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if the angular velocity of the disk is constant (c [rad/s]) then we can have another graph of sinusoid

The number of revolutions of the

disk per unit time [rev/s] can be

called the frequency of the y(t), and
it would be a constant also. The unit
Is cycles/sec or, since 1970s, Hertz
(named after Heinrich Rudolf Hertz,

the German electromagnetizm
scientist)

ly(®)




we give a special name to this
function : sinusoidal or shortly sin

if we measure the angle from the top
of the disk we get a 90° phase
shifted version of sin function which
we call cos.

This is what we get when we
rotate the disk at half the speed
of the original. Frequency is
halved of course.
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The distinctive properties of such sinusoids are:
1. frequency (rotations per second)
2. magnitude (radius of the disk)
3. phase (location of the mark on the edge of the disk)

That is, if we have these three parameters, we know everything about y(t)

So, we can compare different sinusoids by marking them on a magnitude vs. frequency plane

magnitude here is our sinusoid (phase is not shown)
1 o here is another one (lower in magnitude but higher in frequency)
this one is not moving o
frequency
| ; -
f, f,

Q: Assuming that magnitudes are electrical quantities (like voltage), can we add them up?
magnitude T
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f | frequency
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y1(D)+y, (1) +y5(t)=? it turns out we can...



y(t)

y(t) =sin(t)+0.5cos(3t) + 0.2
v A

90° shifted and
lower frequency
(magnitude is 0.5)

zero frequency
(magnitude is 0.2)

magnitude
A

0.2 ‘? cos()

¢ sin(t)

since it is difficult to illustrate 3D graphs we
usually have freg-mag and freg-phase graphs

phase

> frequency

The question is : Can we obtain any waveform by summing up
sinusoids with different frequency, magnitude and phase?



Fourier Series (Jean Baptiste Joseph Fourier 1768-1830)

It turns out that any periodic waveform (with some limits, of course) can be obtained by an
infinite sum of sin and cos signals

o0 00 ) 1
y(©) = b, cosMa,t) + > ¢, sin(at) N=01..00 @,=27, and f ==
n=0 n=1 T

where Nw, is called the n™ harmonic of the fundamental frequency @,

Example periodic waveform ! y(t)

The coefficients b, and ¢, can be calculated using

b—l T/2 q b—2 T/2 q _2 T/2 . q
o =T L y(t)dt A _?j_my(t)cos(ncoot) t C,=— y(t)sin(naw,t)dt

T T2

n=1,23,---



oT /2
y(t)dt N=123,-

J-T/2

T/2 Note: it is obvious that these integrals actually
y(t)cos(ha,t)dt yield the correlation function between the given
T/ harmonic and the waveform.

Ao A

T2 . d
[ y(t)sin(naw,t)dt

1/ ¢Ti2 T
bo - (I dt +J- (—]_)dt) — (0 (mean value is zero, just as seen in the figure)
T \Jo T/2

2( (T ( 2 (. :
b, = ?UOT “cos(a,t)dt —.TT/ZCOS(nwot)dt) “Tha, ([S'”(”“’ot)]glz - [sm(na)ot)E,Z)

Nz

bn =0 (we see this from the figure, thus no need for integration. It is an odd function)

_ 1 [sin(n224 /T)[)'* —[sin(n2at/T)[ , :i(sin(mz)—sin(O)—sin(znz)+sin(nn))
Nz



. _(_ Ilezsin(nwot)dt +Elzsin(na)ot)dt) _ %([COS(HZM/T)]?T,Z — [COS(I’]Zﬂ’t /T)]glz)

0 ,niseven

1 2 2 :
C, Iw(l cos(nz)—cos(nrz)+1) n7[(1 cos(nr)) — (1 (-1 ) 4 nisodd
Nz
Therefore _ , o _
= sm(na) t) interpretation: the infinite sum of odd harmonics of
Y(t) 4 Z fundamental frequency. The magnitude of the sin-waves
n=13.. N7z decreases inversely with the harmonic number

IR 1

www.falstad.com
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Sinusoidals for

n=1,35,7

Sum of sinusoidals for

n=13

Sum of sinusoidals for

n=1357



jna,t

+ e—jna)ot N

cos(nw,t) =

Euler eq. s

not e na,t

2 exponential Fourier series

sin(na,t) =

y(t) =Y b, cosma,t)+ D c,sin(ne,t)
n=0 n=0

i2 Sy = Yaen

Y, coefficients of exponential

Fourier series
\

b, = 2" yat t)dt
=— Cos(hw,
n T.[—ley() hayt) 1 ¢1/2 inat
- a =— y(t)e "dt
2 (T/2 Osi Ndt o1 T2
C :_.[ Sin(Nw
== [, yOsin(not)
/
o, = ?r_” Fundamental Angular Frequency
N, Harmonics
a . Zero frequency component or DC value (or mean)

Any periodic signal which satisfies Dirichlet conditions can be represented by a weighted
sum of (possibly infinite number of) sinusoids with different magnitude and delay (phase)



Example

[ xft)
Periodic Pulse Signal
+ /E_ ol EE’
1
: v L
& & T
2 2
1, <3
—u(t+=)—u(t——)
asingle pulse I1(t)=4% , [t|=% = u( > 5
0 otherwise t—
’ nT,
a pulse train  X(t) = Z H( j
z'
= 0 = 0 o — 0
The coefficients a, T, x(t)e —j27me . = Tam e e
z 5
Nt B m) sin(mx)

1 (e To —e ' To 1 nt T nt sinc(x) = X
— = —sin = —sinc
™ 2j o\ Ty ) T T\ T,




Ubiquitous Sinc Function

sin(x) used mostly by mathematicians (sometimes called Sa(x))
. X
sinc(x) sinc(0) £ 1 for both
sin(m) - ysed mostly by signal processing guys (normalized sinc)
I[P

obviously they are different, we will be using the normalized version

s 1w
A T{SiTlC(X)} = H(u) 1

sinc(x) < I(uw) u

v

N[ =




0

_ _ _ - T nt\ 2y
Fourier Series of x(t) isthen x(t) = z posinc( e To
0

A

n=-—oo

T nt
T, sinc T,

note : we only have nonzero values on integer values of n
symmetrical for negative values of n

V:

magnitudes of cos term

1

. . . T +e ' To 2mn
+n values make up a sinusoidal since =cos|—t

Tvz To

T T

2T 2T

2 To

so we have multiplication of these two

n=0

1 2 3
1 2 3

Ty To T

frequencies of cos term

v



T . nt
envelope —sinc| =

«— To To

larger T, same 1

when T, - oo we get Fourier Transform

- sinusoidal

| N L f
1 3 | ‘ | | -
Ty To
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Fourier Transform

Making the period T infinity in order to handle arbitrary (not periodic) waveforms

As T > , = ZT—” —0 and the spectrum covers everywhere (continuous)

a, == ye rdt —— Y(@)=] y()edt

T T2

We no longer have coefficients for linear sum but continuous function for linear integral, so

= inc, _ l *© jot
Y=Y ae" — v =o—[ Y(@e"do

N=-—00

The notation is X (a)) = F{x(’[)} Forward transform

or X(t) - F ‘1{)( (a))} Inverse transform

o X)) X(w) Transform pair



Linearity

Time Shift

Scaling

Convolution

Differentiation
and
Integration

Autocorrelation

Modulation

Some Properties of Fourier Transform

i X(t) =c X (t) +C,X,(t) then X(w)=c,X,(w)+C, X, (@)

Fix(t-t,)}=e""F{x(t)}

F{x(at)}= 1 x (9)

lal \a

F{x(t)+y@®)}=F{xt)}- F{yt)}= X (f)-Y(f)

[e¢]

X()*y(t) = [x(r)y (t-7)dz

(d . gt _ X(w)
F{ax(t)}z joX (w) £ ﬁ_wX(r)dr}— j;)

R.(1)= [x®X (t-0)dt  F{R (2)}=[X(a)

—00

F{x(t)cos(w,t) } =3 X (0—o,) +1 X (0 +w,)

1+ 7G(0)5 (o)



Some Properties of Fourier Transform

: @\ aa ‘k Aa_ s if  x() © X(w)

R B J

Duality

‘l @ then X(t) © 2nx(—w)

vy

Parseval's refation | XY (©)dt=[" X (F)Y*(f)df

Rayleigh’s property _._o:o ‘X(t)‘z dt = Ji ‘ X(f )‘2 df

Additionaly
felX (~o)l=Re{X(@)}  |X(-0)=|X(e)
{X (~o)}=-m{X (o)} (X (-w)=—(X(»)

For Real Signals

If X('[) is real and even then X (a)) is real and even

If X('[) is real and odd then X (a)) is imaginary and odd

Time flip it x(f)=F{X(-t)} then x(—f)=F{X(1)}



Some Transform Pairs

40 1 +o0 .
Z akﬂ,}km[}r — Z a8 (g wp) a(r —1g) = el™
k=—n0 k=—0ox
pjoot ¢ 2r8(w + ap) e Mu(t),Refa) = 0 & 0+ o
coswpt  { Td(w —wp) + 8w +wg)] 1
ult) — — 4mé(w)
O Jw
smaglt (& %[E{fﬂ—fﬂg}—a{w+fﬂﬂ}]
a(t
x(it)=1 (= Imé(w) W= 1
I, | <Ty too
2sm ke T
x(1) = &Y 0 ey
) Iy k
0, Ti<l=R  w

+00
Z 5(t =nT) (=

n=—0x0

400
2 2wk
- Zk:—oc-ﬁ(f _T)

B 1. it < T T s Tl _ 2sinwTy
X{F}—{ 0. it = Ty <ﬁ> «f]1smc¢ T x)



Example

1 <%
o2l
0 >+
T
X(w) = ?(H <£)> = j I (E) e Jotdt = fe‘j“)tdt
T T
—0o0 T
2
1 . . . .
— _— (pjwT/2 _ ,—jwT/2\ — _ = (,jwT/2 _ ,—jwT/2) —
@ (e e ) w2 (e e ) 2
txt)

X(f) = Tsinc(fT)

(normalized sinc function)

b

Determine the FT of the gate signal

fx®)

I L
2 2

e—jwt T/2

— .a)
J ~T/2

sin(wT/2) _ - sin(nfT)

) nf T

 X(f)

v S

2

T
1\
T



T >

T—>0

Extreme Cases

x(t)

D2

x(1)

|86

X{(w)

t2mo(w)

X(®)




Example
Find the energy of the sinc signal X(t) =sinc(t)

E, = .CO‘X(t)‘Zdt = ISinCZ (t)dt 1 hard case !!

we found that 7 {11 (2)} = sinc(fT) (letT = 1to get F{II(t) } = sinc(f) )
using duality prop. of FT:  if x(t) © X(f)  then X(t) © x(—f)
we get sinc(t) © (=f) = (f)  (Symmetric)
using Rayleigh’s property
Ex = jOIX(t)IZdt= onX(f)Izdf= jo(“(f))zdf
1/2

E, = dezl

-1/2



Power and Energy Spectral Densities

According to Rayleigh’s property f ‘X(’[)‘Zdt = f X (f )‘zdf

and the definition of energy E, = f ‘X(t)‘zdt

-
-
-
-
-
-

Energy

e[ X(fd

LYJ

W, () =|X(f)

Similarly, the Power Spectral
Density for a periodic signal is
defined by the equation

P.=| G,(f)df

g

\

Power

~

.1
And for a non-periodic signal G, (f)= TIIm ?‘XT (f )‘2

_________ Energy Spectral

~

~

~

Density

Power Spectral Density




Example

Draw the energy spectral density and find the energy of the signal given

+ X ()

sin{”

27T

W, (F)=|X(F)f =fsin(f) =sin?(f)  [¥7

0<f <27)

E,=[ w,(f)df = stinz(f)df - _T(l—cos(Zf))df

T

E, Zﬂ—%Sin(Zf) =7

0

27T



Verify
Energy spectral density

11(t)
magnitude square of FT
t 1T
“------ >
T
Magnitudes of FS coefficients
X(t)
envelope ]
s 2
“----p
t _ o f
oyt Py
square wave UT 2T 3T
Power spectral density
y(t)
T
<> t

T 27

random binary pulse train
(randomly changes polarity with T intervals) the value at zero frequency represents the average (DC) value



X1 ()P

X4(t)
<+ - p< - D
t N f
Xo(t) Xo()?
*-»
t o f
X, (t) Xa(h)P
<+ -pt -
t N f
UT
IXOP=IZ: X: ()
X = 20 envelope
T miat =
<+ Pt ->

square wave
Question : How?



Convolution

X(t) d he - YO = x(@Dh(t-r)dr

y(t) = x(t) *h(t)

[) Tourier pairs [) [)

X(T) H(f) Y (1) =X(1)H(T)

G,(f) H(f) G, (f)=G,(F)H(F)

relation of autocorrelation functions



Example

N
White noise with spectral density G, (f) = 70 is input to the filter shown
M
] R == b,

Find the power spectral density Gy (f)
Find the autocorrelation function R, ()

G(N=G(NHIN G (D= s
R Fe, (f Ny s
(1) =£7G, (1) R =3rc®

Output noise is not white
Output noise is not completely uncorrelated



The Bandwidth

f = A_;"l'._.h_, 7 A limited duration signal has infinite bandwidth

PN Y ‘l a_a_’ F A limited bandwidth signal has infinite duration

So, we just can not define bandwidth as formulated by the
of the signal, because such a signal may not be real.

Half-power bandwidth : Defines the frequency which the signal power drops to half of the peak
value (or 3dB below the peak value).

Noise equivalent bandwidth : The bandwidth of an ideal filter which passes the same amount of
noise power as its real counterpart

BN
Null-to-Null bandwidth :

Fractional power containment bandwidth :

Bounded psd bandwidth - > Homework : Find, read and learn about them

Absolute bandwidth :



Half-Power Bandwidth

%4 * hh

10log,,(0.5) = -3 dB

Therefore, it is sometimes called 3 dB bandwidth

Homework : Find the 3 dB bandwidth of an RC filter



Null-to-Null Bandwidth

: null-to-null

SX( f ) Fractional Power Containment

power percentage of total

ex : 98% or 0.98



Example
1 , | flk2 lle{’ﬂI'

IH(f)[E{3-|f| , 2<f|3 ¥
0 | f >3 —3/3 i é\gL"

IS given. What is the noise equivalent bandwidth?

ljilIHz-f{;fIII

P, = S,(f)df

P zzjoz\H(f)\zdf +2j23\H(f)\2df
P =2j;a5f+ 2]‘3\3—]“\20*]" =4+%2=14/3
Py =2[S,(F) | H,(F) P of =2[ ™df =28,

2B, =14/3 —> B, =7/3

Homework : Find the noise equivalent bandwidth of an RC filter



Homework Problems

These problems are in the textbook “Digital Communications — Fundamentals and Applications, 2"4Ed.” by B. Sklar

1.1. Classify the following signals as energy signals or power signals. Find the normalized energy or normalized

power of each.

(a) x(t)=A cos 2mfit

() x(t) = {;1 cos 2wyt
© () = {E}q exp (—at )

(d) x{t)=cost+5cos2t

1.14. Find X (f ) * X,(f ) for the spectra shown
in figures

for— @ <t<

for —7,2 =t = T,/2, where T, = 1/f,
elsewhere

fort = 0,a > 0
elsewhere

for—w<to®

Xaf)
SN
| |
—fo fo !
Koif)




Homework Problems

These problems are in the textbook “Modern Digital and Analog Communication Systems” by B.P. Lathi

2.1- 3. Find Fourier Series representation (trigonometric or complex exponential) of the following.

4 xft)
1
voe ves i
27T
4 xft)
ves sin ¢ ves
/\ 27T 27T /\ t
\/ VAV

2.8- 1. Energies of signals g,(t) and g,(t) are E, and E, respectively.
a) Show that, in general, the energy of the signal g,(t)+g,(t) is not E,+E, .
b) Under what condition is the energy of g,(t)+g,(t) equal to E;+E, .
c) Can the energy of signal g,(t)+g,(t) be zero? If so under what condition(s)?



Example

The following LPF is fed with the signal x(t) = 2 cos(2mf;t) + 2sin(2nf,t)

WA o= Vo

1 1
Wherefl =ﬁandf2 Z%.

Draw the output psd ?



Given |H(f)|* = T+ (ZnfRO)?

We just insert given frequencies and see the output powers for unit inputs.

1

1
Gy(fl) — r = 0.5 y(fz) = 1 ) = 0.2

This is, of course, for unit input powers at given frequencies.
We have power in only two frequencies at the output (assuming single sided spectrum).

You may need to recalculate power of a sinusoidal using (%AZ)

6 () = 7 [cos@rpiorac=2  and 6.0 =2

in case you did not memorize it already. 4 |Gy(f)|
So, we need to multiply output values with 1
these to get output psd graph.
0.4
f
T







