
Channel Coding

by Erol Seke

For the course “Communications”

ESKİŞEHİR OSMANGAZİ UNIVERSITY

Information

Source

Source

Encoder

Channel

Encoder

Information

User

Source

Decoder

Channel

Decoder

Channel
Noise

Codes with

error

protection

Stream with

error(s)The stream with

a) Errors Dedected

b) Errors Corrected

Information System

Efficiently

coded info

stream

Error Detection

Parity Checking

Longitudinal Redundancy Checking (LRC)

Polynomial Checking

One additional bit is added to each byte in the message

One additional character (block check character = BCC) to the end of each block of data

A character or series of characters to the end of the message

based on a mathematical algorithm.

Two most popular techniques are :

1. Checksum

2. Cyclic Redundancy Checking (CRC)

Error Correction

Reverse error correction

Forward error correction

Stop and Wait ARQ

Continuous ARQ

The simplest, most effective, least expensive, and

most commonly used method is retransmission.

Sometimes called Backward Error Correction

A receiver that detects an error simply asks the

sender to retransmit the message until it is received

without error.

This is often called Automatic Repeat reQuest

(ARQ). But requires duplex channel.

In forward error correction, there is no need to

send retransmit requests to the sender.

Because the errors are corrected at the

receiver using the additional info transmitted

(added redundancy)

Full-Duplex : Both devices can transmit and receive

simultaneously.

Stop and Wait ARQ

t t

Erroneous data detected..!

Data resent

Transmitter Receiver

Wait

Wait and waste time..!

Continuous ARQ with Pullback – Sliding Window ARQ

t t

Transmitter

Receiver

Erroneous data detected..!

Data C resent

Window size = 2

Data D resent

t t

Transmitter
Receiver

Erroneous data detected..!

Data C resent

Window size = 2

Continuous ARQ with Selective Repeat – Sliding Window ARQ

Parity Checking

The additional parity bit is set to make the total number of ones in the byte (including the parity bit)

either an even number or an odd number.

01011001 01011000

Even Parity Odd Parity

0101100

Seven data bits

Additional bit (parity bit)

111101101111011 11110111

Example

11101110 11010001Receiver side

Two bit errors Receiver think everything is OK

Same calculation is done at the receiver. If the same parity bit is found then it is assumed that received bits are OK

Longitudinal Redundancy Checking (LRC)

P A R I T Y BCC

BIT 1 1 1 1 1 1 1 0

BIT 2 0 0 0 0 0 0 0

BIT 3 1 0 1 0 1 1 0

BIT 4 0 0 0 1 0 1 0

BIT 5 0 0 0 0 1 0 1

BIT 6 0 0 1 0 0 0 1

BIT 7 0 1 0 1 0 1 1

PARITY 0 0 1 1 1 0 1

LRC adds one additional character, called the block check character (BCC) to the end of each block of data

before the block is transmitted

Parity of first bits

Parity of second bits

Parity of first byte

Parity of second byte

Even when used together, the parity and

LRC will not catch all errors.

LRC will fail to detect errors that occur in

an "even rectangular form", and other

forms harder to describe as long as

there are an even number of errors in

each column and each row

Homework : Calculate the probability of detecting single bit and double bit errors in LRC

Polynomial Checking (1. Checksum)

The checksum is calculated by summing up the numerical value of each character, ignoring the carries if exist

and using the remainder as the checksum that is transmitted to the other end of the communication circuit

Hexadecimal values of the character checksum

12 40 05 80 FB 12 00 26 B4 BB 09 B4 12 28 74 11 BB

12 00 2E 22 12 00 26 75 00 00 FA 12 00 26 25 00 3A

F5 00 DA F7 12 00 26 B5 00 06 74 10 12 00 2E 22 F1

74 11 12 00 2E 22 74 13 12 00 2E 22 B4

Checksum is calculated in the same way in the receiver and compared with the received one.

If they are different then it is clear that the received data has error(s). It is obvious that the sum might come

up the same even if the values are different. Therefore checksum detects only about 95% of the errors.

F5 00 DA F7 12 00 26 B5 00 06 74 12 10 00 2E 22 F1

Polynomial Checking (2. Cyclic Redundancy Checking)

The sender divides P by a fixed binary polynomial G, resulting in a whole polynomial Q, and a remainder, R/G.

A block of data is treated as one long binary polynomial P

G

R
Q

G

P


The remainder R is appended to the message before transmission, as a check sequence k bits long (8,

16, 24, or 32 bits).

Same calculation is done at the receiver as the block is received. If the CRC numbers are the same, it is

assumed that the data is error free.

The receiving hardware divides the received message by the same G, which generates an R.

The receiving hardware checks to ascertain whether the received R agrees with the locally generated

R. If it does not, the message is assumed to be in error

CRC has become the standard method of error detection for block data transmission because of its high

reliability in detecting transmission errors.

1. An 8 bit CRC detects 99,969 percent of the error.

2. CRC-16 (16 bits) detects at least 99.99 percent of them.

3. CRC-24 (24 bits) allows only three bits in 100 million to go undetected, and the error rate of 3 X 10-8.

4. Today 32 bit CRC codes are popular because they have an even higher error detection rate

x5 + x2 + 1 (USB)

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

(IEEE 802.3)

Back to Information System

Source Encoder : For coding efficiency, removes coding redundancy, does compression

Channel Encoder : For reliability and robustness against channel noise and errors, adds coding

redundancy

How do we add some redundancy to code so that we can recover from some errors?

Forward Error Correction (History)

1. Around 1947-1948, the subject of information theory was created by Claude Shannon.

2. During the same time period, Richard Hamming discovered and implemented a single-

bit error correcting code.(Block coding or algebraic coding)

3. Soon after, Marcel Golay generalized Hamming's construction and constructed codes.

He also constructed two very remarkable codes that correct multiple errors, and that now

bear his name.

4. Another FEC technique, known as convolutional coding, was first introduced in 1955.

Historically,the first type of convolutional decoding was sequentional decoding.

5. In 1960, researchers, including Irving Reed and Gustave Solomon, discovered how to

construct error correcting codes that could correct for an arbitrary number of bits or an

arbitrary number of "bytes". Even though the codes were discovered at this time, there

still was no way known to decode the codes.

6. In 1967, Andrew Viterbi developed a decoding technique that has since become the

standard for decoding convolutional codes.

7. In 1968, Elwyn Berlekamp and James Massey discovered algorithms needed to build

decoders for multiple error correcting codes. They came to be known as the Berlekamp-

Massey algorithm.

8. In 1974, Joseph Odenwalder combined these two coding techniques to form a

concatenated code. In this arrangement, the encoder linked together an algebraic code

followed by a convolutional code.

9. In 1993, Claude Berrou and his associates developed the turbo code, the most powerful

forward error-correction code yet. Using the turbo code, communication systems can

approach the theorethical limit of channel capacity, as characterized by the so-called

Shannon Limit, which had been considered unreachable for more than four decades.

The codes are usually designated by (n,k) pairs, where n is the number of code bits (output)

and k is the number of data bits (input)

n

k
R Rate, is a measure of information (in bits) per output bit.

n

kn
redundancy


 is good for protection against channel errors

but bad for channel utilization.

System performance improves (i.e., bit-error rate decreases) as SNR increases.

)()()(
00

dB
N

E
dB

N

E
dBG

A

b

B

b
























Homework : Read 6.3

Block Codes

k

Mi MMiC 2,,...,2,1},...,,...,,{ 21  cccc

where
ic is a sequence of 0s and 1s of length n and is called a codeword.

C is a block code (n,k)

if
ji cc  is a codeword then C is called linear block code.

modulo 2 addition

Assumption
21 xx  21 cc maps into

if x1 and x2 map into c1 and c2 respectively

Example Given {00000, 10100, 01111, 11011}C  , a (5,2) code

Given the mapping

1101111

1010010

0111101

0000000









The code is linear since
ji cc  is also a codeword

the assumption is correct

1101111

0000010

0111101

1010000








However with

the assumption is incorrect

The Hamming Distance

The number of components that differ between ci and cj

The Hamming Weight

),(jid cc

The number of nonzero components of the codeword ci)(iw c

Minimum Hamming Distance

ji

ji

ji

dd




cc

cc
,

min)},(min{

Minimum Weight of the Code

0
min)}(min{




i

iww
c

c

Theorem :
minmin wd  in any linear code

Let the information sequences be, in a (n,k) code

)1...0000(

)0...0010(

)0...0100(

)0...1000(

3

2

1









ke

e

e

e



and their corresponding codewords be
kggg ,..., 21

Since any information sequence x can be written as 



n

i

iix
1

ex





n

i

iix
1

gcthe corresponding codeword can be written as

Define





































knkk

n

n

k

def

ggg

ggg

ggg








21

22221

11211

2

1

g

g

g

G generator matrix

so xGc  Any linear combination of the rows of the generator matrix is a codeword.

The generator matrix of a (n,k) code is a kxn matrix of rank k.

The generator matrix completely describes the code.

The generator matrix of the code }11011,01111,10100,00000{C

is found by taking the codewords corresponding the information sequences (10) and (01)






01111
10100

G

The codeword for information sequence is),(21 xx G),(),,,,(2154321 xxccccc 

or

25

24

213

22

11

xc

xc

xxc

xc

xc










Such a code is called a systematic code

In such codes first k bits are just the copies of the information bits.

The generator matrix of systematic codes shall be in the form of  PIG k |

where Ik is a k x k identity matrix (for first k codebits) and P is a k x (n-k) binary matrix called

parity matrix. So,

















nikxp

kix

c
k

j

jji

i

i 1,

1,

1

Hamming Codes (R.W.Hamming 1940)

Let the information bits be x1, x2, x3 and x4

And the code word bits be
11 xc 

22 xc 

33 xc 

44 xc 

4215 cccc 

4316 cccc 

4327 cccc 

where the summations are in modulo 2

parity check bits

In this code the receiver is able to correct single bit errors in a word

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 0 1 0 0 1 1

0 0 1 1 1 0 0

0 1 0 0 1 0 1

0 1 0 1 0 1 0

0 1 1 0 1 1 0

0 1 1 1 0 0 1

1 0 0 0 1 1 0

1 0 0 1 0 0 1

1 0 1 0 1 0 1

1 0 1 1 0 1 0

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 0 0 0

1 1 1 1 1 1 1

(7,4) Hamming code words

Let

7654321 rrrrrrrr

be the received word with a maximum of 1 bit in error

although

7654321 cccccccc

was sent.

We simply find the closest match (ML) from the code words table.

Example : The received word is 0 1 1 0 1 0 1

The closest word in the table (with one bit difference) is

in the fifth row.

The information bits sent are the first 4 bits of this code word.

It is not efficient to search the code book for the closest code word. There are better algorithms.

Since 01100  İt is obvious that 0 ii cc

Let us apply this to parity check equations

54210 cccc 

64310 cccc 

74320 cccc 

If r is received with a maximum of one bit in error,

then the results of above calculations become

54211 rrrrs 

64312 rrrrs 

74323 rrrrs 

),,(321 ssss is called the syndrome vector

)0,0,0(

)0,1,1(

)1,0,1(

)1,1,0(

)1,1,1(

For no or single bit errors

in first four bits

),,(321 sss

)0,0,0(

)0,1,1(

)1,0,1(

)1,1,0(

)1,1,1(

)1,0,0(

)0,1,0(

)0,0,1(

),,(321 sss

no error

r1 is erronous (not same as s1)

r2 is erronous (not same as s2)

r3 is erronous (not same as s3)

r4 is erronous (not same as s4)

Just complement the

erronous bit

Means that the error is in the parity bits, so no action necessary to find the correct

information bits. Just take them.

What happens if two bits were received in error?

If r1 and r2 are in error and a 0000000 was sent, then a 1100000 will be received.

00111 s

00012 s

00013 s

)1,1,0(),,(321 sss meaning that r3 should be corrected !

McEliece’s Diagrams

1c
2c

3c

4c

5c

6c 7c

3s

1s

2s

must be all zero, we try to make the sums of the bits in each circle zero.),,(321 sssSince

3s

1s

2s

Example : The received word is 1001011r

1 0

0

1

0

1 1

s1 and s3 are both zero (no problem there). But s2 is 1.

In order to correct both s2 and not change s1 and s3 we must make r6=0.

The information bits are not affected from this : 1001

0

3s

1s

2s

Example : The received word is 1110011r

1 1

1

0

0

1 10

No problem with s1, but s2 and s3 are 1. In order to correct both we must change r3 to 0

The examples we have seen were using (7,4) Hamming code

(4 bit information and 7 bit code)

The next longer Hamming codes are (15,11), (31,26) and (63,57)

For each integer 3m There is an (n,k) Hamming code with

12  mn code bits of which

mk m  12 are information bits and the

remaining m are parity bits

m = 4

m = 5

m = 6

(15,11)

(31,26)

(63,57)

Hamming codes are unable to correct multiple bit errors in a

code word. For that we would need more complex codes like

Reed-Solomonhmw codes.

Note on error-correcting codes

Cyclic Codes

Cyclic codes are a subset of linear block codes

A cyclic code is a linear block code with the extra condition;

Cyclic shift of a codeword must also be a codeword

Example :  011,101,110,000

 110,011,101,000Cyclic shifted versions are also codewords, so it is cyclic code

Cyclic codewords are thought of polynomials, called codeword polynomials

nn

nn
n

i

in

i cpcpcpcpcpc  





 1

2

2

1

1

1

)(

is the cyclic shift of c and also a codeword in the code.

),,,,(121 nn ccccc 

1

2

1

2

3

1

2

)1()(cpcpcpcpcpc nn

nn  



The polynomial

),,,,(132

)1(ccccc nrepresenting

The mathematics are done in modulo arithmetic. 0+0 = 1+1 = 0-0 = 1-1 = 0

1+0 = 0+1 = 0-1 = 1-0 = 1

0x0 = 0x1 = 1x0 = 0

1x1 = 1

in

i

n

i

c
p

pc

p

pcp





 1

)(

1

)()(

)1()()()( n

i

ii pcpcppc

The interesting thing about these polynomials with modulo arithmetic is when is

divided by the remainder is

)(pcp i

1np)(pc i

similarly

pcpcpcpccpcpcpcpppc nn

nn

nn

nn  





 2

1

1

211

2

2

1

1)()(

Let us show this when i=1

and pcpcpcpc nn

nn  

 2

1

1

21 1np

1c11 cpc n 

1

2

3

1

2 cpcpcpc n

nn  
)()1(pc

or

(using modulo arithmetic properties)

)()1()()()(pcpcpcppc n

n

nn and finally

In a (n,k) cyclic code all codeword polynomials are multiples of a polynomial

1)(2

3

1

2  

 pgpgpgppg kn

knknkn
which divides 1np

Generator polynomial

1)(1

2

2

1

1  

 pxpxpxpX k

kk
If

represents the information sequence),,,,(121 kk xxxxx 

then the codeword polynomial is)()()(pgpXpc 

Example :)1010(x

)1110010(c

and Find codeword

)1)(()(233  pppppc

pppppp  34356

pppp  456

)1101(g

Since k = 4 and n-k = 3 this a codeword of (7,4)

Q : is it a systematic code?

Example : Generate a (7,4) cyclic code

3 kn We need a 3rd degree generator polynomial and it has to divide 17 p

)1)(1)(1(1 3237  pppppp choose this 1)(23  pppg

and multiply by 43

2

2

3

1)(xpxpxpxpX  where),,,(4321 xxxx are info sequences.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

codeword)(pX

1

1

1

1

1

1

1

1

0

23

23

23

23

3

3

3

3

2

2

2

2























ppp

ppp

pp

pp

pp

pp

p

p

pp

pp

p

p

p

p

)(pc













1

1

0

24

34

23

ppp

ppp

pp

0000000

0001101

0011010

0010111

.

.

.

Homework : Fill the rest of the table

information word

For a systematic code)()()(ppXppc kn  

where is the remainder of the division)(p
)(

)(

pg

pXp kn

Example : given 1)(23  pppg and)1010(x

46 pp 
123  pp

356 ppp 

23 pp 

123  pp

245 ppp 

345 ppp 

123  pp

1 (remainder)

46347)()(ppppppXp kn  

1)(46  pppc

)1010001(c

((n,k) = (7,4))

If the received codeword r has at most 1 bit error in (7,4) code then it is correctable.

For a code to be single-error-correcting, all single error patterns must be addressable by the syndrome vector.

That is, the condition

12  nkn
is to be satisfied

0000 0000000

0001 0001101

0010 0010111

0011 0011010

0100 0100011

0101 0101110

0110 0110100

0111 0111001

1000 1000110

1001 1001011

1010 1010001

1011 1011100

1100 1100101

1101 1101000

1110 1110010

1111 1111111

Info bits Code word

Note that;

1. First 4 bits of the codeword is the same with the info bits. (systematic)

2. The red-bits are parity which has the same size as the syndrome

vector. 3 bits can address 7 different error positions and 1 no error

condition.

3. Cyclic shifts of codewords are in the table too.

4. Code is linear.





















1011000

1110100

1100010

0110001

G

Homework : complete the (7,4) systematic cyclic code table and generator matrix for 1)(3  pppg

Syndrome vector is calculated by dividing the received word by the generator polynomial and taking the remainder.

)(

)(
Rem)(

pg

pr
ps 

)(

)(
)(

)(

)(

pg

ps
pc

pg

pr


remainder of long division

Example : correct the error in the received word 0101000, if there is any. Use the systematic code generated earlier.

35)(pppr  1)(23  pppg

35 pp 
123  pp

245 ppp 

234 ppp 

pp 2

ppp  34

pp 2
)(ps

)110(sWe obtained the syndrome vector as

But we do not know which bit it points to. Let us find

syndrome vector for each possible error position.

pp
pp

p




2

23

6

1
Rem

1
1

Rem
23

5




p
pp

p
011

110

1000000 110

0100000 011

0010000 111

0001000 101

0000100 100

0000010 010

0000001 001

error position syndrome
It is decoders job to calculate the syndrome vector and invert the bit

which it points using the syndrome table. If there is no error, then the

syndrome vector should be 000. The big assumption is that we have

a single bit error.

In the example (110) indicates that the first bit should be inverted.

The corrected information word is (1101) instead of (0101)

Syndrome Table

Quotient

information bits

(msb first)

remainders

generator feedback

Division Circuit for

D D D

1)(23  pppg

Modulo summations can easily be done by X-OR gates

D D-type flip-flop (1 bit register) represents a delay Z-1

D D D

1010000

0000101 1 00 0

000010 0 01 0

00001 1 00 1

0

1

0

0000

000

1 1 10 1

1 1 01 1

00 0 1 11 0

1 0 01 10

0 0 1

remainder of division (parity bits)

1 1 0 1

quotient

divident

msb first

3p

2p

0p

Binary Division (modulo) Circuitry (animated)

ti
m

e

D D D

1010000
1 0 0 1 0

1

1

1 0 1 11
0

0

1 1 1 1
1

0

1

0 1 0 1
0

0

1

1 0 0 0
x

0

0

0 1 1 0

0

0 0 0 1

1

0

0 x

x

1010001

12

1

2

Switches are at position until the fourth bit output.

They are at position afterwards. Feedback line is

assumed to have 0 value when the switch is in position

1

2

2

Systematic Codeword Generator Circuitry (animated)

321)(pppg No termp

0

1)(51216  ppppgThe generator standardized as V.41 by ITU-T is used in Wide-Area-Networks

1)(245781011121622232632  pppppppppppppppg

The generator

is standardized by IEEE and is used in Local-Area-Networks and FDDIs.

Homework : Design a syndrome vector detection circuitry for the code previously analyzed.

1. Divide received vector by the generator.

2. The remainder is the syndrome vector.

3. Use the syndrome table to determine the incorrect bit position.

4. Correct the errorenous bit if there is any (if the syndrome is nonzero).

Reed-Solomon codes are block-based error correcting codes with a wide range of applications in

digital communications and storage. Reed-Solomon codes are used to correct errors in many

systems including:

1. Storage devices (including tape, Compact Disk, DVD, barcodes, etc)

2. Wireless or mobile communications (including cellular telephones, microwave links, etc)

3. Satellite communications

4. Digital television

5. High-speed modems such as ADSL, xDSL, etc.

Reed-Solomon

A Reed-Solomon code is specified as RS(n,k) with s-bit symbols. This means that the encoder takes k

data symbols of s bits each and adds parity symbols to make an n symbol codeword. There are n-k

parity symbols of s bits each.
n

Data Bits Parity Bits

k 2t

A Reed-Solomon decoder can correct up to t symbols that contain errors in a codeword, where 2t = n-k.

RS(255,223) with 8 bit symbols (s=8)Example :

Bytes per codeword Data bytes per codeword- = 32 parity bytes

223 bytes (symbols) 32 bytes

8

223

255







s

k

n

16322  tt (the number of correctable symbols in a 255 symbol block)

The maximum codeword size is 12  sn

)())(()(21 tiii axaxaxxg  

A codeword is, as usual, generated using a special polynomial called generator

polynomial. All valid codewords are exactly divisible by it. The general form is:

A codeword is constructed using)()()(xixgxc 

information blockvalid codeword generator polynomial

is the primitive element of

the Galois field
a

Example: Generator for RS(255,249) is

))()()()()(()(543210 axaxaxaxaxaxxg 

01

2

2

3

3

4

4

5

5

6)(gxgxgxgxgxgxxg 

Convolutional codes use not only the current symbol digits but also the previous N digits of the previous

symbols. It does operate on streams not blocks.

0 1 1 0 1 0 0 1 0

input stream

output stream1011001110010010

memory size (= constraint length*)

output bits per input bit

* : it is assumed that the bits are shifted-right one bit at a time in which case N=constraint length

0 1 1 0 1 0 0 1 0

1101

modulo sums

Convolutional Codes

constraint length = 7

D D

1

1

0

1

0

0

0

1 1

0 1

1

0

1 0

11

0

0

00

11010 11 01 01 00 10 11 00Convolutional Encoder

For each digits of k input digits we have v output digits

vkNn)( where

n = number of output digits

N = the number of registers (memory)

k = number of input digits

v = number of sums (switch positions) at the output

These are added to end

the stream and make the

system ready to accept

another stream of bits.

The entrance of the first bit

of the next block shifts out

the last remaining bit.

(animated demo of a convolutional encoder)

212   iiii xxxo

212   iii xxo

D

The rate is ½
(two output bits for each input bit)

(N becomes unimportant when k gets large)

The output sequence for any possible input can be shown on a code tree

0

1

0

1

0

1

00

11

00

00
00

01

10

11

11

11

10

01

00

11

10

01

10

01

11

00

01

10

11

00

01

10

00

11

10

01

11

00

01

10

11

00

01

10

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

So the input output

relation can be shown on

a state diagram

first input digit

second input digit

first output

second output

Final output of these

blocks does not depend

on the previous digits of

the input sequence.

The structure repeats

itself.

0 / 00 1 / 10

1 / 11

state

00
state

11

state

01

state

10 1 / 01

1 / 00

0 / 11

0 / 10

0 / 01

State Machine

input digit is 1

input digit is 0

path followed on the 11010000 input

start from 00

x / yy = input_digit / output_digits

state

ss
ss : register outputs

State Transition Graph

00

01

10

11

00

01

10

11

01

11

00

00

11

10

10

01

Current State Next State

Output

input digit is 1

input digit is 0

Trellis Diagram

00

01

10

11

start from 00
00

11

00 00 00 00 00

11 11 11 11 11

01 01 01 01 01

10 10 10 10 10

11 11 11 11

00 00 00 00

The structure repeats after this point

01 01 01 01

10 10 10 10

xy

output bits

input bit is 1

input bit is 0

states

input = 1101000

11

01

10

11

00

01

Example Trellis

output = 11 01 01 00 10 11 00

00

Trellis for the input 1101000 is marked with thick lines.

The last two input bits of 00 are appended to make the system ready for the next input stream/frame

00

01

10

11

00

11

2

0

decoder input = 11 01 01 01 10 11 00

Decoding (Viterbi’s Algorithm)

Find the Hamming distance between input bits and branch value. Mark this value on the branch.

Example: input value is 11, but the branch value is 00, then the Hamming distance is 2 as marked.

00

01

10

11

00

11

2

0

decoder input = 11 01 01 01 10 11 00

00

11

01

10

1

2

0

1

00

01

10

11

00

11

2

0

decoder input = 11 01 01 01 10 11 00

00

11

01

10

1

2

0

1

00

11

01

10

11

00

01

10

1

1

2

0

0

1

1

2

(4,3)

(4,3)

(5,0)

(3,2)

After the third branching, notice that each node is reached from only two predecessor node. Since what

happens after this moment can not affect what happened up to this point, we compare the distance values

of these two incoming branches and select the smaller one (Maximum Likelihood = Minimum Distance) and

eliminate the other. We do this for each node. (The number of nodes = the number of states = 2CL-1)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

11

00

01

10

1

0

1

2

(,3)

(,3)

(,0)

(,2)

The remaining paths after elimination are called the “survivors”.

Notice that we have a single branch survived at the beginning. It is called “common stem”.

The decoder can output a data bit of “1” since 00->10 transition is caused by a “1”.

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

11

00

01

10

1

0

1

2

00

11

01

10

11

00

01

10

1

1

0

0

2

1

2

1

(4,1)

(4,1)

(5,2)

(3,4)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

00

01

10

0

1

2

01

11

00

01

0

0

1

1

(,1)

(,1)

(,2)

(3,)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

00

01

10

0

1

2

01

11

00

01

0

0

1

1

00

11

01

10

11

00

01

10

1

1

0

2

1

2

1

0

(2,3)

(2,3)

(1,5)

(3,3)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

00

01 0

1

01

11

00

0

1

1

00

11

10

10

1

0

1

0

(2,)

(2,)

(1,)

(,3)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01

102

0

00

01 0

1

01

11

00

0

1

1

00

11

10

10

1

0

1

0

00

11

01

10

11

00

01

10

2

0

0

1

1

1

2

1

(4,1)

(2,3)

(3,4)

(3,4)

00

01

10

11

11 0

decoder input = 11 01 01 01 10 11 00

01 0

01 0

00
1

100

11
0

(,1)

(2,)

(3,)

(3,)

00

01

10

11

01

11

11 1

1

1

101

00

1

11 0

These two can be output now.

Depending on the errors the common stem may lag as much as 5 x constraint length.

This is a decoding delay. But still only 4 paths are kept in memory.

decoder input = 11 01 01 01 10 11 00

00

11

01

10

11

00

01

10

0

2

1

1

2

0

1

1

(1,5)

(3,3)

(3,4)

(3,4)

00

01

10

11

11 0

01 0

01 0

00
1

100

11
0

01

11

11 1

1

1

101

00

1

11 0

decoder input = 11 01 01 01 10 11 00

00

01

10

11

This path has the smallest total Hamming distances.

Also ends at 00 as forced.

00

11

10

0

1

2

(1,)

(3,)

(3,)

(3,)

11 0

01 0

01 2

00
1

100

11
0

11
1

00

1

11 0

01 1

11

decoder input = 11 01 01 01 10 11 00

01

01

00

10

11

00

Ready for the next input frame

decoder output = 11 01 01 00 10 11 00

J.K. Omura, B.K. Lewitt, “Coded Error Probability Evaluation for

Antijam Communication Systems,” IEEE Transactions on

Communication, vol.30, no.5, May 1982

Optimum Rate 1/2 & 1/3 Convolutional Codes

111

101

 
 
 

1111

1011

 
 
 

10111

11001

 
 
 

101111

110101

 
 
 

1001111

1101101

 
 
 

10011111

11100101

 
 
 

110101111

100011101

 
 
 

111

111

101

 
 
 
  

1111

1011

1101

 
 
 
  

11111

11011

10101

 
 
 
  

101111

110101

111001

 
 
 
  

11101111

10011011

10101001

 
 
 
  

1001111

1010111

1101101

 
 
 
  

5 6 7 8 10 10 12

8 10 12 15 1613free distance =

free distance =

J.P. Odenwalder, “Error Control Coding Handbook,” Linabit Corp., San Diego, Calif., July 1976

00
00 00 00 00

11

10

11

Free Distance

For block codes free distance is the minimum Hamming distance between codewords, and defines the error

correcting capability of the code.

Convolutional codes work on streams, not the blocks info blocks. Free distance can be defined by sum of

Hamming distances along the diverged (with an error) path, between …00… stream and the values on the path.

For the example coder, free distance path is the sum of 1s along the path shown thick below (since Hamming

distances are calculated between the code and the 00 possibility). Therefore it is 5 for the example coder.

10 10 10

1111 11 11 11 11

00 00 00 00

10

01

11

01 01 01 0101 01 01 01

10 10 10 10

this path gives free distance too

free distance path

Error Correcting Capability

Error correcting capability of a block code is given by 






 


2

1fd
t

t : the number of correctible errors in a codeword

df : minimum free distance (minimim distance between codewords)

Error correcting capability of a convolutional code is not that clear.

It obviously depends on the distribution of errors.

END

