
Arithmetic & LZ Coding

by Erol Seke

For the course “Data Compression”

ESKİŞEHİR OSMANGAZİ UNIVERSITY

Any stream constructed using symbols from a fixed symbol set can be represented by a

real number within a certain range. The number itself can be coded in binary.

Arithmetic Coding

Number Axis

Alphabet :

A={A, B, C, D, … , Z}

Think of all the words that can be derived using this alphabet.

They all can be represented by a number within (0, 1).

AXISARE BEAN ZEROED
………… …

Example

Alphabet :

A={N, C, B, A}

Example stream : BABACANCA

Probabilities of symbols :

𝑧 ={1/9, 2/9, 2/9, 4/9}

A

B

C

N
0

1

5/9

3/9

1/9

First symbol : B

Expand this range

(3/9,5/9)

to (0,1)

A

B

C

N
0

1

5/9

3/9

1/9

Assign probability sub-ranges to

each symbol on (0,1) range

BAA

B

C

N
0

1

5/9

3/9

1/9

0

1

5/9

3/9

1/9

mapping of the range for BA to the first range

That is, BA is a number within the range shown as red

BAA

B

C

N
0

1

5/9

3/9

1/9

0

1

5/9

3/9

1/9

Second symbol : A

Expanded range

3

9
+

5

9
−
3

9

5

9
L=H=

5

9

H

L

L=0.504218425577384 and H=0.504228998069330

Continuing this operation for the rest of the symbols in the stream, we find

Any number within this (L, H) range is the number representation of BABACANCA

For example 0.50421.

In order to recover the stream BABACANCA from the number 0.50421

one needs

1- the number itself

2- Alphabet A

3- Probability set z

4- the number of symbols to generate

L = 0.0

H = 1.0

For Each Character(k) In Stream

R = H – L

H = L + R * H(z(k))

L = L + R * L(z(k))

Next

Output = Any number between L and H

Compression

Decompression

X = the coded number

Until all characters are generated

Output symbol C from X

R = H(X) – L(X)

X = (X - L(z(C))) / R

Next Character

Problem : Long streams require higher resolution numbers. No computer can retain the desired

resolution/accuracy in numbers and perform arithmetic on them.

Solution : J. G. Witten, in 1987, has proven that floating point numbers are not actually

required and that binary numbers are sufficient to perform the arithmetic coding

algorithm(s).

Lempel-Ziv Coding

Advantage : Does not require preparation of a dictionary beforehand. Dictionary is

prepared along the compression process.

Therefore : Compression is fast but not optimal for smaller input files. It theoretically

approaches entropy-limit with larger input files.

Method : Each new symbol block refers to a previously seen block and creates a

symbol block by appending a new symbol to it.

Example :

previous entries : 1. D, 2. DA, 3. DAT, 4. C, 5. CO, 6. COM, …

new entry : DATA

in this example the new word DATA is expressed by referencing a previous

entry and appending the A character afterwards.

3A : means that the 3rd entry and A

000110000110011100001001000010

Example :

Input stream :

0 00 1 10 000 11 001 110 0001 0010 00010symbol blocks:

no block is seen previously

These separated blocks forms a dictionary (reference table)

No A

0 0

1 00

2 1

3 10

4 000

5 11

6 001

7 110

8 0001

9 0010

10 00010

Output (compressed file) is created during back-searching

(,0) (1,0) (,1) (2,0) (1,0) (2,1) (1,1) (5,0) (4,1) (6,0) (8,0)

Since these are already in the file, location of a previously seen

block in the file is a reference actually.

It might seem a very inefficient coding initially but note that larger and larger blocks

are getting represented by a small number.

nth

extension

Statistics
Dictionary

preperation

Encoding

Dictionary

offline

Decoding

DictionaryBinary Data

Binary Data

Compressed

Data
Same dictionaries

Flow of Dictionary Coding

(Compression/Decompression)

END

