Name:
ID. No.
Eskişehir Osmangazi University - Electrical Engineering Department Differential Equations- Resit Examination
Duration: 60 minutes; Directions: All answers must be written below the respective questions. Anything written elsewhere won't be graded.

Question 1.

Solve the Riccati differential equation

$$
\dot{y}=(y-x)^{2}+1, y(0)=0.5
$$

given that one of its solution is $y_{1}(x)=x$.
Using change of variables $y=v+x \rightarrow \dot{y}=\dot{v}+1$ leads to

$$
\begin{gathered}
\dot{v}+1=(v+x-x)^{2}+1 \rightarrow \dot{v}=v^{2}, \quad \text { Bernouilli diff. eqn. } \\
v=w^{-1} \rightarrow \dot{v}=-w^{-2} \dot{w} \rightarrow-w^{-2} \dot{w}=w^{-1} \rightarrow \quad \dot{w}=-1 \\
w=-x+c \rightarrow v=\frac{1}{c-x} \rightarrow y=\frac{1}{c-x}+x
\end{gathered}
$$

Thus, $y=x$ and $y=\frac{1}{c-x}+x$ are solutions to the Riccati equation. The solution $y=x$ does not satisfy the d.e., so we use the other one

$$
y(x)=\frac{1}{c-x}+x \rightarrow 0.5=\frac{1}{c-0}+0 \rightarrow c=2
$$

The solution is therefore

$$
y(x)=\frac{1}{2-x}+x
$$

Question 2.

Find a particular solution of

$$
x^{2} \ddot{y}-2 x \dot{y}+2 y=e^{\frac{9}{2}}
$$

given that the corresponding homogeneous equation

$$
x^{2} \ddot{y}-2 x \dot{y}+2 y=0
$$

has solutions x and x^{2}.
The solution has the form

$$
y_{p}=u_{1} x+u_{2} x^{2}
$$

with $\dot{u}_{1} x+\dot{u}_{2} x^{2}=0 \ldots(*)$ Substitute this in the given equation:

$$
\begin{gathered}
x^{2}\left(\dot{u}_{1}+2 u_{2}+2 x \dot{u}_{2}\right)-2 x\left(u_{1}+2 x u_{2}\right)+2\left(u_{1} x+u_{2} x^{2}\right)=x^{\frac{9}{2}} \\
\dot{u}_{1} x^{2}+2 x^{3} \dot{u}_{2}=x^{\frac{9}{2}} \rightarrow \quad \dot{u}_{1}+2 x \dot{u}_{2}=x^{\frac{5}{2}} \ldots(* *)
\end{gathered}
$$

Equation (*) implies $\dot{u}_{1}=-\dot{u}_{2} x$. Substitute this into Equation $\left({ }^{* *}\right): \dot{u}_{2}=x^{\frac{3}{2}}$. This leads to $\dot{u}_{1}=-x^{\frac{5}{2}}$. Last two expressions yield

$$
u_{1}=-\frac{2}{7} x^{\frac{7}{2}} \text { and } u_{2}=\frac{2}{5} x^{\frac{5}{2}}
$$

Thus

$$
y_{p}=u_{1} x+u_{2} x^{2}=-\frac{2}{7} x^{\frac{7}{2}} x+\frac{2}{5} x^{\frac{5}{2}} x^{2}=\frac{4}{35} x^{\frac{9}{2}}
$$

Question 3.
[20 pts.] Sketch the phase portrait of

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

In particular, on the phase portrait show the trajectories corresponding to the initial conditions

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Use arrows to indicate the trajectory directions. Also, trajectories must exhibit the directions of their slow and fast changes.

Ans.

Good Luck
A. Karamancıoğlu

