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The Goal

Represent information from using lesser 
amount of data that the original

Data Source Data SinkData Compression

It is actually a representation change



Representation Changes

Examples

idea words speech/voice

bits electrical signals

electrical signals binary data

states

voice

several representation changes may occur before obtaining output data

idea words speech/voice electrical signals bits electrical signals

Data with R1
Representation

Change
Data with R2

binary data

here is an example from Communications course



Chessboard

Question: how would you describe a chessboard?

1. Describe a black square
1. Tell what a square is

2. Give size

3. Describe what black is

4. Describe what filling with black is

5. …

2. Describe a white square

3. Describe an array of black & white squares

4. Describe a filling pattern

method-1

1. Describe what a pixel is
1. Describe white pixel

2. Describe black pixel

2. Describe creating a square array of pixels

3. Describe an array of black & white squares

4. …

method-2
method-3

1. …

2.  …

3. …

method-n

1. Tell the word “chessboard” because everybody knows what it is



Question: how about this one?

Question: how much detail would you require to give?

Question: Will you be giving all the information about 
cracks, scratches, view, ?

Question: What is information ?



Representation Example

True

False

States

represented by 0

represented by 1

represented by

represented by

A

V0(t)

t

V1(t)
t

B

Fact 1 : if it is always ‘True’, then nobody needs to share 
this information, that is there is no information to share

Fact 2 : Information user must know what the representation mean 
(speak same language/symbols/signals etc)



Simple Example

A sentence : "The sun will rise tomorrow"

meaning : The star that the earth rounds around will continue to 
exist and earth will continue to spin and no catastrophic event 
will occur to prevent that and our side of the earth will complete 
a considerable part of its rotation cycle, facing towards the sun. 
(probability=1)

The opposite of the above event has the probability of 0.

It turns out that there is no point of sharing this sentence as it 
does not contain any information unless the sentence has 
some epic meaning. For other meanings, of course, both 
sides must speak the same language.

So, what is information?



Information and Data

Fact : In order for an event to be counted as informative event, 
its probability must be between (0,1) excluding both ends 

So: To have a probability within (0,1) a complementing 
probability (opposite of the event) must exist 

* So that the occurring event might change in the future 

* So that the representative data might change in the future 

hate him when he ignores punctuations



Information

"Stocks will drop 0.5% tomorrow" low information (happens everyday)

"Stocks will drop 25% tomorrow" high information (rarely happens)

P(E)

I(E)

10

I(E) = -log(P(E))

I(E)P(E)

self information

information is [unit]less quantity.

But in order to compare quantities we use the base of the logarithm as if it is a unit

I(E) = -log2(P(E)) [bits]  (information value in bits)

different bases



Example

Expected grades in Communications Course (approximately)

AA : 5%

BA : 10%

BB : 15%

CB : 20%

CC : 20%

DC : 15%

DD : 5%

FF : 10%

IAA = -log2(PAA) = -log2(0.05) ~ 4.32 bits

ICC = -log2(PCC) = -log2(0.2) ~ 2.32 bits

.. so on

Meaning : When someone said "I got an AA", he/she actually transferred 
4.32 bits worth of information to us.

Question: How much information does he/she transfer by telling all the grades?

Answer: SumOf(All_Info) = Info_Student1 + Info_Student2 + ... 

= Number_of_students X Average_Info_Per_Grade?

Question: What is the Average_Info_Per_Grade?



Average Information Per Source Output

Information 

Generator
info in symbols (like AA,BA, etc.)

Since we know the probabilities, we can calculate

1

symN

avg n n

n

I p I


 (weighted average)

symN : the number of possible grades (8 in our example)

2

1

log ( )
symN

avg n n

n

I p p


 
we give it a special name : entropy of the source

which depends only on the symbol probabilities

and denote it as ( )H z where { , 1,..., }n symz p n N 

( in our example z={0.05, 0.1, 0.15, 0.2, 0.2, 0.15, 0.05, 0.1} )



Examples

We have 2 possible events : H, T with equal probabilities (like a coin drop)

2log (0.5) 1HI    2log (0.5) 1TI   and bit

2

1

( ) 0.5 1 0.5 1 1avg n n

n

H z I p I


       bit per symbol

H can be represented by binary 0 T can be represented by binary 1

Coin Drop tell the truth in binary symbols
0 : Heads

1 : Tails

Question: What if the coin is not a fair one (probs are not equal)?

example : z={0.25, 0.75}

2log (0.25) 2HI    2log (0.75) 0.415TI    bits

oops, how do we use 0.415 bits ?



Examples

We have 8 possible symbols with equal probabilities of 0.125 each

2log (0.125) 3sI    bits for each symbol (logical)

These can well be { 000, 001, 010, 011, 100, 101, 110, 111 } 

or { 0, 1, 2, 3, 4, 5, 6, 7 } or { a, b, c, d, e, f, g, h } or ... 

The point is : the symbols do not need to be represented in binary 
(although their info can be measured in bits)

However : we prefer binary since we use it all the time (in all digital systems). 
But that does not prevent us to create symbols like "01011" which 
might conveniently be represented by 01011 bit sequence. 

Question: What if the symbol information values are not integers?

Answer: No problem. That all depends on what we want to do with 
them or how we represent them.



Extensions

Extensions are constructed by having symbols together (side by side or in a bag) 

example {0,1}A 

is a 3rd extension of binary alphabet A

{000,001,010,011,100,101,110,111}B then

Why ? : To have more symbols to have more efficient representations

000 001 010 011 100 101 110 111{ , , , , , , , }u p p p p p p p p

abc a b cp p p p

example {0.25,0.75}z 

011 1 1 0.25 0.75 0.75 0.14op p p p    

Probabilities of newly created symbols are

(fixed length)



Extensions

Neither extensions nor original alphabet needs to have fixed length codes

{000,001,010,011,100,101,110,111}B 

example alphabet constructed of fixed length extensions of binary alphabet symbols

{00,01,011,1011,101,11001,110,111}C 

example alphabets constructed from variable length extensions of binary alphabet symbols

{0,1,10,11,100,101,110,111}D 

We can have infinite number of alphabets representing the same source symbol-set

Question : So, What are their differences, advantages, disadvantages etc?



Coding : Representations with Other Symbol Sets

Code-1 Code-2Symbol

1s

2s

3s

4s

5s

000

001

010

011

100

0

1

10

11

100

Code-3

1

01

001

0001

00001

Code-4

1

10

100

1000

10000

Code -5

0

01

011

0111

01111

Code -6

…

00

01

10

110

111

fixed length
variable length codes

Representing symbols (or a sequence of symbols) from a symbol set 

with symbols (or a sequence of symbols) from another set

Coding

abc... 123...

example it is also good to have

123... abc...

Question: Why are we doing it? Answer: For efficient representation



Average Code Length

Code-1 Code-2Symbol

1s

2s

3s

4s

5s

000

001

010

011

100

0

1

10

11

100

Code-3

1

01

001

0001

00001

Code-4

1

10

100

1000

10000

Code -5

0

01

011

0111

01111

Code -6

…

00

01

10

110

111

ip

0.36

0.18

0.17

0.16

0.13

1

3
symN

avg n n

n

L p l


 

1

2.29
symN

avg n n

n

L p l


 

bits for Code-1 

bits for Code-6 

so, using Code-6 is better 

Why not use Code-2 then? It looks like it will result a shorter average code length

Because Code-2 is not uniquely decodable 

when transferred consecutively
123... abc...



Unique Decodability

Let us have an information source generating symbols from the alphabet

1 2 3 4 5{ , , , , }A s s s s s

with the probabilities of  u={ 0.36, 0.16, 0.17, 0.16. 0.13 }

Assume that the source has generated the sequence of 1 2 3 1 1 5 4s s s s s s s

Coding the symbols with Code-2, we would have : 0, 1, 10, 0, 0, 100, 11 

or a binary sequence of : 01100010011

We would like to decode the sequence 01100010011 back to 1 2 3 1 1 5 4s s s s s s s

remembering that we do not have symbol separators, we see that it is impossible to 

decode it back to original

So, the Code-2 is not uniquely decodable (that means it is nearly useless)



Unique Decodability

How about using Code-6 on the same source 

1 2 3 1 1 5 4s s s s s s sSequence is

Code-6 coder output : 00, 01, 10, 00, 00, 111, 110  

binary sequence without separators: 0001100000111110  

On the receiver side we would like to decode the sequence  0001100000111110 back

0001100000111110 

0: not in table, take another bit from the stream. Remaining : 01100000111110
00: in table, so output S1
0: not in table, take another bit from the stream. Remaining : 100000111110
01: in table, so output S2
1: not in table, take another bit from the stream. Remaining : 0000111110
10: in table, so output S3

...so on and so forth, up to the end of the stream

Therefore, Code-6 is uniquely decodable although the symbols are variable length



Corollary

Code-1 Code-2Symbol

1s

2s

3s

4s

5s

000

001

010

011

100

0

1

10

11

100

Code-3

1

01

001

0001

00001

Code-4

1

10

100

1000

10000

Code-5

0

01

011

0111

01111

Code-6

…

00

01

10

110

111

ip

0.36

0.18

0.17

0.16

0.13

We need to have uniquely decodable codes with lower (than original) average code-lengths

Let us examine the previous code table again

Code-1 : uniquely decodable, Lavg = 3, fixed-length 

Code-2 : not uniquely decodable, Lavg = ?, variable-length, not instantaneous*

Code-3 : uniquely decodable, Lavg = x, variable-length 

Code-4 : uniquely decodable, Lavg = x, variable-length, not instantaneous*

Code-5 : uniquely decodable, Lavg = x, variable-length, not instantaneous*

Code-6 : uniquely decodable, Lavg = 2.29, variable-length 

The code is considered instantaneous if the symbols can be determined when their last bits are received



Minimum Average Code Length

We see that we can have infinite number of Codes that are uniquely decodable.

We also need to have efficient representation (smaller average code length) 

Question : Is there a way to find a code with minimum average code length?

Answer: Yes for block codes

block code : symbol-to-binarycode representation 

(implying that there are other (non-block) codes as well)

Coder1 2 3 1 1 5 4s s s s s s s... ...

Code blocks, each representing 

a symbol, are out Symbols are in

Code blocks have different length 

binary extensions



Symbols

Example

00

01

10

11

Prob.s

0.49

0.21

0.21

0.09

New symbols /code

?

?

?

?

We would like to determine a code for each 

symbol, which, for the given probabilities, best 

represents the self-information of the symbol.  

pi

0.49

0.21

0.21

0.09

A method : divide the pre-ordered set of probabilities into two so that sum of probabilities on both 

sides are as close as possible. Continue doing that until there is only one in each division  

prefix sides with 0 or 1 

0

1

1

1

and do it again

0

1

1

0

1

Generated code table

00

01

10

11

0

10

110

111

prefixes

Now we have code for each 

input symbol to replace with

Code is variable length and uniquely 

decodable. The method is called 

Shannon-Fano



Example

code table

00

01

10

11

0

10

110

111

0.49

0.21

0.21

0.09

0.49 1 0.21 2 0.21 3 0.09 3 1.81       

a single input bit is now represented by  

1.81 / 2 = 0.905 bits 

Notice that this distribution is actually 2nd extension of the ensemble (A,z) 

where z = {0.7, 0.3}

Shannon states that "wider the extension, better the representation" 

Let us now test this argument with the 2nd extension of the 2nd extension (or 

the 4th extension of the original binary alphabet)

pi



Example

code tableProbs

0.2401 0000 00

0.1029 0001 010

0.1029 0010 0110

0.1029 0011 0111

0.1029 0100 1…

0.0441 . 1…

0.0441 . 1…

0.0441 . 1…

0.0441 . 1…

0.0441 . 1…

0.0441 . 1…

0.0189 . 1…

0.0189 . 1…

0.0189 . 1…

0.0189 . 1…

0.0081 1111 1…

hmw: complete the table

Lavg =3.5948 bits/symbol

a single input bit is now represented by  

3.5948 / 4 = 0.8987 bits 

we see that it is getting better

The entropy is H(u) = 3.5252

so, we still have room for improvement

It is guaranteed that extensions of n>4 will 

have better representations

But cannot be lower than H



Huffman

It is proven that Huffman's code generates smallest ACL among 

dictionary-based statistical block codes

Probs

0.49

0.21

0.21

0.09

Example

Let these symbols with smallest 

probabilities be a single symbol

1s

2s

3s

4s 5s

Its probability would be 0.30

But they are actually two symbols and when its code is seen at the 

decoder we need to have a bit to differentiate them

0.21

0.09

3s

4s

0

1

additional bit

5s 0.30



Now we have three symbols. Continue combining symbols with smallest probs

and prepending differentiating bit marks.

0.49

0.21

0.30

1s

2s

5s

S7

0.51

0.21

0.09

3s

4s

0

1

0

1
6s

1.000

1

This is called a Huffman tree

Now, from right to left, follow the paths for each symbol and find assigned bits to 

them by appending each bit to the right (LSB)

4s

0.49

0.21

0.30

1s

2s

5s

S70.51

0.21

0.09

3s 110

111

10

11

6s

1.00
0

110

0

here is the Huffman code

One can create the tree first 

and assign bits later



0.49 1 0.21 2 0.21 3 0.09 3 1.81       

We see that the ACL is same as the code found using Shannon-Fano. It is 

guaranteed that Huffman method generates shorter or same length codes 

Here is an Example where two methods generate different code lengths

0.36

0.18

1s

2s

0.17

0.16

3s

4s

5s 0.13

00

01

10

110

111

0

100

101

110

111

SF Huf

( )H z =2.216

LavgSF=2.29

LavgHuf=2.28

H(z) ≤ LavgHuf ≤ LavgSF



nth

extension

Statistics
Dictionary 

preperation

Encoding

Dictionary

offline

Decoding

DictionaryBinary Data

Binary Data

Compressed 

Data
Same dictionaries

Flow of Dictionary Coding

(Compression/Decompression)



Summary

What we have seen/learned

1. Information is the entity we need to preserve/communicate

2. We measure the information using probabilities of events/symbols

3. Average information of a source is the weighted (by their probabilities) 

self-information of events/symbols

4. Average Info Per source output is called Entropy of the source

5. Unique decodability is a requirement but instantaneous decodability is 

not.

6. Block codes are the simplest but not the only coding method.

7. Efficiency of block coding can be improved by extensions.

8. ACL ≥ Entropy

Related 

∑∆-Coding



END


