Baseband Comm.

by Erol Seke

For the course "Communications"

Pulse Amplitude Modulation (PAM)

Simplest PAM : binary antipodal signaling

 T_b = Bit interval Bit Rate = $1/T_b$

M-ary PAM

-3A

M is selected so that

$$M = 2^{k}$$

PAM Receiver Side

If we are given an amplitude range for PAM signals we would obviously place the amplitude points as far from each other as they can be in order to minimize the decision errors

Constellation diagram for symmetric PAM

Similar placement for other waveforms/pulses?

FF-to-FF Transmission

Synchronous : clock pulses manage everything

General Communication System

SPI is a modern way to communicate between master and slave IC's on a single PC-board

First Design (Synchronous)

one of the signals arrive 0.5 picoseconds late.

(speed of e.m. wave on copper is about 2x10⁸ m/s)

Problem is : for a 1GHz clock, 0.5 ps is about half a clock cycle.

(Note: having speed of wave-travel 3x10⁸ m/s or any other does not change the point here)

Solution

Solution is to generate clock from data at the receiver.

The data signal should necessarily be designed to help perform such an operation

A Phase Locked Loop (PLL) can be used if there are enough transitions in the signal

Use of Ground as signal return

This requires that grounds at both side must have the same potential which we cannot guarantee

Differential Signaling

Receiver uses the voltage difference between two inputs.

The voltage between a signal line and the ground is not in the formula here, but we have another problem.

If there is a voltage difference between two grounds then there will be a *common mode current* on the signal lines returning from ground.

i

Capacitors to prevent CMC

Problem is different this time.

if there are long runs of 0s or 1s in the signal the receiver might loose the synchronization and/or cannot read the data.

Solution to Long Runs Problem

Data are coded in such a way that there never be long runs of Hs or Ls in the transmitted signal

A Popular Solution : *Bi-Phase* Encoding Techniques

Example : Differential Manchester

Inversion at the middle of each interval. Transition (inversion) at the beginning means 0 No transition at the beginning means 1

Bi-phase encodings somewhat increase the signal bandwidth

Uses specially selected 10 bit codes out of 1024 possible, to represent 8 bit values

Conversion table entries are selected with minimum *disparity* in mind

Disparity : Number of 1s minus Number of 0s

У	-D	+D		
000	0100	1011		
001	1001			
010	0101			
011	0011	1100		
100	0010	1101		
101	1010			
110	0110			
111	0001 or 1000	1110 or 0111		

Code table for y (3 bits in 4 bits out)

For codes with multiple possibilities, the one that reduces total disparity after combining with the code of x (5 -> 6 bits) is selected.

	5b in	6b out	t (a	abcdef)
0	00000	100111	or	011000
1	00001	011101	or	100010
2	00010	101101	or	010010
3	00011	110001		
4	00100	110101	or	001010
5	00101	101001		
6	00110	011001		
7	00111	111000	or	000111
8	01000	111001	or	000110
9	01001	100101		
10	01010	010101		
11	01011			
12	01100			
13	01101	101100		
14	01110	011100		
15		010111	or	
16	10000		or	100100
17	10001			
18	10010			
19	10011	110010		
20	10100			
21	10101	101010		
22	10110			
23	10111	111010		
24	11000		or	001100
25	11001			
26	11010	010110		0.01.0.01
27	11011	110110	or	001001
28	11100			010001
29	11101	101110	or	010001
30	11110		or	100001
31	11111	101011	or	010100

Example : Consider D2.6 that is 110 00010

The code for 00010 is either 101101 or 010010

and the code for 110 is 0110

We have two possibilities for output 101101 0110 or 010010 0110

if the disparity of the previous codes is + : select 010010 0110

- : select 101101 0110

Disparity of the bits output so far is called the *Running Disparity*

there is more in 8b10b than touched here but let us skip it

USB 3.0 DVI and HDMI Fibre Channel **PCI** Express **IEEE 1394b** Serial ATA **Gigabit Ethernet** SAS SSA HyperTransport Common Public Radio Interface (CPRI) InfiniBand XAUI Serial RapidIO DVB Asynchronous Serial Interface (ASI) **DisplayPort**

Async. Serial Comm. Signal

If the data is 7-bit ASCII then the 8th bit is usually a parity bit

Start bit indicates that, for the receiver, it is time to start reading data bits Stop bit identifies the end of the 8 bit sequence. Start-Stop bits are together used for synchronization

Bit Synchronization

Bit synchronization is to generate a clock signal with transitions at correct times at the receiver end, using only the incoming serial data signal.

This is usually achieved by Phase Locked Loops

Phase detector outputs a signal proportional to phase difference between internally generated clock and incoming signal.

Loop Filter is usually a low-pass filter (or integrator) which provides a long duration voltage, that represents the phase difference, to VCO.

VCO generates a clock signal centered at the fundamental frequency of incoming signal.

Clock frequency increments or decrements very small amounts according to the phase difference.

We will get back to synchronization later

Receiver Side Considerations

Effects of Noise

on binary PAM (±A antipodal signals)

Decision Errors

Binary Symmetric Channel

$$p_e = P(0 \mid 1) = P(1 \mid 0)$$

$$p_e = \int_{-\infty}^{V_t} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}} dx$$

Example

$$A=1 \qquad V_t=0$$

+1

Approximation

Since the integral $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$ cannot be calculated analytically

we either use tables or approximations

 $erf(x) \cong 1 - 1/(1 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4)^4$ for $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ example where $c_1 = 0.278393$ $c_2 = 0.230389$ $erf(x) = 1 - 2Q(\sqrt{2}x)$ $c_3 = 0.000972$ $Q(x) = \frac{1}{2}(1 - erf(x/\sqrt{2}))$ $c_4 = 0.078108$ $\int^{-1/\sqrt{2}} e^{-t^2} dt$ $\frac{2}{\sqrt{\pi}}\int_0^{-1}$ х $-1/\sqrt{2}$ $1/\sqrt{2}$

Averaging Multiple Samples Within T_{h}

Binary Antipodal PAM Error

$$x(t) = s_i(t) + \eta(t)$$

$$s_0(t) = +A$$

$$s_1(t) = -A$$

at decision instant $y_{d} = y_{x} + y_{\eta} = \int_{0}^{T_{b}} (\pm A + \eta(t))dt$ $y_{x} = \int_{0}^{T_{b}} \pm Adt = \pm AT_{b} \qquad y_{\eta} = \int_{0}^{T_{b}} \eta(t)dt$

So, if $|y_x| > |y_{\eta}|$ we make a correct decision otherwise we may have an incorrect decision

Arbitrary waveforms

If x(t) is an arbitrary waveform instead of $\pm A$

 $\pm A$ is a special case of arbitrary waveforms for which the multiplier is not required

$$R(nT_b) = \int_{(n-1)T_b}^{nT_b} x(\tau)\psi(\tau)d\tau$$

For antipodal case, this can be either $\psi(au)$ or $-\psi(au)$ (plus noise, of course)

When $x(\tau) = \psi(\tau)$ then $R(nT_b) = \int_{(n-1)T_b}^{nT_b} \psi^2(\tau) d\tau = E_b$ + noise part

When
$$x(\tau) = -\psi(\tau)$$
 then $R(nT_b) = -E_b$ + noise part

provided that the local $\psi(\tau)$ is synchronously generated at the receiver

p_e for Binary Antipodal Waveforms under AWGN

The received signal is either Ψ_0 or Ψ_1 representing binary 0 or 1. ($\Psi_0 = -\Psi_1$) Consequently the correlator output, at the end of T_b , is either E_b or $-E_b$.

Summary for Binary Antipodal Waveforms under AWGN so far

- Signal portion of correlator output, at the end of T_b , is either E_b or $-E_b$ for antipodal waveforms.
- Noise portion of the correlator output has also Gaussian distribution. Because linear operations do not change the shape of the distribution, but the variance.
- Variance of the noise portion, at the end of T_b , is the expected value of the E_n^2

where
$$E_{\eta} = \int_{0}^{T_{b}} \psi(t) \eta(t) dt$$
 (cross-correlation term)

(expected value of E_{η} is zero because noise and signal are uncorrelated)

- Probability of decision error is therefore, the area shown in the previous figure.

$$p_e = \frac{1}{\sigma\sqrt{2\pi}} \int_{E_b}^{\infty} e^{-t^2/2\sigma^2} dt$$

assuming that $+\Psi$ is sent and the decision threshold is zero (hmw: is it reasonable?)

- If the system is symmetric (antipodal and probabilities of sending 0 and 1 are equal), then it is not necessary to also calculate for $-\Psi$. (hmw: Think. what if otherwise is true?)

now, we can focus on calculating p_e

Variance of AWGN at the correlator output

Since
$$\sigma_{\eta}^2 = ExpectedValue(E_{\eta}^2)$$
 and $E_{\eta} = \int_0^{T_b} \psi(t)\eta(t)dt$
 $\sigma_{\eta}^2 = \frac{1}{T_b} \int_0^{T_b} \left[\int_0^{T_b} \psi(t)\eta(t)dt \right]^2 d\tau$ (from the definition of variance)

$$\begin{split} &\sigma_{\eta}^{2} = \frac{1}{T_{b}} \int_{0}^{T_{b}} \left[\int_{0}^{T_{b}} \psi(t) \eta(t) dt \int_{0}^{T_{b}} \psi(v) \eta(v) dv \right] d\tau \qquad \text{(used Fubini's theorem here)} \\ &\sigma_{\eta}^{2} = \frac{1}{T_{b}} \int_{0}^{T_{b}} \left[\int_{0}^{T_{b}} \int_{0}^{T_{b}} \psi(v) \eta(v) \psi(t) \eta(t) dt dv \right] d\tau \\ &\sigma_{\eta}^{2} = \frac{1}{T_{b}} \int_{0}^{T_{b}} \left[\int_{0}^{T_{b}} \int_{0}^{T_{b}} \psi(v) \eta(t) dt dv \int_{0}^{T_{b}} \int_{0}^{T_{b}} \eta(v) \psi(t) dt dv \right] d\tau \\ &\sigma_{\eta}^{2} = \frac{1}{T_{b}} \int_{0}^{T_{b}} \left[\int_{0}^{T_{b}} \psi^{2}(t) dt \int_{0}^{T_{b}} \eta^{2}(t) dt \right] d\tau = \frac{1}{T_{b}} \int_{0}^{T_{b}} E_{b} \frac{N_{0}}{2} d\tau \\ &\sigma_{\eta}^{2} = \frac{E_{b} N_{0}}{2} \qquad \text{or} \qquad \sigma_{\eta} = \sqrt{\frac{E_{b} N_{0}}{2}} \end{split}$$

since we know the variance now, we can calculate the probability of making an errorenous decisions for the symbols by looking at the output of the correlator at the end of the symbol duration

P_e for Binary Antipodal Waveforms under AWGN

Since we have tables or approximations for

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-t^2/2} dt$$

we try to make
$$p_e = \frac{1}{\sigma\sqrt{2\pi}} \int_{E_b}^{\infty} e^{-t^2/2\sigma^2} dt$$
 look like it

Putting
$$\sigma_\eta^2 = \frac{E_b N_0}{2}$$
 and $\sigma_\eta = \sqrt{\frac{E_b N_0}{2}}$ into their places in the p_e integral

and doing necessary arrangements, we get

 $p_e = \frac{1}{\sqrt{2\pi}} \int_{\sqrt{2E_b/N_0}}^{\infty} e^{-t^2/2} dt \qquad (t \text{ is just a variable, not time here})$

That is
$$p_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

The probability of making an error at the output of the correlator through measurement at the end of T_b , for binary systems that 0 and 1 are represented by two antipodal finite and equal duration waveforms (pulses)

(since we did not assume rectangular pulses, we can say that this is valid for any antipodal waveform pairs. p_e is only dependent on the energy of the pulse, not its shape)

Example

A binary transmission system uses the following waveform and its antipodal counterpart to represent binary 1 and 0 symbols respectively. On the receiver, a correlator receiver is used as shown. The correlator output signal at the fully synchronous measurement times is $y[nT_h] = R[nT_h] + \eta$

 η is the noise component whose pdf is also given below.

Calculate the probability of decision error p_e

assuming that the system is in full synchronization, symbol transmission probabilities are equal and the channel has no ISI (intersymbol interference).

Solution

In full synchronization

$$R[nT_b] = \mp \int_0^{T_b} \psi_1^2(t) dt = \mp 2 \int_0^1 t^2 dt = \mp \frac{2t^3}{3} = \mp \frac{2}{3}$$

At the decision instant, pdf's of two output possibilities will be as shown

x	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.
		-		-	. .		00000407	00000340	÷.
000	15865525	06680720	02275013	00620967	00134990	00023263	00003167	00000340	00000029
025	15268159	06362955	02143368	00578491	00124317	00021174	00002849	00000302	00000025
050	14685906	06057076	02018222	00538615	00114421	00019262	00002561	00000268	00000022
075	14118736	05762822	01899327	00501200	00105251	00017511	00002301	00000238	00000019
100	13566606	05479929	01786442	00466119	00096760	00015911	00002066	00000211	00000017
125	13029452	05208128	01679331	00433245	00088903	00014448	00001854	00000187	00000015
150	12507194	04947147	01577761	00402459	00081635	00013112	00001662	00000166	00000013
175	11999736	04696712	01481506	00373646	00074918	00011892	00001490	00000147	00000011
200	11506967	04456546	01390345	00346697	00068714	00010780	00001335	00000130	00000010
225	11028761	04226374	01304062	00321507	00062986	00009766	00001195	00000115	0000009
250	10564977	04005916	01222447	00297976	00057703	00008842	00001069	00000102	80000008
275	10115462	03794894	01145296	00276009	00052831	0008000	00000956	00000090	0000007
300	09680048	03593032	01072411	00255513	00048342	00007235	00000854	00000079	0000006
325	09258558	03400051	01003598	00236403	00044209	00006539	00000763	00000070	00000005
350	08850799	03215677	00938671	00218596	00040406	00005906	00000681	00000062	00000004
375	08456572	03039636	00877448	00202014	00036908	00005331	00000607	00000054	00000004
400	08075666	02871656	00819754	00186581	00033693	00004810	00000541	00000048	0000003
425	07707860	02711468	00765419	00172228	00030740	00004336	00000482	00000042	0000003
450	07352926	02558806	00714281	00158887	00028029	00003908	00000429	0000037	0000003
475	07010627	02413407	00666181	00146494	00025543	00003519	00000382	0000033	00000002

