# Arithmetic \& LZ Coding 

by Erol Seke

For the course "Data Compression"

## Arithmetic Coding

Any stream constructed using symbols from a fixed symbol set can be represented by a real number within a certain range. The number itself can be coded in binary.

$$
\begin{aligned}
& \text { Alphabet : } \\
& A=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \ldots, \mathrm{Z}\}
\end{aligned}
$$

Think of all the words that can be derived using this alphabet.
They all can be represented by a number within $(0,1)$.


## Example

## Example stream : BABACANCA

Alphabet :
Probabilities of symbols:
$A=\{\mathrm{N}, \mathrm{C}, \mathrm{B}, \mathrm{A}\}$
$z=\{1 / 9,2 / 9,2 / 9,4 / 9\}$

Assign probability sub-ranges to each symbol on $(0,1)$ range


First symbol : B


Second symbol: A


Expanded range
mapping of the range for BA to the first range


That is, $B A$ is a number within the range shown as red

$$
\mathrm{H}=\frac{5}{9} \quad \mathrm{~L}=\frac{3}{9}+\left(\frac{5}{9}-\frac{3}{9}\right) \frac{5}{9}
$$

Continuing this operation for the rest of the symbols in the stream, we find $L=0.504218425577384$ and $H=0.504228998069330$

Any number within this $(\mathrm{L}, \mathrm{H})$ range is the number representation of BABACANCA For example 0.50421.

In order to recover the stream BABACANCA from the number 0.50421
one needs
1- the number itself
2- Alphabet A
3- Probability set z
4- the number of symbols to generate

Compression

```
L=0.0
H}=1.
For Each Character(k) In Stream
    R = H - L
    H = L + R * H(z(k))
    L = L + R * L (z(k))
Next
Output = Any number between L and H
```


## Decompression

```
X = the coded number
Until all characters are generated
    Output symbol C from X
    R = H(X) - L(X)
    X = (X - L(z(C))) / R
Next Character
```

Problem : Long streams require higher resolution numbers. No computer can retain the desired resolution/accuracy in numbers and perform arithmetic on them.

Solution: J. G. Witten, in 1987, has proven that floating point numbers are not actually required and that binary numbers are sufficient to perform the arithmetic coding algorithm(s).

## Lempel-Ziv Coding

Advantage : Does not require preparation of a dictionary beforehand. Dictionary is prepared along the compression process.

Therefore : Compression is fast but not optimal for smaller input files. It theoretically approaches entropy-limit with larger input files.

Method : Each new symbol block refers to a previously seen block and creates a symbol block by appending a new symbol to it.

Example :
previous entries: 1. D, 2. DA, 3. DAT, 4. C, 5. CO, 6. COM, ... new entry: DATA
in this example the new word DATA is expressed by referencing a previous entry and appending the A character afterwards.
$3 A$ : means that the $3^{\text {rd }}$ entry and $A$

```
Example :
Input stream : 000110000110011100001001000010
symbol blocks: 0 00 1 10 000 11 001 110 0001 0010 00010
    no block is seen previously
```

| These separated blocks forms a dictionary (reference table) | No A |
| :---: | :---: |
|  | 00 |
|  | 100 |
| Since these are already in the file, location of a previously seen block in the file is a reference actually. | $\begin{array}{ll} 2 & 1 \\ 3 & 10 \end{array}$ |
|  | 4000 |
|  | 511 |
|  | 6001 |
|  | 7110 |
|  | 80001 |
|  | 90010 |
|  | 1000010 |
| Output (compressed file) is created during back-searching |  |

$$
(, 0)(1,0)(, 1)(2,0)(1,0)(2,1)(1,1)(5,0)(4,1)(6,0)(8,0)
$$

It might seem a very inefficient coding initially but note that larger and larger blocks are getting represented by a small number.

## Flow of Dictionary Coding

(Compression/Decompression)


## END

