Fourier Spectrum

by Erol Seke

For the course "Communications"

Origin of a sinusoid

if the angular velocity of the disk is constant (c [rad/s]) then we can have another graph of sinusoid

The number of revolutions of the disk per unit time [rev/s] can be called the frequency of the $y(t)$, and it would be a constant also. The unit is cycles/sec or, since 1970s, Hertz (named after Heinrich Rudolf Hertz, the German electromagnetizm scientist)

we give a special name to this function : sinusoidal or shortly sin

if we measure the angle from the top of the disk we get a 90° phase shifted version of \sin function which we call cos.

This is what we get when we rotate the disk at half the speed of the original. Frequency is halved of course.

The distinctive properties of such sinusoids are:

1. frequency (rotations per second)
2. magnitude (radius of the disk)
3. phase (location of the mark on the edge of the disk)

That is, if we have these three parameters, we know everything about $y(t)$

So, we can compare different sinusoids by marking them on a magnitude vs. frequency plane

Q: Assuming that magnitudes are electrical quantities (like voltage), can we add them up?

since it is difficult to illustrate 3D graphs we usually have freq-mag and freq-phase graphs

The question is: Can we obtain any waveform by summing up sinusoids with different frequency, magnitude and phase?

Fourier Series (Jean Baptiste Joseph Fourier 1768-1830)

It turns out that any periodic waveform (with some limits, of course) can be obtained by an infinite sum of \sin and \cos signals

$$
y(t)=\sum_{n=0}^{\infty} b_{n} \cos \left(n \omega_{o} t\right)+\sum_{n=1}^{\infty} c_{n} \sin \left(n \omega_{o} t\right) \quad n=0,1, \ldots, \infty \quad \omega_{o}=2 \pi f_{o} \quad \text { and } \quad f_{o}=\frac{1}{T}
$$

where $n \omega_{o}$ is called the $n^{\text {th }}$ harmonic of the fundamental frequency ω_{o}

Example periodic waveform

The coefficients b_{n} and c_{n} can be calculated using

$$
\begin{gathered}
b_{o}=\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) d t \quad b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \cos \left(n \omega_{o} t\right) d t \quad c_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \sin \left(n \omega_{o} t\right) d t \\
n=1,2,3, \cdots
\end{gathered}
$$

$$
\begin{aligned}
b_{o} & =\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) d t \quad n=1,2,3, \cdots \\
b_{n} & =\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \cos \left(n \omega_{o} t\right) d t \\
c_{n} & =\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \sin \left(n \omega_{o} t\right) d t
\end{aligned}
$$

Note: it is obvious that these integrals actually yield the correlation function between the given harmonic and the waveform.

$$
\begin{aligned}
b_{o} & =\frac{1}{T}\left(\int_{0}^{T / 2} d t+\int_{T / 2}^{T}(-1) d t\right)=0 \quad \text { (mean value is zero, just as seen in the figure) } \\
b_{n} & =\frac{2}{T}\left(\int_{0}^{T / 2} \cos \left(n \omega_{o} t\right) d t-\int_{T / 2}^{T} \cos \left(n \omega_{o} t\right) d t\right)=\frac{2}{T n \omega_{o}}\left(\left[\sin \left(n \omega_{o} t\right)\right]_{0}^{T / 2}-\left[\sin \left(n \omega_{o} t\right)\right]_{T / 2}^{T}\right) \\
& =\frac{1}{n \pi}\left([\sin (n 2 \pi t / T)]_{0}^{T / 2}-[\sin (n 2 \pi t / T)]_{T / 2}^{T}\right)=\frac{1}{n \pi}(\sin (n \pi)-\sin (0)-\sin (2 n \pi)+\sin (n \pi))
\end{aligned}
$$

$b_{n}=0 \quad$ (we see this from the figure, thus no need for integration. It is an odd function)

$$
\begin{aligned}
& c_{n}=\frac{2}{T}\left(-\int_{-T / 2}^{0} \sin \left(n \omega_{o} t\right) d t+\int_{0}^{T / 2} \sin \left(n \omega_{o} t\right) d t\right)=\frac{1}{n \pi}\left([\cos (n 2 \pi t / T)]_{-T / 2}^{0}-[\cos (n 2 \pi t / T)]_{0}^{T / 2}\right) \\
& c_{n}=\frac{1}{n \pi}(1-\cos (n \pi)-\cos (n \pi)+1)=\frac{2}{n \pi}(1-\cos (n \pi))=\frac{2}{n \pi}\left(1-(-1)^{n}\right)= \begin{cases}0 & \text {, niseven } \\
\frac{4}{n \pi} & \text {, nisodd }\end{cases}
\end{aligned}
$$

Therefore

$$
y(t)=4 \sum_{n=1,3 \ldots}^{\infty} \frac{\sin \left(n \omega_{o} t\right)}{n \pi}
$$

interpretation: the infinite sum of odd harmonics of fundamental frequency. The magnitude of the sin-waves decreases inversely with the harmonic number

Sinusoidals for $n=1,3,5,7$

Sum of sinusoidals for $n=1,3$

Sum of sinusoidals for $n=1,3,5,7$

$$
\cos \left(n \omega_{o} t\right)=\frac{e^{j n \omega_{o} t}+e^{-j n \omega_{o} t}}{2}
$$

Euler eq.'s

$$
\begin{aligned}
& \sin \left(n \omega_{o} t\right)=\frac{e^{j n \omega_{o} t}-e^{-j n \omega_{o} t}}{j 2} \\
& y(t)=\sum_{n=0}^{\infty} b_{n} \cos \left(n \omega_{o} t\right)+\sum_{n=0}^{\infty} c_{n} \sin \left(n \omega_{o} t\right) \\
& \left.\begin{array}{l}
b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \cos \left(n \omega_{o} t\right) d t \\
c_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \sin \left(n \omega_{o} t\right) d t
\end{array}\right\} a_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) e^{-j n \omega_{o} t} d t \\
& \omega_{o}=\frac{2 \pi}{T_{o}} \quad: \text { Fundamental Angular Frequency } \\
& n \omega_{o} \text { : Harmonics } \\
& a_{o} \quad: \text { Zero frequency component or DC value (or mean) }
\end{aligned}
$$

Any periodic signal which satisfies Dirichlet conditions can be represented by a weighted sum of (possibly infinite number of) sinusoids with different magnitude and delay (phase)

Example

Periodic Pulse Signal

a single pulse $\Pi(t)=\left\{\begin{array}{ccc}1 & , & |t|<\frac{\tau}{2} \\ 1 / 2 & , & |t|=\frac{\tau}{2} \\ 0 & , & \text { otherwise }\end{array}=u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right)\right.$

$$
\text { a pulse train } \quad x(t)=\sum_{n=-\infty}^{\infty} \Pi\left(\frac{t-n T_{o}}{\tau}\right)
$$

The coefficients $a_{n}=\frac{1}{T_{0}} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} x(t) e^{-j \frac{2 \pi n t}{T_{0}}} d t=\left.\frac{1}{-j 2 \pi n} e^{-j \frac{2 \pi n t}{T_{0}}}\right|_{-\frac{\tau}{2}} ^{\frac{\tau}{2}}=\frac{1}{j 2 \pi n}\left(e^{j \frac{\pi n \tau}{T_{0}}}-e^{\left.-j \frac{\pi n \tau}{T_{0}}\right)}\right.$

$$
\frac{1}{\pi n} \frac{\left(e^{j \frac{\pi n \tau}{T_{0}}}-e^{-j \frac{\pi n \tau}{T_{0}}}\right)}{?^{i}}=\frac{1}{\operatorname{mon}} \sin \left(\frac{\pi n \tau}{T}\right)=\frac{\tau}{T} \operatorname{sinc}\left(\frac{n \tau}{T}\right) \quad \operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Ubiquitous Sinc Function

obviously they are different, we will be using the normalized version

Fourier Series of $x(t)$ is then $\quad x(t)=\sum_{n=-\infty}^{\infty} \frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right) e^{j \frac{2 \pi n}{T_{0}} t}$

$\pm n$ values make up a sinusoidal since $\frac{e^{j \frac{2 \pi n}{T_{0}} t}+e^{-j \frac{2 \pi n}{T_{0}} t}}{2}=\cos \left(\frac{2 \pi n}{T_{0}} t\right)$

larger T_{0} same τ

$$
\text { when } T_{0} \rightarrow \infty \text { we get Fourier Transform }
$$

Fourier Transform

Making the period T infinity in order to handle arbitrary (not periodic) waveforms

$$
\begin{aligned}
& \text { As } T \rightarrow \infty \quad \omega_{o}=\frac{2 \pi}{T} \rightarrow 0 \quad \text { and the spectrum covers everywhere (continuous) } \\
& a_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) e^{-j n \omega_{o} t} d t \quad \longrightarrow Y(\omega)=\int_{-\infty}^{\infty} y(t) e^{-j \omega t} d t
\end{aligned}
$$

We no longer have coefficients for linear sum but continuous function for linear integral, so

$$
y(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{o} t} \longrightarrow y(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y(\omega) e^{j \omega t} d \omega
$$

The notation is $\quad X(\omega)=\boldsymbol{F}\{x(t)\} \quad$ Forward transform

$$
\begin{array}{lll}
\text { or } & x(t)=F^{-1}\{X(\omega)\} & \text { Inverse transform } \\
\text { or } & x(t) \Leftrightarrow X(\omega) & \text { Transform pair }
\end{array}
$$

Some Properties of Fourier Transform

Linearity

$$
\text { if } x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t) \text { then } X(\omega)=c_{1} X_{1}(\omega)+c_{2} X_{2}(\omega)
$$

Time Shift

$$
\boldsymbol{F}\left\{x\left(t-t_{o}\right)\right\}=e^{-j \omega t_{o}} \boldsymbol{F}\{x(t)\}
$$

Scaling

$$
F\{x(a t)\}=\frac{1}{|a|} X\left(\frac{\omega}{a}\right)
$$

Convolution

$$
\begin{aligned}
& \boldsymbol{F}\{x(t) * y(t)\}=\boldsymbol{F}\{x(t)\} \cdot \underline{F}\{y(t)\}=X(f) \cdot Y(f) \\
& x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y^{*}(t-\tau) d \tau
\end{aligned}
$$

Differentiation and
Integration

$$
\underline{F}\left\{\frac{d}{d t} x(t)\right\}=j \omega X(\omega) \quad F\left\{\int_{-\infty}^{t} x(r) d r\right\}=\frac{X(\omega)}{j \omega}+\pi G(0) \delta(\omega)
$$

Autocorrelation

$$
R_{x}(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t \quad F\left\{R_{x}(\tau)\right\}=|X(\omega)|^{2}
$$

Modulation

$$
F\left\{x(t) \cos \left(\omega_{o} t\right)\right\}=\frac{1}{2} X\left(\omega-\omega_{o}\right)+\frac{1}{2} X\left(\omega+\omega_{o}\right)
$$

Some Properties of Fourier Transform

$$
\text { if } \quad x(t) \Leftrightarrow X(\omega)
$$

Duality

then $X(t) \Leftrightarrow 2 \pi x(-\omega)$

Parseval's relation $\quad \int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f$
Rayleigh's property $\quad \int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f$

Additionaly

For Real Signals $\quad \operatorname{Re}\{X(-\omega)\}=\operatorname{Re}\{X(\omega)\} \quad|X(-\omega)|=|X(\omega)|$

$$
\operatorname{Im}\{X(-\omega)\}=-\operatorname{Im}\{X(\omega)\} \quad\langle X(-\omega)=-\langle X(\omega)
$$

If $x(t)$ is real and even then $X(\omega)$ is real and even
If $x(t)$ is real and odd then $X(\omega)$ is imaginary and odd

Time flip if $x(f)=\boldsymbol{F}\{X(-t)\} \quad$ then $\quad x(-f)=\boldsymbol{F}\{X(t)\}$

Some Transform Pairs

$$
\begin{aligned}
& \sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t} \Longleftrightarrow 2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega_{k} \omega_{0}\right) \\
& e^{j \omega_{0} t} \Leftrightarrow 2 \pi \delta\left(\omega+\omega_{0}\right) \\
& \cos \omega_{0} t \quad \Longleftrightarrow \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] \\
& e^{-a t} u(t), \operatorname{Re}\{a\}>0 \Longleftrightarrow \frac{1}{a+j \omega} \\
& u(t) \Longleftrightarrow \frac{1}{j \omega}+\pi \delta(\omega) \\
& \sin \omega_{0} t \quad \Longleftrightarrow \frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right] \\
& x(t)=1 \quad \Longleftrightarrow 2 \pi \delta(\omega) \\
& \delta(t) \Leftrightarrow 1 \\
& x(t)=\left\{\begin{array}{ll}
1, & |t|<T_{1} \\
0, & T_{1}<|t| \leq \frac{T_{0}}{2}
\end{array} \Longleftrightarrow \sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega_{k} \omega_{0}\right)\right. \\
& \sum_{n=-\infty}^{+\infty} \delta(t-n T) \Leftrightarrow \frac{2 \pi}{T} \sum k=-\infty \delta\left(\omega-\frac{2 \pi k}{T}\right) \\
& x(t)=\left\{\begin{array}{ll}
1, & |t|<T_{1} \\
0, & |t|>T_{1}
\end{array} \Leftrightarrow 2 T_{1} \sin c\left(\frac{\omega T_{1}}{\pi}\right)=\frac{2 \sin \omega T_{1}}{\omega}\right.
\end{aligned}
$$

Example

Determine the FT of the gate signal

$$
\begin{aligned}
& \Pi\left(\frac{t}{T}\right)=\left\{\begin{array}{ccc}
1 & , & |t|<\frac{T}{2} \\
1 / 2 & , & |t|=\frac{T}{2} \\
0 & , & |t|>\frac{T}{2}
\end{array}\right. \\
& X(\omega)=\mathcal{F}\left(\Pi\left(\frac{t}{T}\right)\right)=\int_{-\infty}^{\infty} \Pi\left(\frac{t}{T}\right) e^{-j \omega t} d t=\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{-T / 2} ^{T / 2} \\
& =\frac{1}{j \omega}\left(e^{j \omega T / 2}-e^{-j \omega T / 2}\right)=\frac{2}{j \omega 2}\left(e^{j \omega T / 2}-e^{-j \omega T / 2}\right)=2 \frac{\sin (\omega T / 2)}{\omega}=T \frac{\sin (\pi f T)}{\pi f T} \\
& X(f)=T \operatorname{sinc}(f T) \\
& \text { (normalized sinc function) }
\end{aligned}
$$

Extreme Cases

Example

Find the energy of the sinc signal $x(t)=\operatorname{sinc}(t)$

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} \operatorname{sinc}^{2}(t) d t \quad!!\text { hard case !! }
$$

we found that $\mathcal{F}\left\{\Pi\left(\frac{t}{T}\right)\right\}=\operatorname{sinc}(f T) \quad($ let $T=1$ to $\operatorname{get} \mathcal{F}\{\Pi(t)\}=\operatorname{sinc}(f))$
using duality prop. of $\mathrm{FT}:$ if $x(t) \Leftrightarrow X(f) \quad$ then $X(t) \Leftrightarrow x(-f)$

$$
\text { we get } \quad \operatorname{sinc}(t) \Leftrightarrow \Pi(-f)=\Pi(f) \quad \text { (symmetric) }
$$

using Rayleigh's property

$$
\begin{gathered}
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f=\int_{-\infty}^{\infty}(\Pi(f))^{2} d f \\
E_{x}=\int_{-1 / 2}^{1 / 2} d f=1
\end{gathered}
$$

Power and Energy Spectral Densities

According to Rayleigh's property $\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f$
and the definition of energy $E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$

Energy Spectral Density

Similarly, the Power Spectral Density for a periodic signal is defined by the equation
$P_{x}=\int_{-\infty}^{\infty} G_{x}(f) d f$

And for a non-periodic signal $G_{x}(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}$

Example

Draw the energy spectral density and find the energy of the signal given

$$
\begin{aligned}
\Psi_{x}(f)=|X(f)|^{2}= & |\sin (f)|^{2}=\sin ^{2}(f) \\
& (0 \leq f<2 \pi)
\end{aligned}
$$

$$
E_{x}=\int_{-\infty}^{\infty} \Psi_{x}(f) d f=2 \int_{0}^{\pi} \sin ^{2}(f) d f=\int_{0}^{\pi}(1-\cos (2 f)) d f
$$

$$
E_{x}=\pi-\left.\frac{1}{2} \sin (2 f)\right|_{0} ^{\pi}=\pi
$$

Verify

 (randomly changes polarity with T intervals)

Convolution

Example

White noise with spectral density $G_{n}(f)=\frac{N_{0}}{2}$ is input to the filter shown

Find the power spectral density $G_{Y}(f)$
Find the autocorrelation function $R_{Y}(f)$

$$
\begin{aligned}
G_{Y}(f)=G_{n}(f)|H(f)|^{2} & G_{Y}(f)=\frac{N_{0}}{2} \frac{1}{1+(2 \pi f R C)^{2}} \\
R_{Y}(\tau)=\boldsymbol{F}^{-1}\left\{G_{Y}(f)\right\} & R_{Y}(\tau)=\frac{N_{0}}{4 R C} e^{-\frac{|\tau|}{R C}}
\end{aligned}
$$

Output noise is not white
Output noise is not completely uncorrelated

The Bandwidth

So, we just can not define bandwidth as formulated by the highest frequency component of the signal, because such a signal may not be real.

Half-power bandwidth : Defines the frequency which the signal power drops to half of the peak value (or 3dB below the peak value).
Noise equivalent bandwidth : The bandwidth of an ideal filter which passes the same amount of noise power as its real counterpart

Null-to-Null bandwidth :
Fractional power containment bandwidth :
Bounded psd bandwidth :
Absolute bandwidth :
Homework: Find, read and learn about them

Half-Power Bandwidth

$$
10 \log _{10}(0.5) \cong-3 \mathrm{~dB}
$$

Therefore, it is sometimes called 3 dB bandwidth

Homework : Find the 3 dB bandwidth of an RC filter

Null-to-Null Bandwidth

Example

$$
|H(f)|=\left\{\begin{array}{ccc}
1 & , & \mid f k<2 \\
3-|f| & , & 2 \leq|f|<3 \\
0 & , & |f| \geq 3
\end{array}\right.
$$

is given. What is the noise equivalent bandwidth?

$$
\begin{aligned}
& P_{o}=\int_{-\infty}^{\infty} S_{o}(f) d f \\
& P_{o}=2 \int_{0}^{2}|H(f)|^{2} d f+2 \int_{2}^{3}|H(f)|^{2} d f \\
& P_{o}=2 \int_{0}^{2} d f+2 \int_{2}^{3}|3-f|^{2} d f=4+\frac{2}{3}=14 / 3 \\
& P_{\text {neq }}=2 \int_{0}^{\infty} S_{i}(f)\left|H_{i}(f)\right|^{2} d f=2 \int_{0}^{B_{n e q}} d f=2 B_{\text {neq }} \\
& 2 B_{\text {neq }}=14 / 3 \quad B_{\text {neq }}=7 / 3
\end{aligned}
$$

$$
\xrightarrow[-B_{\text {req }}]{\overbrace{B_{\text {Heq }}}}+
$$

Homework : Find the noise equivalent bandwidth of an RC filter

Homework Problems

These problems are in the textbook "Digital Communications - Fundamentals and Applications, $2^{\text {nd }}$ Ed." by B. Sklar
1.1. Classify the following signals as energy signals or power signals. Find the normalized energy or normalized power of each.
(a) $x(t)=A \cos 2 \pi f_{0} t \quad$ for $-\infty<t<\infty$
(b) $x(t)= \begin{cases}A \cos 2 \pi f_{0} t & \text { for }-T_{0} / 2 \leq t \leq T_{0} / 2, \text { where } T_{0}=1 / f_{0} \\ 0 & \text { elsewhere }\end{cases}$
(c) $x(t)= \begin{cases}A \exp (-a t) & \text { for } t>0, a>0 \\ 0 & \text { elsewhere }\end{cases}$
(d) $x(t)=\cos t+5 \cos 2 t$
for $-\infty<t<\infty$

Homework Problems

These problems are in the textbook "Modern Digital and Analog Communication Systems" by B.P. Lathi
2.1-3. Find Fourier Series representation (trigonometric or complex exponential) of the following.

2.8-1. Energies of signals $g_{1}(t)$ and $g_{2}(t)$ are E_{1} and E_{2} respectively.
a) Show that, in general, the energy of the signal $g_{1}(t)+g_{2}(t)$ is not $E_{1}+E_{2}$.
b) Under what condition is the energy of $g_{1}(t)+g_{2}(t)$ equal to $E_{1}+E_{2}$.
c) Can the energy of signal $g_{1}(t)+g_{2}(t)$ be zero? If so under what condition(s)?

Example

The following LPF is fed with the signal $x(t)=2 \cos \left(2 \pi f_{1} t\right)+2 \sin \left(2 \pi f_{2} t\right)$

where $f_{1}=\frac{1}{2 \pi R C}$ and $f_{2}=\frac{1}{\pi R C}$.

Draw the output psd?

Given $\quad|H(f)|^{2}=\frac{1}{1+(2 \pi f R C)^{2}}$
We just insert given frequencies and see the output powers for unit inputs.

$$
G_{y}\left(f_{1}\right)=\frac{1}{1+1}=0.5 \quad G_{y}\left(f_{2}\right)=\frac{1}{1+4}=0.2
$$

This is, of course, for unit input powers at given frequencies.
We have power in only two frequencies at the output (assuming single sided spectrum).
You may need to recalculate power of a sinusoidal using

$$
\begin{equation*}
G_{x}\left(f_{1}\right)=\frac{1}{T} \int_{0}^{T}\left|2 \cos \left(2 \pi f_{1} t\right)\right|^{2} d t=2 \quad \text { and } \quad G_{x}\left(f_{2}\right)=2 \tag{1}
\end{equation*}
$$

in case you did not memorize it already.
So, we need to multiply output values with these to get output psd graph.

END

