Name:
ID No.
Eskişehir Osmangazi University - Electrical Engineering Department
Differential Equations- Midterm Examination - Fall 2023
Duration: 45 minutes; Directions: All answers should be positioned beside or below their corresponding questions. Anything written elsewhere won't be graded. Up to one percent error in the results is tolerated.

Question 1.
Let $v=y^{-6}$ transform the differential equation

$$
\frac{d y}{d x}+x^{5} y=x^{5} y^{7}
$$

into a first order linear linear differential equation:

$$
\frac{d v}{d x}+S(x) v=R(x)
$$

Find the function $S(x)$ and $R(x)$. Show your work.
It is a Bernouilli d.e. Let $v=y^{1-n}$ with $n=7 . \therefore v=y^{-6} \rightarrow y=v^{-\frac{1}{6}} \rightarrow \frac{d y}{d x}=-\frac{1}{6} v^{-\frac{7}{6}} \frac{d v}{d x}$ Substitute in the given equation:

$$
-\frac{1}{6} v^{-\frac{7}{6}} \frac{d v}{d x}+x^{5} v^{-\frac{1}{6}}=x^{5} v^{-\frac{7}{6}}
$$

Multiply throughout by $-6 v^{\frac{7}{6}}$

$$
\begin{gathered}
\frac{d v}{d x}-6 x^{5} v=-6 x^{5} \\
S(x)=-6 x^{5} ; \quad R(x)=-6 x^{5}
\end{gathered}
$$

Question 2.

(Y / N) Are the functions $\sin (x), \sin (2 x)$, and $\sin (4 x)$ linearly independent on
(a) $0 \leq x \leq \frac{\pi}{2} Y$
(b) $0 \leq x \leq \pi Y$
(c) $0 \leq x \leq \frac{\pi}{4} Y$
(d) $0 \leq x \leq 2 \pi Y$
(e) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} Y$
(For this question, there is no partial credits!)

Question 3.
(a) 10 pts. Find the c values so that $y=c / x$ satisfies the Riccati differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y^{2}=\frac{2}{x^{2}} \tag{1}
\end{equation*}
$$

Show your work.

$$
y=\frac{c}{x} \rightarrow \dot{y}=-\frac{c}{x^{2}}
$$

Substitute in the d.e.

$$
\begin{gathered}
-\frac{c}{x^{2}}+\frac{c^{2}}{x^{2}}=\frac{2}{x^{2}} \rightarrow c^{2}-c-2=0 \\
c=2, \text { and } c=-1
\end{gathered}
$$

(b) 15 pts. Let c_{1} be the largest number such that $y=c_{1} / x$ satisfies Eq. (1). Use $y=c_{1} / x$ as a known solution to transform Eq. (1) into a first order linear differential equation. Write this first order linear differential equation below. Show your work.

$$
y=z+\frac{2}{x} \rightarrow \dot{y}=\dot{z}-\frac{2}{x^{2}}
$$

Substitute in the Riccati Equation:

$$
\begin{gathered}
\dot{z}-\frac{2}{x^{2}}+\left(z+\frac{2}{x}\right)^{2}=\frac{2}{x^{2}} \\
\dot{z}-\frac{2^{\prime}}{x^{2}}+z^{2}+\frac{4}{x^{2}}+4 \frac{z}{x}=\frac{2}{x^{2}} \\
\dot{z}+z^{2}+4 \frac{z}{x}=0 \rightarrow \dot{z}+4 \frac{z}{x}=-z^{2} \text { it is a Bernouilli d.e.! }
\end{gathered}
$$

This can be written as: $z^{-2} \dot{z}+\frac{4}{x} z^{-1}=-1$ Use $v=z^{1-2}=z^{-1} \rightarrow \dot{v}=-\frac{\dot{z}}{z^{2}}$ in the Bernouilli d.e.: $-\dot{v}+\frac{4}{x} v=-1$ or equivalently: $\dot{v}-\frac{4}{x} v=1$

Question 4.

Find a general solution for

$$
\frac{d^{4} y}{d x^{4}}-4 y=\cos (2 x)
$$

Show your work.

$$
\text { Aux. Eqn.: } m^{4}-4=0 \rightarrow\left(m^{2}-2\right)\left(m^{2}+2\right)=0 \rightarrow(m-\sqrt{2})(m+\sqrt{2})(m-i \sqrt{2})(m+i \sqrt{2})=0
$$

Homogeneous part's general solution: $y_{c}(x)=c_{1} e^{\sqrt{2} x}+c_{2} e^{-\sqrt{2} x}+c_{3} \cos (\sqrt{2} x)+c_{4} \sin (\sqrt{2} x)$
Particular solution candidate: $y_{p}=A \sin (2 x)+B \cos (2 x)$
Substitute in the d.e.:
$16 A \sin (2 x)+16 B \cos (2 x)-4(A \sin (2 x)+B \cos (2 x))=\cos (2 x) \rightarrow 12 A \sin (2 x)+12 B \cos (2 x)=\cos (2 x)$ $B=1 / 12 \rightarrow y_{p}(x)=1 / 12 \cos (2 x)$ Thus general solution is:

$$
y(x)=c_{1} e^{\sqrt{2} x}+c_{2} e^{-\sqrt{2} x}+c_{3} \cos (\sqrt{2} x)+c_{4} \sin (\sqrt{2} x)+\frac{1}{12} \cos (2 x)
$$

Good Luck
A. Karamancıŏ̆lu

