

Synchronization

by Erol Seke

For the course "Communication"

General Communication System

What To Do

What to do : symbol synchronization, detection, decision

What to do : carrier synchronization, demodulation, symbol synchronization, detection, decision

Binary PAM

Example Data : 0100110100...

Transmitted signal is a sum of the corresponding waveforms at appropriate positions

Problem of the receiver :

Measure the signal at correct instants and

Determine the 1-0 data sequence from the noisy signal

Generation of Clock at Receiver

The data signal should necessarily be designed to perform such an operation

A Phase Locked Loop (PLL) can be used if there are enough transitions in the signal

Symbol Sync. Case

Three Synchronization Approaches

Symbol Synchronization

The aim is to locally generate a signal that is synchronous to the incoming symbol signal

Back to Correlation

negative high correlation

Remember the Correlator output for Binary Rect. Pulses

Having synchronization is equivalent to correct detection of symbols

Early-Late Gating

Early-Late Gating

We expect that consecutive early-late-measurements should be close. Average differences of absolutes ($avg(|R_{early}|-|R_{late}|)$) should be zero. positive average difference = we are late (increase clock rate) negative average difference = we are early (decrease clock rate)

Early & Late Measurements of Corr. Output

Another Simple Problem

We need to generate required waveforms locally

Basic Closed-Loop Phase Control Works for Carrier Sync (if r(t) is just a carrier)

note : there is no meaning in transmitting/receiving just a carrier. (conceptual)

What if *r*(*t*) is a BPSK Signal?

Hmw : What if r(t) is a QPSK Signal?

Costas Loop

This is for carrier sync and demodulation.

Baseband signal is then synchronized with and detected afterwards

Q : where do we get I & Q carriers?

