Baseband Comm.

by Erol Seke

For the course "Communications"

Pulse Amplitude Modulation (PAM)

Simplest PAM : binary antipodal signaling

Binary 1

Binary 0

$$
T_{b}=\text { Bit interval } \quad \text { Bit Rate }=1 / T_{b}
$$

Instead of 2 levels (binary) M levels (M-ary) can be used.
M is selected so that

$$
M=2^{k}
$$

Symbol interval $=2$ Bit interval since 1 change transfers 2 bits

PAM Receiver Side

...1001110100...
Now we are faced with the receiver-side problems:

- How will the receiver tell individual pulses apart?
- How will it recognize/decide the symbols (bits)?
- Any optimal waveform for easing up the receiver's job?
- Spectral characteristics?
- What are the effects of noise?
- What is the optimal T ?
- Power/energy considerations?

If we are given an amplitude range for PAM signals we would obviously place the amplitude points as far from each other as they can be in order to minimize the decision errors

Constellation diagram for symmetric PAM
Similar placement for other waveforms/pulses?

FF-to-FF Transmission

Synchronous : clock pulses manage everything

General Communication System

SPI is a modern way to communicate between master and slave IC's on a single PC-board

First Design (Synchronous)

Let us assume that data and clock line lengths differ by 10 cm

one of the signals arrive 0.5 picoseconds late.
(speed of e.m. wave on copper is about $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
Problem is : for a 1 GHz clock, 0.5 ps is about half a clock cycle.

(Note: having speed of wave-travel $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ or any other does not change the point here)

Solution

Solution is to generate clock from data at the receiver.
The data signal should necessarily be designed to help perform such an operation

received data signal

A Phase Locked Loop (PLL) can be used if there are enough transitions in the signal

Use of Ground as signal return

This requires that grounds at both side must have the same potential which we cannot guarantee
What is likely to happen ?

Differential Signaling

Receiver uses the voltage difference between two inputs.
The voltage between a signal line and the ground is not in the formula here, but we have another problem.

If there is a voltage difference between two grounds then there will be a common mode current on the signal lines returning from ground.

Capacitors to prevent CMC

A transformer will also serve

Problem is different this time.
received signal
 \backsim
if there are long runs of 0 s or 1 s in the signal the receiver might loose the synchronization and/or
measured signal
 cannot read the data.

Solution to Long Runs Problem

Data are coded in such a way that there never be long runs of Hs or Ls in the transmitted signal

A Popular Solution : Bi-Phase Encoding Techniques

Example : Differential Manchester

Inversion at the middle of each interval.
Transition (inversion) at the beginning means 0
No transition at the beginning means 1

Bi-phase encodings somewhat increase the signal bandwidth

8B10B (Widmer-Franaszek 1983)

Uses specially selected 10 bit codes out of 1024 possible, to represent 8 bit values

Conversion table entries are selected with minimum disparity in mind

Disparity: Number of 1 s minus Number of 0 s
Code table for y (3 bits in 4 bits out)

y	$-D$	$+D$
000	0100	1011
001	1001	
010	0101	
011	0011	1100
100	0010	1101
101	1010	
110	0110	
111	0001 or 1000	1110 or 0111

For codes with multiple possibilities, the one that reduces total disparity after combining with the code of x ($5->6$ bits) is selected.

	5b in	6b out	(abcdef)
0	00000	100111 o	or 011000
1	00001	011101 or	or 100010
2	00010	101101 o	or 010010
3	00011	110001	
4	00100	110101 o	or 001010
5	00101	101001	
6	00110	011001	
7	00111	111000 O	or 000111
8	01000	111001 o	or 000110
9	01001	100101	
10	01010	010101	
11	01011	110100	
12	01100	001101	
13	01101	101100	
14	01110	011100	
15	01111	010111 o	or 101000
16	10000	011011 o	or 100100
17	10001	100011	
18	10010	010011	
19	10011	110010	
20	10100	001011	
21	10101	101010	
22	10110	011010	
23	10111	111010 o	or 000101
24	11000	110011 or	or 001100
25	11001	100110	
26	11010	010110	
27	11011	110110 o	or 001001
28	11100	001110	
29	11101	101110 o	or 010001
30	11110	011110 o	or 100001
31	11111	101011 o	or 010100

Example :

Consider D2.6
that is 11000010

The code for 00010 is either 101101 or 010010
and the code for 110 is 0110
We have two possibilities for output 1011010110 or 0100100110
if the disparity of the previous codes is

+ : select 0100100110
- : select 1011010110

Disparity of the bits output so far is called the Running Disparity
there is more in 8b10b than touched here but let us skip it

Where is 8 B 10 B used?

USB 3.0
DVI and HDMI
Fibre Channel
PCI Express
IEEE 1394b
Serial ATA
Gigabit Ethernet
SAS
SSA
HyperTransport
Common Public Radio Interface (CPRI)
InfiniBand
XAUI
Serial RapidIO
DVB Asynchronous Serial Interface (ASI)
DisplayPort

Async. Serial Comm. Signal

If the data is 7 -bit ASCII then the $8^{\text {th }}$ bit is usually a parity bit

Start bit indicates that, for the receiver, it is time to start reading data bits Stop bit identifies the end of the 8 bit sequence.
Start-Stop bits are together used for synchronization

Bit Synchronization

Bit synchronization is to generate a clock signal with transitions at correct times at the receiver end, using only the incoming serial data signal.

This is usually achieved by Phase Locked Loops

Phase detector outputs a signal proportional to phase difference between internally generated clock and incoming signal.
Loop Filter is usually a low-pass filter (or integrator) which provides a long duration voltage, that represents the phase difference, to VCO.
VCO generates a clock signal centered at the fundamental frequency of incoming signal.
Clock frequency increments or decrements very small amounts according to the phase difference.
We will get back to synchronization later

Receiver Side Considerations

Effects of Noise

on binary PAM (\pm A antipodal signals)

Decision Errors

ML Decision Errors for Binary Antipodal Signaling

Binary Symmetric Channel

$$
p_{e}=P(0 \mid 1)=P(1 \mid 0)
$$

$$
p_{e}=\int_{-\infty}^{V_{t}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} d x
$$

Example

$$
\begin{gathered}
A=1 \quad V_{t}=0 \\
P(-1 \mid+1)=\int_{-\infty}^{0} N\left(m, \sigma^{2}\right) d x=\int_{-\infty}^{0} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-m-A)^{2} / 2 \sigma^{2}} d x=\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-(x-1)^{2} / 2} d x \\
p_{e}=P(-1 \mid+1)=P(+1 \mid-1) \\
\frac{\mathrm{Pdf}(x \mid 1) \uparrow}{+1}{ }_{0}
\end{gathered}
$$

Approximation

Since the integral $Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2}} d t \quad$ cannot be calculated analytically we either use tables or approximations
example $\quad \operatorname{erf}(x) \cong 1-1 /\left(1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}\right)^{4} \quad$ for $\quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ where $c_{1}=0.278393$

$$
\begin{aligned}
& c_{2}=0.230389 \\
& c_{3}=0.000972 \\
& c_{4}=0.078108
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{erf}(x)=1-2 Q(\sqrt{2} x) \\
& Q(x)=\frac{1}{2}(1-\operatorname{erf}(x / \sqrt{2}))
\end{aligned}
$$

Averaging Multiple Samples Within T_{b}

Binary Antipodal PAM Error

$$
\begin{array}{ll}
x(t)=s_{i}(t)+\eta(t) & \text { at decision instant } \\
s_{0}(t)=+A & y_{d}=y_{x}+y_{\eta}=\int_{0}^{T_{b}}(\pm A+\eta(t)) d t \\
s_{1}(t)=-A & y_{x}=\int_{0}^{T_{b}} \pm A d t= \pm A T_{b} \quad y_{\eta}=\int_{0}^{T_{b}} \eta(t) d t
\end{array}
$$

So, if $\left|y_{x}\right|>\left|y_{\eta}\right|$ we make a correct decision otherwise we may have an incorrect decision

Arbitrary waveforms

If $x(t)$ is an arbitrary waveform instead of $\pm A$
we need to measure the similarity : $\quad R(\tau)=\int_{\tau}^{\tau+T_{b}} x(t) \psi(t) d t \quad \psi(t)$: waveform
Therefore, the receiver becomes
received expected

$\pm A$ is a special case of arbitrary waveforms for which the multiplier is not required

$$
R\left(n T_{b}\right)=\int_{(n-1) T_{b}}^{n T_{b}} x(\tau) \psi(\tau) d \tau
$$

For antipodal case, this can be either $\psi(\tau)$ or $-\psi(\tau)$ (plus noise, of course)
When $x(\tau)=\psi(\tau)$ then $R\left(n T_{b}\right)=\int_{(n-1) T_{b}}^{n T_{b}} \psi^{2}(\tau) d \tau=E_{b} \quad$ + noise part

When $x(\tau)=-\psi(\tau)$ then $R\left(n T_{b}\right)=-E_{b}$ + noise part
provided that the local $\psi(\tau)$ is synchronously generated at the receiver

$\boldsymbol{p}_{\mathrm{e}}$ for Binary Antipodal Waveforms under AWGN

The received signal is either Ψ_{0} or Ψ_{1} representing binary 0 or 1 . $\left(\Psi_{0}=-\Psi_{1}\right)$
Consequently the correlator output, at the end of T_{b}, is either E_{b} or $-E_{b}$.

Summary for Binary Antipodal Waveforms under AWGN so far

- Signal portion of correlator output, at the end of T_{b}, is either E_{b} or $-E_{b}$ for antipodal waveforms.
- Noise portion of the correlator output has also Gaussian distribution. Because linear operations do not change the shape of the distribution, but the variance.
- Variance of the noise portion, at the end of T_{b}, is the expected value of the E_{η}^{2}

$$
\text { where } E_{\eta}=\int_{0}^{T_{b}} \psi(t) \eta(t) d t \quad \text { (cross-correlation term) }
$$

(expected value of E_{η} is zero because noise and signal are uncorrelated)

- Probability of decision error is therefore, the area shown in the previous figure.

$$
p_{e}=\frac{1}{\sigma \sqrt{2 \pi}} \int_{E_{b}}^{\infty} e^{-t^{2} / 2 \sigma^{2}} d t
$$

assuming that $+\Psi$ is sent and the decision threshold is zero (hmw: is it reasonable?)

- If the system is symmetric (antipodal and probabilities of sending 0 and 1 are equal), then it is not necessary to also calculate for $-\Psi$. (hmw: Think. what if otherwise is true?)

Variance of AWGN at the correlator output

Since $\quad \sigma_{\eta}^{2}=\operatorname{ExpectedValue}\left(E_{\eta}^{2}\right) \quad$ and $\quad E_{\eta}=\int_{0}^{T_{b}} \psi(t) \eta(t) d t$

$$
\sigma_{\eta}^{2}=\frac{1}{T_{b}} \int_{0}^{T} b\left[\int_{0}^{T} b \psi(t) \eta(t) d t\right]^{2} d \tau \quad \text { (from the definition of variance) }
$$

$$
\begin{aligned}
\sigma_{\eta}^{2} & =\frac{1}{T_{b}} \int_{0}^{T_{b}}\left[\int_{0}^{T} T_{b} \psi(t) \eta(t) d t \int_{0}^{T} b \psi(v) \eta(v) d v\right] d \tau \\
\sigma_{\eta}^{2} & =\frac{1}{T_{b}} \int_{0}^{T_{b}}\left[\int_{0}^{T_{b}} \int_{0}^{T} b \psi(v) \eta(v) \psi(t) \eta(t) d t d v\right] d \tau \\
\sigma_{\eta}^{2} & =\frac{1}{T_{b}} \int_{0}^{T} b\left[\int_{0}^{T} b \int_{0}^{T_{b}} \psi(v) \eta(t) d t d v \int_{0}^{T_{b}} \int_{0}^{T} b \eta(v) \psi(t) d t d v\right] d \tau \\
\sigma_{\eta}^{2} & =\frac{1}{T_{b}} \int_{0}^{T} b\left[\int_{0}^{T_{b}} \psi^{2}(t) d t \int_{0}^{T_{b}} \eta^{2}(t) d t\right] d \tau=\frac{1}{T_{b}} \int_{0}^{T_{b}} E_{b} \frac{N_{0}}{2} d \tau \\
\sigma_{\eta}^{2} & =\frac{E_{b} N_{0}}{2} \quad \text { or } \quad \sigma_{\eta}=\sqrt{\frac{E_{b} N_{0}}{2}}
\end{aligned}
$$

since we know the variance now, we can calculate the probability of making an errorenous decisions for the symbols by looking at the output of the correlator at the end of the symbol duration

$\boldsymbol{p}_{\mathrm{e}}$ for Binary Antipodal Waveforms under AWGN

Since we have tables or approximations for $\quad Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} d t$
we try to make $\quad p_{e}=\frac{1}{\sigma \sqrt{2 \pi}} \int_{E_{b}}^{\infty} e^{-t^{2} / 2 \sigma^{2}} d t$ look like it
Putting $\quad \sigma_{\eta}^{2}=\frac{E_{b} N_{0}}{2}$ and $\sigma_{\eta}=\sqrt{\frac{E_{b} N_{0}}{2}} \quad$ into their places in the p_{e} integral
and doing necessary arrangements, we get

$$
\begin{gathered}
p_{e}=\frac{1}{\sqrt{2 \pi}} \int_{\sqrt{2 E_{b} / N_{0}}}^{\infty} e^{-t^{2} / 2} d t \quad \quad(t \text { is just a variable, not time here) } \\
\text { That is } p_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \quad \begin{array}{l}
\text { The probability of making an error at the output of the } \\
\text { correlator through measurement at the end of } T_{b} \text {, for } \\
\text { binary systems that } 0 \text { and 1 are represented by two } \\
\text { antipodal finite and equal duration waveforms (pulses) }
\end{array}
\end{gathered}
$$

(since we did not assume rectangular pulses, we can say that this is valid for any antipodal waveform pairs. p_{e} is only dependent on the energy of the pulse, not its shape)

Example

A binary transmission system uses the following waveform and its antipodal counterpart to represent binary 1 and 0 symbols respectively. On the receiver, a correlator receiver is used as shown. The correlator output signal at the fully synchronous measurement times is $y\left[n T_{b}\right]=R\left[n T_{b}\right]+\eta$
η is the noise component whose pdf is also given below.

Calculate the probability of decision error p_{e}
assuming that the system is in full synchronization, symbol transmission probabilities are equal and the channel has no ISI (intersymbol interference).

Solution

In full synchronization

$$
R\left[n T_{b}\right]=\mp \int_{0}^{T_{b}} \psi_{1}^{2}(t) d t=\mp 2 \int_{0}^{1} t^{2} d t=\mp \frac{2 t^{3}}{3}=\mp \frac{2}{3}
$$

At the decision instant, pdf's of two output possibilities will be as shown

$$
p_{e}=\int_{-1 / 3}^{0}\left(u+\frac{1}{3}\right) d u=\left[\frac{u^{2}}{2}+\frac{u}{3}\right]_{-1 / 3}^{0}=\frac{-1}{18}+\frac{1}{9}=\frac{1}{18}
$$

x	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.
000	15865525	06680720	02275013	00620967	00134990	00023263	00003167	00000340	00000029
025	15268159	06362955	02143368	00578491	00124317	00021174	00002849	00000302	00000025
050	14685906	06057076	02018222	00538615	00114421	00019262	00002561	00000268	00000022
075	14118736	05762822	01899327	00501200	00105251	00017511	00002301	00000238	00000019
100	13566606	05479929	01786442	00466119	00096760	00015911	00002066	00000211	00000017
125	13029452	05208128	01679331	00433245	00088903	00014448	00001854	00000187	00000015
150	12507194	04947147	01577761	00402459	00081635	00013112	00001662	00000166	00000013
175	11999736	04696712	01481506	00373646	00074918	00011892	00001490	00000147	00000011
200	11506967	04456546	01390345	00346697	00068714	00010780	00001335	00000130	00000010
225	11028761	04226374	01304062	00321507	00062986	00009766	00001195	00000115	00000009
250	10564977	04005916	01222447	00297976	000577703	00008842	00001069	00000102	00000008
275	10115462	03794894	01145296	00276009	00052831	00008000	00000956	00000090	00000007
300	09680048	03593032	01072411	00255513	00048342	00007235	00000854	00000079	00000006
325	09258558	03400051	01003598	00236403	00044209	00006539	00000763	00000070	00000005
350	08850799	03215677	00938671	00218596	00040406	00005906	00000681	00000062	00000004
375	08456572	03039636	00877448	00202014	00036908	00005331	00000607	00000054	00000004
400	08075666	02871656	00819754	00186581	00033693	00004810	00000541	00000048	00000003
425	07707860	02711468	00765419	00172228	00030740	00004336	00000482	00000042	00000003
450	07352926	02558806	00714281	00158887	00028029	00003908	00000429	00000037	00000003
475	07010627	02413407	00666181	00146494	00025543	00003519	00000382	00000033	00000002

