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if the angular velocity of the disk is constant (c [rad/s]) then we can have another graph of sinusoid
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The number of revolutions of the 

disk per unit time [rev/s] can be 

called the frequency of the y(t), and 

it would be a constant also. The unit 

is cycles/sec or, since 1970s, Hertz

(named after Heinrich Rudolf Hertz, 

the German electromagnetizm 

scientist )
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twe give a special name to this 

function : sinusoidal or shortly sin

if we measure the angle from the top 

of the disk we get a 90° phase

shifted version of sin function which 

we call cos.
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This is what we get when we 

rotate the disk at half the speed 

of the original. Frequency is 

halved of course.



The distinctive properties of such sinusoids are:

1. frequency (rotations per second)

2. magnitude (radius of the disk)

3. phase (location of the mark on the edge of the disk)

That is, if we have these three parameters, we know everything about y(t)

So, we can compare different sinusoids by marking them on a magnitude vs. frequency plane

magnitude

frequency

1

f1

here is our sinusoid (phase is not shown)

here is another one (lower in magnitude but higher in frequency)

f2

this one is not moving

Q: Assuming that magnitudes are electrical quantities (like voltage), can we add them up?

magnitude

frequency

f1 f2

it turns out we can…y1(t)+y2(t)+y3(t)=?
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90° shifted and 

lower frequency

(magnitude is 0.5)

zero frequency

(magnitude is 0.2)
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since it is difficult to illustrate 3D graphs we 

usually have freq-mag and freq-phase graphs

The question is : Can we obtain any waveform by summing up 

sinusoids with different frequency, magnitude and phase?
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It turns out that any periodic waveform (with some limits, of course) can be obtained by an 

infinite sum of sin and cos signals
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Example periodic waveform

Fourier Series

The coefficients bn and cn can be calculated using


2/

2/
)(

1 T

T
o dtty

T
b 

2/

2/
)cos()(

2 T

T
on dttnty

T
b  

2/

2/
)sin()(

2 T

T
on dttnty

T
c 

,3,2,1n

1

-1

(Jean Baptiste Joseph Fourier 1768-1830)

 ,...,1,0n




2/

2/
)(

1 T

T
o dtty

T
b


2/

2/
)cos()(

2 T

T
on dttnty

T
b 


2/

2/
)sin()(

2 T

T
on dttnty

T
c 

,3,2,1n

Note: it is obvious that these integrals actually 

yield the correlation function between the given 

harmonic and the waveform.
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(we see this from the figure, thus no need for integration. It is an odd function)

(mean value is zero, just as seen in the figure)
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interpretation: the infinite sum of odd harmonics of 

fundamental frequency. The magnitude of the sin-waves 

decreases inversely with the harmonic number
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exponential Fourier series

coefficients of exponential 

Fourier series

oTo
 2 :   Fundamental Angular Frequency

on :   Harmonics

oa :   Zero frequency component or DC value (or mean)

Any periodic signal which satisfies Dirichlet conditions can be represented by a weighted 

sum of (possibly infinite number of) sinusoids with different magnitude and delay (phase) 



Periodic Pulse Signal

a single pulse
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Ubiquitous Sinc Function

𝑠𝑖𝑛𝑐(𝑥)

𝑠𝑖𝑛(𝑥)
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𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥

used mostly by mathematicians (sometimes called Sa(x))

used mostly by signal processing guys (normalized sinc)

obviously they are different, we will be using the normalized version

𝑠𝑖𝑛𝑐 0 ≜ 1 for both
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𝑠𝑖𝑛𝑐(𝑥) ⟺ Π(𝑢)



Fourier Series of 𝑥(𝑡) is then 𝑥 𝑡 = ෍
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so we have multiplication of these two

……
frequencies of 𝑐𝑜𝑠 term

1

magnitudes of 𝑐𝑜𝑠 term

note : we only have nonzero values on integer values of 𝑛
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envelope

sinusoidal
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larger 𝑇0 same 𝜏

when 𝑇0 → ∞ we get Fourier Transform



Fourier Transform
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Some Properties of Fourier Transform
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Some Properties of Fourier Transform

Duality
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Some Transform Pairs



Determine the FT of the gate signal
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Extreme Cases
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!! hard case !!

using Rayleigh’s property
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Example

Find the energy of the sinc signal 

𝑋 𝑡 ⇔ 𝑥(−𝑓)using duality prop. of FT : 𝑥 𝑡 ⇔ 𝑋(𝑓)if then
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Power and Energy Spectral Densities
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Draw the energy spectral density and find the energy of the signal given
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Π(t)

t

Energy spectral density

f

x(t)

t...
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square wave

Magnitudes of FS coefficients

f

magnitude square of FT

1/T

T

T

y(t)

t

...
...

random binary pulse train
(randomly changes polarity with T intervals)

T

1/T

Power spectral density

f

1/T

the value at zero frequency represents the average (DC) value

Verify

2/T

envelope

2/T 3/T
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|X(f)|2= σ𝑖 𝑋𝑖(𝑓)
2

Question : How?



Convolution
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Example

White noise with spectral density is input to the filter shown

Find the power spectral density

Find the autocorrelation function

Output noise is not white

Output noise is not completely uncorrelated



The Bandwidth

A limited duration signal has infinite bandwidth

A limited bandwidth signal has infinite duration

So, we just can not define bandwidth as formulated by the highest frequency component

of the signal, because such a signal may not be real. 

Half-power bandwidth : Defines the frequency which the signal power drops to half of the peak 

value (or 3dB below the peak value).

Noise equivalent bandwidth : The bandwidth of an ideal filter which passes the same amount of 

noise power as its real counterpart

Null-to-Null bandwidth :

Fractional power containment bandwidth :

Bounded psd bandwidth :

Absolute bandwidth :

Homework : Find, read and learn about them



Half-Power Bandwidth

1010log (0.5) 3  dB

Therefore, it is sometimes called 3 dB bandwidth

Homework : Find the 3 dB bandwidth of an RC filter



Null-to-Null Bandwidth
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power percentage of total 
ex : 98% or 0.98

Fractional Power Containment



Example
1 , | | 2

| ( ) | 3 | | , 2 | | 3

0 , | | 3

f

H f f f

f




   
 
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Homework : Find the noise equivalent bandwidth of an RC filter



Homework Problems

These problems are in the textbook “Digital Communications – Fundamentals and Applications, 2nd Ed.” by B. Sklar

1.1. Classify the following signals as energy signals or power signals. Find the normalized energy or normalized 

power of each.

1.14. Find X1(f ) * X2(f ) for the spectra shown 

in figures



Homework Problems

These problems are in the textbook “Modern Digital and Analog Communication Systems” by B.P. Lathi

2.1- 3. Find Fourier Series representation (trigonometric or complex exponential) of the following.

2.8- 1. Energies of signals g1(t) and g2(t) are E1 and E2 respectively.

a) Show that, in general, the energy of the signal g1(t)+g2(t) is not E1+E2 .

b) Under what condition is the energy of g1(t)+g2(t) equal to E1+E2 .

c) Can the energy of signal g1(t)+g2(t) be zero?  If so under what condition(s)?



Example

The following LPF is fed with the signal 𝑥 𝑡 = 2 cos 2𝜋𝑓1𝑡 + 2sin(2𝜋𝑓2𝑡)

Draw the output psd ?

where 𝑓1 =
1

2𝜋𝑅𝐶
and 𝑓2 =

1

𝜋𝑅𝐶
. 



𝐻(𝑓) 2 =
1

1 + 2𝜋𝑓𝑅𝐶 2Given

We just insert given frequencies and see the output powers for unit inputs. 

𝐺𝑦 𝑓1 =
1

1 + 1
= 0.5 𝐺𝑦 𝑓2 =

1

1 + 4
= 0.2

We have power in only two frequencies at the output (assuming single sided spectrum).

𝐺𝑥 𝑓2 = 2

You may need to recalculate power of a sinusoidal using         (1
2
𝐴2) 

This is, of course, for unit input powers at given frequencies.

𝐺𝑥 𝑓1 =
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2 cos 2𝜋𝑓1𝑡
2𝑑𝑡 = 2 and

in case you did not memorize it already. 

So, we need to multiply output values with 

these to get output psd graph.
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END


