Name:
ID. No.

Eskişehir Osmangazi University - Electrical Engineering Department

Fundamentals of Control Systems- Midterm Examination - Spring 2024
Duration: 50 minutes; Allowed: A calculator; Directions: All answers must be written below the questions. Anything written elsewhere won't be graded. Up to 1% error in the answers are tolerable.

Question 1.

35 points. Consider the 2nd order LTI system whose output response to unit step input is

$$
y(t)=1-\frac{e^{-1.5 t}}{\sqrt{0.91}} \sin (\sqrt{22.75} t+1.2661), t \geq 0
$$

Find the transfer function of this system. Show your work.
$1-\zeta^{2}=0.91 \rightarrow \zeta=0.3, \quad \zeta w_{n}=1.5 \rightarrow w_{n}=5$
$w_{d}=5 \sqrt{1-0.3^{2}}=4.7697=\sqrt{22.75} \checkmark \tan ^{-1} \frac{\sqrt{1-0.3^{2}}}{0.3}=1.2661 \checkmark$

$$
\rightarrow \frac{Y(s)}{U(s)}=\frac{w_{n}^{2}}{s^{2}+2 \zeta w_{n} s+w_{n}^{2}}=\frac{25}{s^{2}+3 s+25}
$$

Question 2.

35 points. Find the transfer function $\frac{Y(s)}{U(s)}$ for the configuration given on the right in the form of

$$
\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{0}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}
$$

Add the parallel branches:
$11 \frac{1}{s+1}+\frac{1}{s+1}+\frac{1}{s+11}=\frac{13 s+133}{s^{2}+12 s+11} \checkmark$
Mason's formula also gives an acceptable result: $\frac{13 s^{2}+146 s+133}{3}$
$\frac{1}{s^{3}+13 s^{2}+23 s+11}$
which is just $\frac{13 s+133}{s^{2}+12 s+11} \times \frac{s+1}{s+1}=\frac{13 s^{2}+146 s+133}{s^{3}+13 s^{2}+23 s+11} \checkmark$

Question 3.

30 points Find the transfer function $\frac{Y(s)}{U(s)}$ for the state space model below

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ll}
0 & 1 \\
3 & 4
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u, y=\left[\begin{array}{ll}
2 & 1
\end{array}\right] x+4 u \\
{\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left(s\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
3 & 4
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+4=\frac{4 s^{2}-13 s-15}{s^{2}-4 s-3}}
\end{gathered}
$$

Good Luck
A. Karamancıoğlu

