Shift Keying

by Erol Seke

For the course "Communications"

Basic PAM

If A and B has opposite signs then there will be a phase jumps at bit-value changes

Spectrum of ASK

M=4

How? : 4-ary PAM can be thought of a sum of two 2-ary PAM

Frequency Shift Keying (FSK)

Use different frequency values (finite number of) instead of different amplitudes

Example : Binary FSK

Binary 1 is represented by a sinusoid with frequency f_{1} Binary 0 is represented by a sinusoid with frequency f_{2}

Note: Amplitude does not change, phase is not an issue

2-ary FSK can be thought of the sum of two 2-ary ASK

Phase Shift Keying (PSK)

Use different phase values (finite number of), and we get PSK

Example : Binary PSK (BPSK)

Binary 1 is represented by a sinusoid with 0 phase
Binary 0 is represented by a sinusoid with phase π

$$
B P S K(t)=A \cos (2 \pi f t+\varphi+s(t))
$$

$s(t)= \begin{cases}0 & \text { forbinary } 0 \\ \pi & \text { forbinary } 1\end{cases}$

Carrier with phase φ

Carrier with phase $\varphi+\pi$

Note: Amplitude and frequency do not change
Note2: BPSK is the same as Binary ASK when amplitudes are $-A$ and $+A$

Spectrum of 2-ary PSK

Note2: BPSK is the same as Binary ASK when amplitudes are $-A$ and $+A$

Spectrum of 4-ary PSK

That is, there are 4 phases ($\pi / 2$ apart) instead of 2 (π apart)
Think of 4-ary PSK as the sum of two 2-ary PSK and verify the following

It seems that this sinc spectrum will always be with us in communication
Hmw : Check the spectrum of PSK of a general $M=2^{k}$ (k:integer)

Cosine and Sine are Orthonormal

A sinusoidal signal with any phase (at frequency f_{1}) can be obtained by a weighted sum of these basis waveforms $\psi_{1}(t)$ and $\psi_{2}(t)$

BPSK

2D constellation diagram

A binary stream

For easier drawing, example shows 1 carrier period per bit.
Phase changes There need not be any relation between them.

Differential BPSK

Advantage : Non-Coherent Detection is possible

Changes can be easily detected even when there is no reference carrier

Disadvantage : A bit error affects detection of all remaining bits

Generation of M-PSK

Remember the efficiency statement in the baseband receiver block diagrams

(to be continued)

Quadrature PSK

Symbol	Binary	Signal	I	Q	
S 1	00	$\cos \left(2 \pi f_{c} t\right)$	1	0	
S 2	11	$\cos \left(2 \pi f_{c} t+\pi\right)$	0	1	0
S 3	01	$\cos \left(2 \pi f_{c} t+\pi / 2\right)$	0	-1	
S 4	10	$\cos \left(2 \pi f_{c} t-\pi / 2\right)$		0	1

QPSK

| Symbol | Binary | Signal | I | Q |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S 1 | 00 | $\cos \left(2 \pi f_{c} t+\pi / 4\right)$ | 0.707 | 0.707 |
| S 2 | 11 | $\cos \left(2 \pi f_{c} t+5 \pi / 4\right)$ | -0.707 | -0.707 |
| S 3 | 01 | $\cos \left(2 \pi f_{c} t+3 \pi / 4\right)$ | -0.707 | 0.707 |
| S 4 | 10 | $\cos \left(2 \pi f_{c} t-3 \pi / 4\right)$ | 0.707 | -0.707 |

QPSK (sum of two BPSKs)

Binary	Signal		I	Q
000	$\cos \left(2 \pi f_{c} t\right)$		1	0
001	$\cos \left(2 \pi f_{c} t+\pi / 4\right)$		0.707	0.707
011	$\cos \left(2 \pi f_{c} t+\pi / 2\right)$		0	1
010	$\cos \left(2 \pi f_{c} t+3 \pi / 4\right)$		-0.707	0.707
110	$\cos \left(2 \pi f_{c} t+5 \pi / 8\right)$		-1	0
111	$\cos \left(2 \pi f_{c} t+7 \pi / 8\right)$		-0.707	-0.707
101	$\cos \left(2 \pi f_{c} t+9 \pi / 8\right)$		0	-1
100	$\cos \left(2 \pi f_{c} t+11 \pi / 8\right)$		0.707	-0.707

8-PSK
(bit assignments are different than shown in previous slide)

$$
\left.\begin{array}{l}
\operatorname{Ir}=\left[\begin{array}{lllrrrrr}
1 & 0.7071 & 0 & -0.7071 & -1 & -0.7071 & 0 & 0.7071
\end{array}\right] \\
\operatorname{Qr}=\left[\begin{array}{llllll}
0 & 0.7071 & 1 & 0.7071 & 0 & -0.7071
\end{array}-1-0.7071\right.
\end{array}\right]
$$

Modulated I

Modulated Q

PSK

QAM

1024-QAM

64-QAM (from IEEE-802.1a-1999)

How these signals are generated will be discussed in OFDM

END

