Baseband Comm.

Part 2

by Erol Seke

For the course "Communications"

Summary

Remember the conceptual binary antipodal transmitter/receiver (Tx/Rx) schema

Digital Integrator/Correlator

measurement and decision instants : nT_b

Output of [0, T_b] Correlator

Output of [0, T_b] Correlator

Output of $[0,T_b]$ Correlator for Noisy Input

measurement and decision instants : nT_b

M-ary Correlator Receiver

Corrolary

- 1. If M=2, then use antipodal waveforms
- 2. If M=4, then use antipodal and orthogonal waveforms
 - $\Psi_0(t)$ and $\Psi_1(t)$ are antipodal
 - $\Psi_2(t)$ and $\Psi_3(t)$ are antipodal
 - These two sets are orthogonal to each other
- 3. If M>4, then try to use as much antipodal and orthogonal pairs as you can

Reason:

The receiver is cheaper with antipodal waveforms, requiring half the number of correlators than otherwise

The performance is better with antipodal and orthogonal waveforms.

These arguments are valid for passband communication schemas too.

M-ary Matched-Filter Receiver

Now, think of a filter set that maximizes the corresponding output values at the end of finite duration waveform

Matched-Filter

Think of filter that maximizes the output value at the end of finite duration waveform $x(t) = \psi(t)$ for $0 < t < T_h$

For maximum probability of correct decision, we want this value as big as possible

It turns out that $h(t) = \psi(-(t+c))$ does the job

The question is, "what should be the value of c ?"

For rectangular pulses the filter is identical with the waveform

note that the result is the same with the output of correlator

Correlator and Matched-Filter Receivers are functionally identical

Example

Let us assume that a 2-ary PAM system uses $\psi = \begin{cases} \pm \sin\left(\frac{2\pi t}{T_b}\right), & 0 < t < T_b \\ 0, & otherwise \end{cases}$

to represent binary 0 and 1.

decision points : nT_b

Frequency Characteristics of PAM

A single rectangular pulse (Gate function)

Random binary pulse train (sum of Gate functions)

A baseband signal extending towards infinity

Frequency Characteristics of Some Waveforms

It seems that we cannot avoid sinc-like spectrums

Hmw: Try to estimate the spectral shapes for QPSK, M-QAM and 2-FSK

Waveform Shaping to Limit the Bandwidth

An ideally limited spectrum requires a waveform with infinite length

Therefore, not possible

A Compromise

i

Raise-Cosine Spectrum and Pulses

i

Raise-Cosine Filtered Rectangular Pulse Train

is the sum of several sinc-like functions (you see that the pulses are smooth)

binary ...10111001...

Property of raised-cosine : values at sinc-tops are preserved

We now obtained a binary channel signal with finite (almost) bandwidth in baseband

What should we do to have a binary channel signal in high frequencies and bandpass ?

The answer is : modulate a carrier using the baseband signal of course

