps

Rotation, translation, and re�ection preserve shape. We next show that,
nonzero multiples of rotation matrices preserve angles. By such matrices,
when control points are transformed, their new positions result in the same
curve shape.
A matrix A ∈ Rnn is orthogonal if ATA = AAT = I n. Let T : Rn → Rn

and k ∈ R such that kT is orthogonal. Let x , y ∈ Rn. Then,

cos−1(
<T (x),T (y)>

||T (x)|| · ||T (y)|| = cos−1(
<kT (x), kT (y)>

||kT (x)|| · ||kT (y)|| = cos−1(
<x , y>

||x || · ||y ||

because ||kT (x)||2 = <kT (x), kT (x)> = <x , x> = ||x ||2, so
||kT (x)|| = ||x || for all x . Hence, T is angle-preserving. It can also be
shown that, as a linear transformation, an orthogonal matrix preserves the
inner product of vectors.

Note that ||x || · ||y || cos θ =< x , y > where θ is the angle between the
vectors x and y .
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Translation preserves shape.
If (x , y) is the original point and (x1, y1) is the transformed point, then the
formula for a translation translate( e, f ) is

translate (e, f ) =

{
x1 = x + e
y1 = y + f

where e is the number of units by which the point is moved horizontally
and f is the amount by which it is moved vertically.

translate( 4, 2 )
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Rotation preserves shape.
If (x , y) is the original point and (x1, y1) is the transformed point, then the
formula for a rotation rotate(r) is

rotate (r) =

{
x1 = x cos(r)− y sin(r)
y1 = x sin(r) + y cos(r)

where r is the amount of rotation.

rotate(−1350)
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A Bézier curve is an a�ne combination of its control points.

Any a�ne transformation of a curve is the curve of the transformed control
points.

Any shape preserving transformation of te control points, transforms the
curve while preserving its shape.
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Modifying the parameter interval

If the parameter starting value is 0 and ending value is 1,and the desired
values are tk and tk+1 respectively, then we do change of variable:

t ← t − tk
tk+1 − tk
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Derivative of a Cubic Bézier Curve

Cubic Bézier Curve

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

Its derivative B ′(t) is

−3(1− t)2P0 + 3(1− t)2P1 − 6t(1− t)P1 + 6t(1− t)P2 − 3t2P2 + 3t2P3

Its value at t = 0 is 3(P1 − P0)

Its value at t = 1 is 3(P3 − P2)

Note that derivative of a cubic Bezier curve is a quadratic Bezier curve
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We can compute derivative of a Bezier curve using de Casteljau algorithm:
Place the coe�cients P1−P0

b−a , P2−P1
b−a , . . . , Pn−Pn−1

b−a at the base diagram, run
n − 1 levels of the algorithm, and multiply the output by n.

Derivative of a cubic Bezier curve
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Bézier Curves Are Tangent to Their First and Last Legs.
Letting u = 0 and u = 1 gives C ′(0) = n(P1 − P0) and
C ′(1) = n(Pn − Pn−1) The �rst means that the tangent vector at u = 0 is
in the direction of P1 − P0 multiplied by n. Therefore, the �rst leg in the
indicated direction is tangent to the Bézier curve. The second means that
the tangent vector at u = 1 is in the direction of Pn − Pn−1 multiplied by
n. Therefore, the last leg in the indicated direction is tangent to the Bézier
curve. The following �gures show this property.
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Splitting a Bézier Curve

Bezier curve above is split at t = u
u+v .

Newly obtained pink Bezier curve has the control points A, B, C, and D.
The second curve (in blue) has the control points D, E, F, and G.
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Joining Two Bézier Curves with C 1-Continuity

That a Bézier curve being tangent to its �rst and last legs provides us with
a technique for joining two or more Bézier curves together for designing a
desired shape. Let the �rst curve C (u) be de�ned by m + 1 control points
P0,P1,P2, ...,Pm. Let the second curve D(u) be de�ned by n + 1 control
points Q0,Q1,Q2, . . . ,Qn. If we want to join these two Bézier curves
together, then Pm must be equal to Q0. This guarantees a C 0 continuous
join. Recall that the �rst curve is tangent to its last leg and the second
curve is tangent to its �rst leg. Consequently, to achieve a smooth
transition, Pm−1,Pm = Q0, and Q1 must be on the same line such that the
directions from Pm−1 to Pm and the direction from Q0 to Q1 are the same.
This is shown below.
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While joining two Bézier curves in this way looks smooth, it is still a C 0

join and is not yet C 1. However, it is G 1, because they have the same
tangent vector directions. To achieve C 1 continuity, we have to make sure
that the tangent vector at u = 1 of the �rst curve, C ′(1), and the tangent
vector at u = 0 of the second curve, D ′(0), are identical. That is, the
following must hold:

C ′(1) = m(Pm − Pm−1) = D ′(0) = n(Q1 − Q0)
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Two cubic Bezier curves � one with control points P0,P1,P2,P3 and the
other with control points Q0,Q1,Q2,Q3 � that meet with matching �rst
derivatives at their join. Here Q0 = P3 and Q1 − Q0 = P3 − P2.

A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling196 June 3, 2023 193 / 218



An application: Borders of a half apple

On the half apple borders, we �rst determine the anchor points and control
points. In the �gure above there are four sets of control points where each
set represents a cubic Bezier curve.
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Note that the anchor points are the endpoints of the successive cubic
Bezier curves. There are two control points associated with each anchor
point such that 1) they are collinear with the anchor point, and 2) their
distances to the anchor point is equal. These properties ensure the C 1

continuity. If only the collinearity is satis�ed, however, the distances to the
anchor point is not equal; it is called G1 continuity.
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Bezier control points of the successive Bezier curves are labeled in the
�gure above.
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Example 51

Anchor and control points for approximating a circle
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Example 52

Anchor and control points for representing the letter Omega
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Fréchet distance

One of the fundamental problems when working with curves is curve
�tting, or determining the Bézier that's closest to some source curve.
How do we measure the distance between two curves? One meaningful
metric is the Fréchet distance:
The Fréchet distance between two curves, sometimes also called the
dog-leash distance, is de�ned as the minimum length of a leash required to
connect a dog and its owner as they walk without backtracking along their
respective curves from one endpoint to the other.
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Formal de�nition of curves in R2:
Let α(t) : [0, 1]→ [0, 1] and β(t) : [0, 1]→ [0, 1] be continuous
parametrizations. Also let the curves A and B be continuous mappings
from [0, 1] to R2.

F (A,B) = inf
α,β

max
t∈[0,1]

{
d
(
A(α(t)), B(β(t))

)}

where d is the distance function.
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Example 53
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The Fréchet problem can be posed in two ways:
(1) what is the minimum leash length ∆ for a given pair of trajectories.
(2) Given a leash of length ∆, can the man and the dog complete their
paths.

Second one is called the decision problem, which is simpler to compute.
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The decision problem can be solved using a so called freespace diagram. A
freespace diagram is a two-dimensional �gure which given two trajectories
P and Q and a Fréchet distance ∆, contains for each combination of
points on P and Q whether d(P,Q) ≤ ∆, and if so, marks it as free
(white). The freespace relates to the Fréchet decision problem as follows:
if a monotonically increasing path in x and y can be found through the
freespace, such that this path starts in the lower left corner and end in the
top right corner, then the Fréchet distance between P and Q is lower than
∆, and vice versa.
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Given two curves (i.e., two polygonal paths P and Q from [0,1] to the
plane) the "free space" is the points (s, t) in the square [0, 1]× [0, 1] such
that the distance from P(s) to Q(t) is less or equal than a pre�xed ∆. The
free space is the area not colored in black.
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Example 54

Taking 20 equally spaced samples from each line segment, P is represented
by 40 sampling points: P(1), ...,P(40). Likewise Q is represented by 60
points: Q(1), ...,Q(60). A test for 3 unit length leash generates the
following �gure, which shows that 3 unit length leash is su�cient. A test
for 4 unit length leash also results in a su�cient length. However, 2 unit
length is not good.
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Example 54 (cont.)

Free space diagram for 3 unit length leash
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Example 54 (cont.)

Free space diagram for 4 unit length leash
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Example 54 (cont.)

Free space diagram for 2 unit length leash
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Codes in the OCTAVE environment

A=[1 2];

B=[4 4];

C=[5 2];

D=[9 6];

for k=1:20

Q{k}=(1-0.05*(k-1))*A+0.05*(k-1)*B;

end

for k=1:20

Q{k+20}=(1-0.05*(k-1))*B+0.05*(k-1)*C;

end

for k=1:20

Q{k+40}=(1-0.05*(k-1))*C+0.05*(k-1)*D;

end
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E=[1 1];

F=[7 8];

G=[9 3];

for k=1:20

P{k}=(1-0.05*(k-1))*E+0.05*(k-1)*F;

end

for k=1:20

P{k+20}=(1-0.05*(k-1))*F+0.05*(k-1)*G;

end

hold on

for n=1:40

for k=1:60

if norm(P{n}-Q{k})<2

plot(n,k)

end

end

end
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Hausdor� Distance

We are given two point sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} in
R2. The one-sided Hausdor� distance from A to B is de�ned as:

dH(A,B) = max
a∈A

min
b∈B
||a− b||

Hausdor� distance is not commutative. Two-sided Hausdor� distance
between A and B is de�ned as maximum of dH(A,B) and dH(B,A).
One downside of the Hausdor� distance is that it may call things similar
which don't seem alike. For example, in next �gure, the two shapes are not
alike, but since any point in one is very close to some point in the other,
the Hausdor� distance will be small.
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Two curves not alike with small Hausdor� distance
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Example 55

U = {A,B,C ,D}, V = {E ,F ,G}

Distance from A to the closest point in V :
√
5

Distance from B to the closest point in V : 2
Distance from C to the closest point in V : 2
Distance from D to the closest point in V :

√
5

Hausdor� distance from U to V : dH(U,V ) = max{
√
5, 2} =

√
5
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Bezier Surfaces

A given Bézier surface of degree (n,m) is de�ned by a set of
(n + 1)(m + 1) control points ki ,j where i = 0, . . . , n and j = 0, . . . ,m. It
maps the unit square into a smooth-continuous surface embedded within
the space containing the ki ,js.
A two-dimensional Bézier surface can be de�ned as a parametric surface
where the position of a point p as a function of the parametric coordinates
u, v is given by

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v) ki ,j

evaluated over the unit square, where

Bn
i (u) =

(
n

i

)
ui (1− u)n−i

is a basis Bernstein polynomial, and(
n

i

)
=

n!

i !(n − i)!

is a binomial coe�cient.A. Karamanc�o§lu (Eski³ehir Osmangazi University)Bézier Curve Modelling217 June 3, 2023 214 / 218



Some properties of Bézier surfaces
∗ A Bézier surface will transform in the same way as its control points
under all linear transformations and translations.
∗ All u=constant and v=constant lines in the (u, v) space, and - in
particular - all four edges of the deformed (u, v) unit square are Bézier
curves.
∗ A Bézier surface will lie completely within the convex hull of its control
points, and therefore also completely within the bounding box of its control
points in any given Cartesian coordinate system.
∗ The points in the patch corresponding to the corners of the deformed
unit square coincide with four of the control points.
∗ However, a Bézier surface does not generally pass through its other
control points.
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Example 56

A 2d Bezier surface
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Geogebra: A Tool for Bezier Curve Construction

GeoGebra is an interactive mathematics software for teaching mathematics
and science, including algebra, geometry, calculus, and statistics. It is
composed of an algebra window, a graphics window (2D and 3D graphics),
an input bar, and includes a built-in environment spreadsheet, CAS (an
advanced calculator), and statistics and calculus tools.

Geogebra is a freely-available, open source, multi-platform, and composed
of easy-to-handle tools.

It support dynamic scenes.

It is an interactive platform to design Bezier curves.
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Term projects of the course
Given the curve S, �nd a sequence of cubic Bezier curves connected en to
end, call it B, such that the curve B is C 1 continuous and the Frechet
distance between B and S is minimum.
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