Examples

by Erol Seke

For the course "Communications"

Question: The following constellation diagram is used in a transmitter. Symbol rate is 10 Msps and the carrier frequency is 20 MHz . Determine the output signal for the binary stream 0011010110. Determine probability of detection error for a perfect receiver assuming that probabilities of sending all symbols are equal.

$$
\begin{aligned}
& f_{c}=20 \mathrm{MHz} \\
& R_{s}=10 \mathrm{Msps}
\end{aligned}
$$

We have 4 waveforms representing 4 symbols

Each waveform lasts two periods of carrier, because carrier frequency is twice the symbol rate.

The generated signal for the symbol stream 00-11-01-01-10 will then be

How will the correlator receiver work?
At the end of each symbol period, i and q will be available at the output of the correlators. The decision circuit will compare them to the expected (i,q) pairs and output the symbol whose expected (i, q) is closest to the received pair.

The expected (i, q) pairs are;

$$
\begin{array}{ll}
i_{00}=\int_{0}^{T_{s}}\left[\cos \left(2 \pi f_{c} t\right)\right]^{2} d t=\frac{T_{s}}{2}=0.5 \times 10^{-7} \quad q_{00}=0 \\
i_{01}=0 & q_{01}=-0.5 \times 10^{-7} \\
i_{10}=0 & q_{10}=0.5 \times 10^{-7} \\
i_{11}=-0.5 \times 10^{-7} & q_{11}=0
\end{array}
$$

Look-up table

sym	\mathbf{i}	\mathbf{q}
00	0.5×10^{-7}	0
01	0	-0.5×10^{-7}
10	0	0.5×10^{-7}
11	-0.5×10^{-7}	0

Let us now assume that QPSK is the summation of two BPSKs having carriers that are orthogonal (90° phase difference) to each other.

Assuming that the symbol probabilities are equal, than $p_{e-Q P S K}=p_{e-B P S K}$ p_{e} : probability of bit error

Question: An OFDM system uses 11 carriers one of which is a pilot carrier at 100 MHz . Null-to-null BW of each sub-channel is 1 MHz and all employs $64-\mathrm{QAM}$. A $0.2 T_{s}$ cyclic prefix is used. What is the physical bit rate?

100

Solution:

Sub channel half BW is $500 \mathrm{kHz}->$ sub-channel symbol rate is $1 /(500 \mathrm{kHz})=2 \mu \mathrm{~s}$.

64-QAM -> 6 bits per sub-symbol. $6 \times 10=60$ bits/symbol.
$(60$ bits $) /(2 \mu \mathrm{~s})=30 \mathrm{Mb} / \mathrm{s}$

In case we do not use cyclic prefix;
The bit rate would be (60 bits) $/(5 / 3 \mu \mathrm{~s})=36 \mathrm{Mb} / \mathrm{s}$
That is, cyclic prefix clearly reduces channel efficiency. So, why do we use it? answer: to reduce ISI

Question: A 20 Mbps binary stream will be transmitted. Design an example OFDM system with all the bells and whistles (that we are aware of already) and describe it?

Solution: we need to decide on several parameters since this can be done in several different ways.

Let $\mathrm{N}=32$ (easier DFT/IDFT)
Let DC component is used as a pilot carrier
Let symbols are 100 bits and each channel uses 1 to 5 bits (just to see what happens)
Let the system uses 2.4 GHz ISM band (choice?)
Let the cyclic prefix is $20 \%+$ of the total symbol duration.

Initial design block diagram:

$20 \mathrm{Mbps} / 100$ bpsym = 200 ksymbols per second. Therefore, without cp, spectrum of each channel would be like

However, with 20% cp, it will be like

so that, $(200 \mathrm{kHz}) /(250 \mathrm{kHz})=0.8$ and/or $((250 \mathrm{kHz})-(200 \mathrm{kHz})) /(250 \mathrm{kHz})=20 \%$

Then, what will be the modulation plan for each channel?
Here, we need to find N_{x} that satisfies
$N_{\text {BPSK }} \times 1+N_{\text {QPSK }} \times 2+N_{\text {BPSK }} \times 3+N_{16 Q A M} \times 4+N_{32 \text { aAM }} \times 5=100$
where N_{x} is the number of channels that use modulation schema x.
We also need to satisfy $N_{\text {BPSK }}+N_{\text {QPSK }}+N_{\text {BPSK }}+N_{16 Q A M}+N_{32 Q A M}=31$ (plus 1 for pilot carrier)
It seems that $10 \times 4+20 \times 3=100$, that is $N_{16 Q A M}=10$ and $N_{\text {BPSK }}=20$.
Nyquist carrier will be null.

10 16QAM, 20 8PSK and 1 pilot channels

However, it is no good to use Nyquist frequency carrier for data transmission Therefore, one might choose to set 16th carrier to null and redistribute the modulation types accross the channels.

It is also safer to leave a few edge carrier locations for null carriers to prevent interference between neighboring transmissions.

Question:

An antipodal binary communication system uses triangular pulses as shown

$$
T_{b}=2
$$

$\psi(t)=\left\{\begin{array}{cc}t, & 0<t<1 \\ 2-t & 1 \leqq t<2 \\ 0 & \text { otherwise }\end{array}\right.$
and $-\Psi(t)$, of course.

Channel noise is AWGN with the spectral density of $N_{0}=0.16 \mathrm{~W} / \mathrm{Hz}$.
this is a lot of noise actually

Q : What is the probability of decision error p_{e} in the optimal receiver.

Instead of a correlator, one might use a matched-filter as the optimal receiver. Their performances are identical.

We could re-run through all the math we had in the Baseband slides.

But it is easier to just use the results we had there.

$$
p_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

So, we need to calculate E_{b} first and then p_{e}.

$$
\begin{aligned}
& E_{b}=\int_{-\infty}^{\infty} \psi^{2}(t) d t \quad=2 \int_{0}^{1} t^{2} d t \quad \text { we used symmetry here } \\
& E_{b}=\frac{2}{3} \quad \text { Joules }
\end{aligned}
$$

putting it all together, we get

$$
p_{e}=Q\left(\sqrt{\frac{2 \times 2}{3 \times 1.6 \times 10^{-1}}}\right) \quad=Q(2.887) \quad=4.46 \times 10^{-5}
$$

I used erfc function in Matlab

Let us have an inverse problem for the triangular waveform now.

Let the AWGN channel noise has the spectral density of $N_{0}=1 \times 10^{-9} \mathrm{~W} / \mathrm{Hz}$.

Q : What is the maximum bit rate for $p_{e}<0.0001 ?$

Do it as a homework.!
Hint :

1. Find the argument of $Q(x)$ function first
2. Find E_{b}

$$
p_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

3. Find T_{b}. Bit rate is the inverse of it.

Question: A 2 Mbps binary stream is first spread using pn-code generated by SSRG[8,6,5,1] with DSSS method (1 pn period per bit) and then shifted to 4 GHz using BPSK. What are the spectral properties of the resulting signal?

chip rate $=(2 \mathrm{Mbps})(255$ chips $/ \mathrm{bit})=510 \mathrm{Mchips} / \mathrm{s}$

Baseband signal spectrum

channel signal spectrum

END

