
Transform Coding

by Erol Seke

For the course “Data Compression”

ESKİŞEHİR OSMANGAZİ UNIVERSITY

Assume that 𝑥 is a sequence of numbers, presumably with high correlation within.

What we mean by Orthogonal Linear Transform

𝑦𝑘 = ෍

𝑛=0

𝑁−1

𝑓𝑘𝑛𝑥𝑛

𝑥𝑛 = 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1, 𝑛 = 0, 1,⋯ ,𝑁 − 1

than, an orthogonal linear transform can be written as.

where

, 𝑘 = 0, 1,⋯ ,𝑁 − 1

𝑓𝑘𝑛 is called the transform kernel and for 𝑖 ≠ 𝑗

෍

𝑛=0

𝑁−1

𝑓𝑖𝑛𝑓𝑗𝑛 = 0 (orthogonality)

𝑓𝑘𝑛 spans the 𝑁 dimensional space ℝ𝑁
, that is …

…any possible set 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1 can be constructed by a weighted sum of 𝑓𝑘𝑛 as

𝑥𝑘 = ෍

𝑛=0

𝑁−1

𝑎𝑛𝑓𝑘𝑛 where 𝑎𝑛 are the weights

In matrix form

𝑋 =

𝑥0
𝑥1
⋮

𝑥𝑁−1

𝐹 =

𝑓0,0 𝑓0,1
𝑓1,0 𝑓1,1

… 𝑓0,𝑁−1
… 𝑓1,𝑁−1

⋮ ⋮
𝑓𝑁−1,0 𝑓𝑁−1,1

⋱ ⋮
… 𝑓𝑁−1,𝑁−1

𝑌 = 𝐹𝑋

For orthogonality and ℝ𝑁
spanning presumptions to hold, 𝑟𝑎𝑛𝑘 𝐹 = 𝑁

Inverse

If 𝐹−1 is possible (it should be because 𝑟𝑎𝑛𝑘 𝐹 = 𝑁)

𝐺 = 𝐹−1 is called inverse of the transform kernel, and

𝑋 = 𝐺𝑌 is called the inverse transform

𝑥𝑛 = ෍

𝑘=0

𝑁−1

𝑔𝑛𝑘𝑦𝑘

𝑦𝑘 = ෍

𝑛=0

𝑁−1

𝑓𝑘𝑛𝑥𝑛

𝑥𝑛 = ෍

𝑘=0

𝑁−1

𝑔𝑛𝑘𝑦𝑘

Forward orthogonal linear transform

Inverse transform

𝑦𝑘,𝑙 = ෍

𝑚=0

𝑁−1

෍

𝑛=0

𝑁−1

𝑥𝑚,𝑛𝑓𝑘𝑛,𝑙𝑚

For 2D datasets, the same properties must hold

𝑦𝑘,𝑙 = ෍

𝑚=0

𝑁−1

෍

𝑛=0

𝑁−1

𝑥𝑚,𝑛𝑢𝑘,𝑛 𝑣𝑙,𝑚

2D

If the above summations can be written as

the transform is called separable

If 𝑢𝑖,𝑗 = 𝑣𝑖,𝑗 , then the transform is called symmetric

Separable and Symmetric

If the transform is both separable and symmetric, then

The same 1D transform can be applied on the rows of the input data,

followed by the application on the columns of the resulting data

to calculate a 2D transform

2D input

1D transform on rows

1D transform on columns

2D transform result

𝑦𝑘,𝑙 = ෍

𝑚=0

𝑀−1

෍

𝑛=0

𝑁−1

𝑥𝑚,𝑛𝑒
−𝑗2𝜋

𝑘𝑛
𝑁 +

𝑙𝑚
𝑀𝑦𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑒
−𝑗2𝜋

𝑘𝑛
𝑁

1D 2D

𝑥𝑚,𝑛 = ෍

𝑙=0

𝑀−1

෍

𝑘=0

𝑁−1

𝑦𝑘,𝑙𝑒
𝑗2𝜋

𝑘𝑛
𝑁 +

𝑙𝑚
𝑀𝑥𝑛 = ෍

𝑘=0

𝑁−1

𝑦𝑘𝑒
𝑗2𝜋

𝑘𝑛
𝑁

Inverse 1D Inverse 2D

Discrete Fourier Transform

What we want from a Transform

to be useful in data compression applications

1. Simplicity in implementation

2. Availability of fast calculation algorithms

3. Possibility of implementation via hardware

4. Usefulness in separating redundant data

We want the transform to be simple enough to be implemented easily (not difficult at least)

For real time applications, the transform must be performed in real time. Read this as “low complexity”.

Hardware implementation is a huge plus, for real time applications.

It should present a reason for employing the transform in compression.

We would not use it just because it is implementable & fast & has inverse.

Discrete Cosine Transform

There exists at least 5 different formulations for DCT

𝛼 𝑠 =

1

𝑁
, 𝑠 = 0

2

𝑁
𝑠 ≠ 0

𝑦𝑘,𝑙 = ෍

𝑚=0

𝑀−1

𝛼 𝑚 ෍

𝑛=0

𝑁−1

𝛼 𝑛 𝑥𝑚,𝑛𝑐𝑜𝑠 2𝑛 + 1 𝑘 Τ𝜋 2𝑁 𝑐𝑜𝑠 2𝑚 + 1 𝑙 Τ𝜋 2𝑀

Below is the one used in JPEG compression

𝑦𝑘 = ෍

𝑛=0

𝑁−1

𝑥𝑛𝑐𝑜𝑠 𝑛 +
1

2
𝑘 Τ𝜋 𝑁

1D DCT

2D DCT

2D DCT Kernel

What we want from a Transform

Original image DCT coefficients image Inverse transform of this part

The rest are assumed zero

DCT collects energy towards lower frequency components.

Higher frequency components represent detail and edges.

When HF are removed we loose sharpness and get a blurred image

log(C{I}+1) scaledI C-1{Ix}

END

