
A1. 

It is obvious that L channel is LSB-AM and R channel is USB-AM. We need to obtain USB 

for 𝑟(𝑡) and LSB for 𝑙(𝑡) and then sum them up along with the carrier. 

. 

We need 2 multipliers, three 90° phase-shifters and one 5 input adder, in order to generate 

the signal. 

 

 

A2. 

Output noise power is 

𝑃𝜂 = ∫ 10−6|𝐻(𝑓)|2𝑑𝑓
24×103

18×103
= 10−6 [∫ |

1

4×103𝑓|
2

𝑑𝑓
4×103

0

+ ∫ |
1

2×103𝑓|
2

𝑑𝑓
2×103

0

] 

where the first term is for 𝑓 = (18𝑘, 22𝑘) and the second term is for 𝑓 = (22𝑘, 24𝑘). Note 

that we moved the curves to origin so that the calculation will be easier. We can do this as 

long as we also move the signal (noise). In our case the noise is constant over the spectrum, so 

no spectral shift for noise is necessary. 

𝑃𝜂1 =
10−6

16 × 106
∫ 𝑓2𝑑𝑓

4×103

0

=
10−12

16 × 3
𝑓3]

0

4×103

=
10−12 × (4 × 103)3

16 × 3
 

=
10−12 × 64 × 109

16 × 3
≅ 1.33 × 10−3 = 1.33 𝑚𝑊 

𝑃𝜂2 =
10−6

4 × 106
∫ 𝑓2𝑑𝑓

2×103

0

=
10−12

4 × 3
𝑓3]

0

2×103

=
10−12 × (2 × 103)3

4 × 3
 

=
10−12 × 8 × 109

4 × 3
≅ 0.66 × 10−3 = 0.66 𝑚𝑊 

We did not need to calculate the second term actually, it was obvious that the bw is halved. So 

the power is also halved. The total noise power is then, 

 90°  

 fc carrier  90°  

r(t) 
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x(t) 

- 



𝑃𝜂 = 𝑃𝜂1 + 𝑃𝜂2 ≅ 2 𝑚𝑊 

Amplitude of the signal portion at 20 kHz is half of the input (from the graph). That is, 

𝑦𝑠(𝑡) = 1

2
cos(40𝜋𝑡 + 𝜑) (with irrelevant phase shift 𝜑). Power of this sinusoidal signal at the 

output is then  

𝑃𝑠 =
1

𝑇
∫ |

1

2
cos(2𝜋𝑡/𝑇)|

2

𝑑𝑡
𝑇

0

=
1

8
 𝑊 

As we know, frequency is also irrelevant, it will cancel out in calculations, hence 𝑇 is ok. 

We could calculate the signal power using 𝑃𝑠 = 𝑉𝑝
2/2 too, since it is a zero mean sinusoidal. 

Signal to Noise ratio is then, 

𝑆𝑁𝑅 =
𝑃𝑠

𝑃𝜂
=

1/8

2×10−3 ≅ 62.5 ≃ 17.9 𝑑𝐵  

 

 

 

A3. 

Code table for non-extended source is found to be 

A={a,b,c},z={0.6,0.3,0.1} => C1={0,10,11}, L={1,2,2} 

𝐿𝑎𝑣𝑔1 = ∑ 𝑧𝑖𝑙𝑖𝑖 =1.4, and the compression ratio 𝑅𝑐1 =1.4/2 = 0.7 

Code table for 2nd extension is found to be 

A={aa,ab,ba,ac,...,cc}, u={0.36,0.18,0.18,0.09,0.06,0.06,0.03,0.03,0.01} =>  

C2={0,100,101,1100,1110,1111,11010,110110,110111}, L2={1,3,3,4,4,4,5,6,6}. 

𝐿𝑎𝑣𝑔2 = ∑ 𝑢𝑖𝑙𝑖𝑖 =2.67, and the compression ratio 𝑅𝑐2 =2.67/4 = 0.6675 

 

 

 

A4. 

𝐻(𝑓) = (1 + 𝑗2𝜋𝑅𝐶𝑓)−1, |𝐻(𝑓)| = (1 + (2𝜋𝑅𝐶𝑓)2)−1/2 

At 4 kHz ⟨𝐻(4000) = ⟨(1 + 𝑗2𝜋 × 2 × 103 × 50 × 10−9 × 4000)−1 

= ⟨(1 + 𝑗0.8𝜋)−1 ≃ ⟨(1 + 𝑗2.5133)−1 = tan−1(−2.5133) ≃ −68.3∘. 

Since the sinusoidal input is advanced by 
𝜋

4
= 45∘, resulting phase of the sinusoidal is −23.3∘. 

Amplitude of the sinusoidal at the output is |𝐻(4000)| ≃ 0.37. The power of the sinusoidal 

is, then, 𝑃𝑠 =
4×0.372

2
≃ 273.8 𝑚𝑊. 

The noise power at the output, on the other hand, is 

 𝑃𝜂 = ∫ 𝑁0|𝐻(𝑓)|2𝑑𝑓
∞

0
= ∫ 10−6(1 + (2𝜋𝑅𝐶𝑓)2)−1𝑑𝑓

∞

0
 

= ∫ 10−6(1 + (𝑗2𝜋 × 2 × 103 × 50 × 10−9 × 𝑓)2)−1𝑑𝑓
∞

0
  

= ∫ 10−6 1

1+4𝜋2×10−8𝑓2 𝑑𝑓
∞

0
 = 5𝜋10−3 tan−1(2𝜋10−4𝑓)|0

∞ ≅ 2.47𝑚𝑊 

 

SNR at the output of the filter is then SNRo=273.8/2.47 ≈ 110.85 ≈ 40.9dB. 

 

 



 

A5. 

We need to extract the carrier and multiply it with the incoming signal to obtain a baseband 

and 2fc centered components. We use a LPF to extract the baseband components afterwards. 

 

 
 

It is no different than the synchronous detection of AM signal. 

 

A6. 

The noise power at the output of the filter, assuming that the noise power spectral density at 

the input is N0, is 

𝑃𝑜 = ∫ 𝑁0|𝐻(𝑓)|2𝑑𝑓
∞

0
 = 𝑁0 ∫ 12𝑑𝑓

10000

0
+ 𝑁0 ∫ (𝑓/4000)2𝑑𝑓

4000

0
 

For the second part, we took the advantage of having same power for shifted/flipped 

characteristics. 

𝑃𝑜 = 𝑁0𝑓]0
10000 +

𝑁0

40002×3
𝑓3]

0

4000

 = 𝑁010000 +
𝑁0

40002×3
40003 = 𝑁011333.33 [W] 

If it were an ideal BPF, then 

𝑃𝑜́ = ∫ 𝑁0|𝐻𝑖(𝑓)|2𝑑𝑓
∞

0
 = ∫ 𝑁012𝑑𝑓

𝐵𝑛𝑒𝑞

0
 = 𝑁0𝐵𝑛𝑒𝑞 [W]  

Since we need 𝑃𝑜 = 𝑃𝑜́, it turns out that 

𝐵𝑛𝑒𝑞 = 11333.33 [Hz] 

 

 

A7. 

We need to find the pairwise correlation coefficients. If 𝑅𝑥,0 > 𝑅𝑥,1 then we will conclude 

that 𝜓𝑥(𝑡) is more similar to 𝜓0(𝑡) than to 𝜓1(𝑡). 

𝑅𝑥,0 = ∫ 𝜓𝑥(𝑡)𝜓0(𝑡)𝑑𝑡
1

0
= ∫ 1.1 sin(𝜋𝑡) 𝑑𝑡

1

0
=

−1.1

𝜋
cos(𝜋𝑡)]

0

1

 =
1.1

𝜋
(1 + 1) =

2.2

𝜋
≅ 0.7  

𝑅𝑥,1 = ∫ 𝜓𝑥(𝑡)𝜓1(𝑡)𝑑𝑡
1

0
= ∫ 1.1 sin(𝜋𝑡) 2.4𝑡𝑑𝑡

0.5

0
+ ∫ 1.1 sin(𝜋𝑡) 2.4(1 − 𝑡)𝑑𝑡

1

0.5
  

Because of the symmetry, we can calculate the first term and double it. 

𝑅𝑥,1 = 2 ∫ 1.1 sin(𝜋𝑡) 2.4𝑡𝑑𝑡
0.5

0
= 5.28 ∫ 𝑡 sin(𝜋𝑡) 𝑑𝑡

0.5

0
 = 5.28 [

1

𝜋2 sin(𝜋𝑡) −
𝑡

𝜋
cos(𝜋𝑡)]

0

0.5

  

𝑅𝑥,1 = 5.28 [
1

𝜋2
] ≅ 0.527 

Since 0.7>0.527, we conclude that 𝜓𝑥(𝑡) is more similar to 𝜓0(𝑡) than to 𝜓1(𝑡). 
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A8. 

 2ep Q SNR  

 3

110 2Q SNR   and  5

210 2Q SNR  . 

12 3.1SNR  , 22 4.25SNR   (found approximately from tables) 

1 4.805SNR  , 
2 9.03SNR   

2

1

1.88
SNR

SNR
 .  

Assuming that the noise stays the same, this number is the power gain necessary to 

achieve BER=10-5. 

 

 

 

A9. 

In full synchronization 
2

1
0

[ ] ( )
bT

bR nT t dt 
1

2

0
2 t dt  

1
3

0

2 2

3 3

t
     

At the decision instant, pdf's for the two output possibilities will be as shown 

 
 

Assuming that the decision threshold is at 0, 𝑝𝑒 = ∫ (𝑢 +
1

3
) 𝑑𝑢

0

−1/3
= ∫ 𝑢𝑑𝑢

1/3

0
=

1

18
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A10. 

Since, for rectangular pulses, it will not make any difference in detection, we can just have an 

integrator instead of 4 correlators at the receiver. 

 
In that case, signal part of the correlator output will be 

𝐼𝑠 = ∫ 𝑆𝑑𝑡
𝑇𝑠

0

= {

−3𝐴𝑇𝑏,
−𝐴𝑇𝑏,

𝑆 = −3𝐴
𝑆 = −𝐴

𝐴𝑇𝑏,
3𝐴𝑇𝑏,

𝑆 = 𝐴
𝑆 = 3𝐴

 

This situation is shown in the figure. 

Since the integration is linear operation, we can assume that the noise part will be Gaussian, 

but we do not know its variance, yet. 

Detection thresholds should be at the halfway between symbols (ML criteria); -2ATs, 0 and 

2ATs. 

Let us assume that the noise variance is small enough so that we can also assume 

p(A|-3A)=p(3A|-3A) =p(3A|-A) =p(-3A|A)=p(-3A|3A)=p(-A|3A)=0.  

The remaining areas (one is shown gray) are all the same; 

p=p(-A|-3A)=p(-3A|-A)=p(A|-A)=p(-A|A)=p(3A|A)=p(A|3A). 

The noise part of the integration result is 𝐼𝜂 = ∫ 𝜂(𝑡)𝑑𝑡
𝑇𝑠

0
. We cannot calculate it but we can 

calculate its variance. The variance of the output noise is, by definition 

𝜎𝜂
2 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒(𝐼𝜂

2) 

𝜎𝜂
2 =

1

𝑇𝑠
∫ [∫ 𝜂(𝑡)𝑑𝑡

𝑇𝑠

0

]

2𝑇𝑠

0

𝑑𝜏 

Since we assumed that the noise is uncorrelated, we can directly write 

[∫ 𝜂(𝑡)𝑑𝑡
𝑇𝑠

0

]

2

= ∫ 𝜂2(𝑡)𝑑𝑡
𝑇𝑠

0

= 𝑇𝑠𝑁0/2 

Hence, 𝜎𝜂
2 =

1

𝑇𝑠
∫ 𝑇𝑠𝑁0/2

𝑇𝑠

0
𝑑𝜏 =

𝑇𝑠𝑁0

2
   and   𝜎𝜂 = √

𝑇𝑠𝑁0

2
  (standard deviation of noise part). 
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𝑝 =
1

√𝑇𝑠𝑁0
2 √2𝜋

∫ 𝑒−𝑢2 𝑇𝑠𝑁0⁄ 𝑑𝑢
∞

𝑢1=𝐴𝑇𝑠

 

Let us now try to make this integral look like  

𝑄(𝑥) =
1

√2𝜋
∫ 𝑒−𝑡2 2⁄ 𝑑𝑡

∞

𝑡1=𝑥

 

by changing variables 𝑢2 𝑇𝑠𝑁0⁄ = 𝑡2 2⁄ .  
(Why are we doing it?: Because we cannot calculate the integral by analytical calculus means. We need to refer 

to the tables or do numerical integration. Tables are given for 𝑄(𝑥)) 

 

We have 𝑢2 = 𝑇𝑠𝑁0𝑡2/2   and   𝑢 = √
𝑇𝑠𝑁0

2
𝑡   𝑡 = √

2

𝑇𝑠𝑁0
𝑢   and   𝑑𝑢 = √

𝑇𝑠𝑁0

2
𝑑𝑡 

 

For 𝑢1 = 𝐴𝑇𝑠 we have 𝑡1 = √
2

𝑇𝑠𝑁0
𝐴𝑇𝑠 = √

2𝐴2𝑇𝑠

𝑁0
 

Putting these into 𝑝 equation, we have 

𝑝 =
1

√2𝜋
∫ 𝑒−𝑡2 2⁄ 𝑑𝑡

∞

𝑡1=√
2𝐴2𝑇𝑠

𝑁0

= 𝑄 (√
2𝐴2𝑇𝑠

𝑁0
) 

 

The total average detection error is then 

𝑝𝑠𝑒 = 0.25𝑝(1|0) + 0.25[𝑝(0|1) + 𝑝(2|1)] + 0.25[𝑝(1|2) + 𝑝(3|2)] + 0.25𝑝(2|3) 

Since all symbol error probabilities are the same, we have 

𝑝𝑠𝑒 = 0.25𝑝 + 0.25[𝑝 + 𝑝] + 0.25[𝑝 + 𝑝] + 0.25𝑝. 

Hence, 

probability of symbol error is 𝑝𝑠𝑒 =
3

2
𝑄 (√

2𝐴2𝑇𝑠

𝑁0
)  

With the assumption that the neighboring symbols have one bit difference, we can also 

assume that bit error probability is half of the symbol error probability. 

probability of bit error is 𝑝𝑒 =
3

4
𝑄 (√

2𝐴2𝑇𝑠

𝑁0
). 

 

  



A11. 

Out of 64 carriers 1+2+5+6=14 are not used for data transmission. Remaining 50 channels 

employ BPSK, QPSK or 16-QAM. 

 

a) Null-to-null bw of each channel is 2x100ksps=200 kHz. Pilot carriers are at 99.9 and 

100.1 MHz. 26th channel position is the highest data channel carrier frequency. Since 

the carriers are positioned 100 kHz apart, it corresponds to 102.6 MHz. Similarly 

lowest data channel carrier frequency is 97.4 MHz. 

b) Maximum bit rate is obtained when all channels employ 16-QAM (4 bits/sym). In that 

case, 50x4=200 bits per OFDM symbol is obtained.  

Then, total bit rate is 200 bits/sym x 100 ksym/s = 20 Mbps. However, 25% of it will 

be lost on CP. We will have a raw bit rate of 15 Mbps.  

 

Some explanation on CP: 

It seems that we have two choices on how prefixed signal is generated in reality. Let us 

explain them with the following two baseband OFDM signal (real part only). 

 

 |X(f )|   

pilots 

nulls   f (MHz)    nulls 
... ... 

100 

data channels (50) 

100.2 99.8 102.6 97.4 

CP part original signal 

𝑇́𝑠 

t 

next 

OFDM symbol 
previous 

OFDM symbol 

CP part original signal 

Ts 

t 

next 

OFDM symbol 
previous 

OFDM symbol 



Let us keep in mind that the part shown as "original signal" is the output of IFFT, which is 

composed of several sinusoidals that are orthogonal within Ts.  

The first option increases the symbol duration, therefore decreases the symbol rate by 25%. 

As a result, bit rate is reduced by 25%. 

In the second option (the signal is squeezed in time) the symbol duration is kept the same 

but all frequencies are increased by 25%. Possibly, IFFT needs to be calculated 25% faster 

than the first option. Occupied bandwidth is also increased by 25%.  

Individual components of both time tomain signals may or may not be orthogonal when 

multiplied with a carrier unless the carrier frequency is an integer multiple of the lowest 

baseband frequency (other than DC). 

Standards usually limit the bandwidth and possible carrier frequency locations too. 

Therefore, when implementing a standard, one needs to take these into consideration. That 

is, it is not logical to leisurely select neither extension nor squeezing the time domain signal. 

Both OFDM symbol duration and bandwidth are usually given.  

 

  



A12. 

 

 
 

 

A13. 

The BW of the resulting signal when ( )x t  is spread with a code of 511 chips will be 511 

MHz. BW will be 2x511=1022 MHz when multiplied with the carrier. 

 

 
 

 

A14. 

a) Any placement of 16 symbols on the constellation would be counted as 16-QAM as 

long as there are amplitude and phase differences between them. But the generally 

accepted/used/optimal placement is shown below. 

 
Keep in mind that 16-PSK is not counted as 16-QAM since there is no amplitude 

difference between symbols/waveforms in 16-PSK.  
 

b) There are four levels on both I and Q direction. Let them be ±1 and ±3 in order to have 

uniform distances between constellation symbols. In that case, I and Q components 

(cos and sin multipliers, respectively) of the 16 symbols will be (from top-left to 

bottom-right) 

{(-3,3),(-1,3),(1,3),(3,3),(-3,1),(-1,1),(1,1),(3,1),(-3,-1),(-1,-1),(1,-1),(3,-1),(-3,-3),(-1,-

3),(1,-3),(3,-3)}.  

In table form, it will be 
symbol I Q 
0000 -3 3 
0001 -3 1 
0010 -3 -3 
0011 -3 -1 
0100 -1 3 

 y(t)   

 t   

 2√2  

 0.5  

 −2√2  

 √2  

 −√2  

I 

Q 
b3b2=00 

 
01 

 
11 

 
10 

 b1b0=00 

 
01 

 
11 

 
10 

 

symbol : b3b2b1b0 

1.929 2.951 

f

GHz 

( )xG f

2.44 



0101 -1 1 
0110 -1 -1 
0111 -1 -3 
1000 3 3 
1001 3 1 
1010 3 -3 
1011 3 -1 
1100 1 3 
1101 1 1 
1110 1 -3 
1111 1 -1 

 

 

 

 

 

 

A15. 

 
Correlator output signal part at decision instant 

2

0
cos (2 ) 

bT

n cz f t dt 1 1
2 20

[ cos(4 )]  
bT

cf t dt
0

1
sin(4 )

2 8



  b

c b

T
f T

f

6

0

1
sin(40 ) 5 10

2 8 2




       b bT T

f
 

 
2

2

( )
0

2
1

2









 

nz z

ep e dz

2

22
1

2







 
n

z

z
e dz  

Letting 
2 2

22 2


z u
, z u  and dz du , and for the lower boundary 

6

11

5 10
1.58

10






  n

n

z
u  we get 

2

2

1.58

1

2

 


 

n

u

e
u

p e du (1.58)Q . 

From tables of ( )Q x , we find (1.58) 0.056Q , that is 0.056ep . 

 

 

 

A16. 

Among the several solutions, one with two DSB modulators and a BPF is shown below. 

 

-
A 

( )f z

z

ep
nz nz

2 1110 

0.9 1.1 

f

MHz 

( )G f

1.0 



 
 

 

A17. 

X(3) and X(61) corresponds to 3rd harmonic, that is 3 times the frequency of the fundamental 

frequency. We will have 64 samples of exactly 3 periods of a real sinusoid. Imaginary part 

will be zero since the complex numbers given are conjugate of each other. +j in X(3) and -j in 

X(62) corresponds to a cosine signal shifted by +90°, meaning that it is a negative sine. 

Therefore, the output of IFFT is 64 samples of  real -sine signal.  

Experimenting in Matlab/Octave : Since Matlab indexes start from 1 instead of 0, we should 

increment the indexes to get the Matlab array indexes. That is, the array indexes will be X(4) 

and X(62) in frequency domain. 
x=zeros(64,1);x(4)=1i;x(62)=-1i; y=ifft(x); 
figure;stem(real(y),'marker','none'); 
hold on;stem(imag(y),'marker','none','color','red'); 

 

 

   
When this samples are played out 1 sample per μs, a period is completed in 64/3 μs. So the 

frequency of the sinusoidal when converted to analog will be  

3/64 [1/μs] = 3/64 MHz ≈ 47 kHz. (this answer is for y(t) in a). it should be multiplied by 2 

for b)). 
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