Name: ID No.

Eskişehir Osmangazi University - Electrical Engineering Department

Differential Equations- Midterm Examination - Fall 2023

Duration: 45 minutes; **Directions**: All answers should be positioned beside or below their corresponding questions. Anything written elsewhere won't be graded. Up to one percent error in the results is tolerated.

Question 1. —

Let $v = y^{-6}$ transform the differential equation

$$\frac{dy}{dx} + x^5y = x^5y^7$$

into a first order linear linear differential equation:

$$\frac{dv}{dx} + S(x)v = R(x).$$

Find the function S(x) and R(x). Show your work. It is a Bernouilli d.e. Let $v = y^{1-n}$ with n = 7. $\therefore v = y^{-6} \rightarrow y = v^{-\frac{1}{6}} \rightarrow \frac{dy}{dx} = -\frac{1}{6}v^{-\frac{7}{6}}\frac{dv}{dx}$ Substitute in the given equation:

$$-\frac{1}{6}v^{-\frac{7}{6}}\frac{dv}{dx} + x^5v^{-\frac{1}{6}} = x^5v^{-\frac{7}{6}}$$

Multiply throughout by $-6v^{\frac{7}{6}}$

$$\frac{dv}{dx} - 6x^5v = -6x^5$$

S(x) = -6x⁵; R(x) = -6x⁵

Question 2.
(Y/N) Are the functions
$$\sin(x)$$
, $\sin(2x)$, and $\sin(4x)$ linearly independent on
(a) $0 \le x \le \frac{\pi}{2} Y$
(b) $0 \le x \le \pi Y$
(c) $0 \le x \le \frac{\pi}{4} Y$
(d) $0 \le x \le 2\pi Y$
(e) $-\frac{\pi}{2} \le x \le \frac{\pi}{2} Y$
(For this question, there is no partial and its!)

(For this question, there is no partial credits!)

Question 3. –

(a) 10 pts. Find the c values so that y = c/x satisfies the Riccati differential equation

$$\frac{dy}{dx} + y^2 = \frac{2}{x^2}.$$
 Eq. (1)

Show your work.

Substitute in the d.e.

$$y = \frac{c}{x} \rightarrow \dot{y} = -\frac{c}{x^2}$$
$$-\frac{c}{x^2} + \frac{c^2}{x^2} = \frac{2}{x^2} \rightarrow c^2 - c - 2 = 0$$
$$c = 2, \text{ and } c = -1$$

(b) 15 pts. Let c_1 be the largest number such that $y = c_1/x$ satisfies Eq. (1). Use $y = c_1/x$ as a known solution to transform Eq. (1) into a first order linear differential equation. Write this first order linear differential equation below. Show your work.

$$y = z + \frac{2}{x} \rightarrow \dot{y} = \dot{z} - \frac{2}{x^2}$$

Substitute in the Riccati Equation:

$$\dot{z} - \frac{2}{x^2} + (z + \frac{2}{x})^2 = \frac{2}{x^2}$$
$$\dot{z} - \frac{2}{x^2} + z^2 + \frac{4}{x^2} + 4\frac{z}{x} = \frac{2}{x^2}$$
$$\dot{z} + z^2 + 4\frac{z}{x} = 0 \rightarrow \dot{z} + 4\frac{z}{x} = -z^2 \text{ it is a Bernouilli d.e.!}$$

This can be written as: $z^{-2}\dot{z} + \frac{4}{x}z^{-1} = -1$ Use $v = z^{1-2} = z^{-1} \rightarrow \dot{v} = -\frac{\dot{z}}{z^2}$ in the Bernouilli d.e.: $-\dot{v} + \frac{4}{x}v = -1$ or equivalently: $\dot{v} - \frac{4}{x}v = 1$

Question 4. –

Find a general solution for

$$\frac{d^4y}{dx^4} - 4y = \cos(2x)$$

Show your work.

Aux. Eqn.:
$$m^4 - 4 = 0 \to (m^2 - 2)(m^2 + 2) = 0 \to (m - \sqrt{2})(m + \sqrt{2})(m - i\sqrt{2})(m + i\sqrt{2}) = 0$$

Homogeneous part's general solution: $y_c(x) = c_1 e^{\sqrt{2}x} + c_2 e^{-\sqrt{2}x} + c_3 \cos(\sqrt{2}x) + c_4 \sin(\sqrt{2}x)$ Particular solution candidate: $y_p = A \sin(2x) + B \cos(2x)$ Substitute in the d.e.: $16A \sin(2x) + 16B \cos(2x) - 4(A \sin(2x) + B \cos(2x)) = \cos(2x) \rightarrow 12A \sin(2x) + 12B \cos(2x) = \cos(2x)$ $B = 1/12 \rightarrow y_p(x) = 1/12 \cos(2x)$ Thus general solution is:

$$y(x) = c_1 e^{\sqrt{2}x} + c_2 e^{-\sqrt{2}x} + c_3 \cos(\sqrt{2}x) + c_4 \sin(\sqrt{2}x) + \frac{1}{12}\cos(2x)$$

Good Luck

A. Karamancıoğlu