Arithmetic & LZ Coding

by Erol Seke

For the course “Data Compression’

Sé%? ESKISEHIR OSMANGAZi UNIVERSITY



Arithmetic Coding

Any stream constructed using symbols from a fixed symbol set can be represented by a
real number within a certain range. The number itself can be coded in binary.

Alphabet :
A={A,B,C, D, ..., Z}

Think of all the words that can be derived using this alphabet.
They all can be represented by a number within (0, 1).

ARE AXIS BEAN ZEROED
:

&--

v \ :Number AXIS




Example

Example stream : BABACANCA

Alphabet : Probabilities of symbols :
A={N, C, B, A} z ={1/9, 2/9, 2/9, 4/9}
Assign probability sub-ranges to First symbol : B
each symbol on (0,1) range
— - 1
— - 1
A —
A —
’ L | 59
1 5/9 (3/9,5/9)
B — tp------- + Expand this range
B 54 ] 3/9 to (0,1)
L 1 3/9 B
—_— L C B 1
¢ 1L 19
1 9 N
N { 0
0




Second symbol : A mapping of the range for BA to the first range

1 L
-1 — [
A — — BA
— BA | |
Hi o .
| 5/9—
5 4 L!
— 1+ ¥° 1 319
| 3/9
C P
— 1/9 A 1/9
L 1/9 N ‘TL
0 0
0

Expanded range

That is, BA is a number within the range shown as red



Continuing this operation for the rest of the symbols in the stream, we find

L=0.504218425577384 and H=0.504228998069330

Any number within this (L, H) range is the number representation of BABACANCA

For example 0.50421.

In order to recover the stream BABACANCA from the number 0.50421

one needs

1- the number itself

2- Alphabet A

3- Probability set z

4- the number of symbols to generate



Compression

L = 0.0

H=1.0

For Each Character (k) In Stream
R =H - L

H=1L+ R * H(z(k))
L =L+ R * L(z(k))
Next
Output = Any number between L and H

Decompression

X = the coded number

Until all characters are generated
Output symbol C from X
R = H(X) - L(X)
X = (X - L(z(C))) / R

Next Character

Problem : Long streams require higher resolution numbers. No computer can retain the desired
resolution/accuracy in numbers and perform arithmetic on them.

Solution : J. G. Witten, in 1987, has proven that floating point numbers are not actually
required and that binary numbers are sufficient to perform the arithmetic coding
algorithm(s).



Lempel-Ziv Coding

Advantage : Does not require preparation of a dictionary beforehand. Dictionary is
prepared along the compression process.

Therefore : Compression is fast but not optimal for smaller input files. It theoretically
approaches entropy-limit with larger input files.

Method : Each new symbol block refers to a previously seen block and creates a
symbol block by appending a new symbol to it.

Example :

previous entries : 1. D, 2. DA, 3. DAT, 4. C, 5. CO, 6. COM, ...
new entry : DATA

in this example the new word DATA is expressed by referencing a previous
entry and appending the A character afterwards.
3A : means that the 3 entry and A



Example :

Input stream : 000110000110011100001001000010

symbol blocks: 0 00 1 10 000 11 001 110 0001 0010 0OO1O0
no block is seen previously

These separated blocks forms a dictionary (reference table) 0 O
1 00

. . . . . 2 1

Since these are already in the file, location of a previously seen 3 10

4 000

5 11

6

7

8

9

1

block in the file is a reference actually.

001
110
0001
0010
0 00010

Output (compressed file) is created during back-searching
(,0) (1,0) (1) (2,0) (1,0) (2,1) (1,1) (5,0) (4,1) (6,0) (8,0)

It might seem a very inefficient coding initially but note that larger and larger blocks
are getting represented by a small number.






Flow of Dictionary Coding

(Compression/Decompression)

Binary Data —

offline
Statistics o
Dictionary
i *| preperation
| v
nth i
extension : > Dictionary
. Encoding Compressed
Same dictionaries ! Data
................ v
...... R
Binary Data< Dictionaryle
Decoding







