Introduction

by Erol Seke

For the course “FPGA Structures for Digital Comm.”

(@) ESKISEHIR OSMANGAZI UNIVERSITY

Electronic Communication

LI

Channel

Transmitter - > Receiver

Transmitted Signal (infinite number of possible values

— Analog Communication

Signal’s all values are important at every point
and cannot be completely repaired when damaged

— Digital Communication \/\ﬂ

Finite number of symbols represented

° by finite number of waveforms within T

Digital Communication

Advantages :

- Mathematical/Logical Processing on the data is possible
- Therefore : higher protection against noise

- More flexible when performed using reconfigurable / reprogrammable elements
- ?

Disadvantages :

- Complexity is higher
- Higher speed devices are required

- Analog signals need to be converted/deconverted using ADC/DAC
- ?

against analog communication

General Communication System

DIGITAL Stages RF Stages
2 g ham”?':_g RSI 'S'W“;?Lcsizd'i:'ter PSK ASK FSK DSSS FHSS
fig Cvfi’tf;‘:‘;i“ ':r?ta o d_cosfneg QPSKAM FM THSS OFDM CDMA
LI interle;\’ler Y VSB DSB-SC ... PN-codes ... FDMA
E 11160110010116101101600. . . CSMA PDMA SDMA
; 1110011001 aloha mer
Other — upconverter
ADC data =ourees — antenna ...
setpressiet e Mux Pulse | Bandpass | Frequency Multiple o Transmitter
. ! Source : Channel Modulation Medulation Spreading Access
info mFormatting |—=1 ; »|Encryption |—
Encoding Encoder k4
. flf "" I' | [.‘ . ’
sampling & PGPb'TrlpII(e-DES ‘JI ;l',‘",“,‘ll,\‘"f ST :, | !
- I " v
quantization PUBIIC-KEY ... b |
delta DPCM ' gl ;
Huffman VQ interleaver | decoder | frame bit/symbol carrier pn-code/ ! AWGN BlERJ -
entropy-coding sync sync sync sync sync freq. hop i noise-figure L
jpeg mpeg RLE ... ' ; >
sync \ link-budget =2
error R ! =2
o q ‘ll"l‘l.\'\" A Py m
detection)correction VIV carrier) —
AARRNN \
S
Tt <F . Source Decryption Channel
info <4 Formatiisy-< Decoding “1pecoder De Pulse Bandpass Frequency | Multiple N
- - Mux Demod. Demod. Despreading Access
Ak deciphering
DAC decompression polarization
P Other multipath
fading ...

sinks

|—

Simplest Waveforms

PAM : Pulse Amplitude Modulation (Amplitude of the signal carries the information)

Simplest PAM (binary antipodal signaling)
Sl'(-f:'

A
S48 T, = Bit interval
T.E:
£ £
T, _
Bit Rate = 1/T,
-A
Binary 1 Binary 0
(o
4 §(0
[T, Spectrally more efficient waveform set

| p. -t I\/ "f (Pulse shape determines the spectral characteristics)
b
-A

PAM signaling is generally used in baseband channels Why?

It would have been called ASK otherwise :)

Binary PAM

Example Data : 0100110100...

Transmitted signal is a sum of the corresponding waveforms at appropriate positions

| I I 1

Transmitted signal ‘
]

LAl
Received signal \1
(bIaCk) vi,\thwh LWMh vhuh\f,r'vhwum

Problem of the receiver : Determine the 1-0 data sequence from the noisy signal

M-ary PAM

Instead of 2 levels (binary) M levels (M-ary) can be used. M is selected so that M = 2"

Exemple k=2 1001110100. .. Symbolsare2 bis

34

00
S{2)
| T
£ 10 £
11
% o £ -
T
L + [
T ||
A -A
| ¢
T
X5 Symbol interval = 2 Bit interval
a4l since 1 change transfers 2 bits
A
p T " For M-ary case
-14 T =KT,

2 bits are transmitted at each T now, but the receiver’s job is more complicated

Signal Generation for Driving Channel

baseband

S I S N I

Output buffer / Line driver

data Di, 0100110100...

QO
|
|
1
|
|
|
1
|
|
|

y
N/
o
~

D-type FF
P Channel signal
(analog signal representing digital values)

data— Digital —N
signal/sequence V'l DAC
generator clk
Analog buffer / driver

baseband or bandpass

\ 4

in some cases mixer
___________ > o X % bandpass
mixer?
_ Frequency converter
Carrier RF Modulator

Upconverter

Example

1 MHz BPSK signal is to be generated without using frequency upconversion.

bus_width
serial Digital
data signal/sequence [
generator V| DAC
+ » clk
modulator Analog buffer / driver bandpass

Let the design requirements be
Carrier frequency (center freq. of BPSK signal) = 1 MHz
Samples per carrier period = 10
Carrier periods per bit =2 5

Calculations
Sample rate = 10 x 1 MHz = 10 Msps (min for DAC and generator)

Serial Data rate = 1 MHz / samples_per_period / carrier_periods_per_bit = 1IMHz / (10x5) = 20 kbps (max)

Corollary : You need high speed digital equipment even for low data rates.
Constraints are tighter at the receiver side.

Primitive (not optimized) Sequence Generator

ROM Look-up Table

N bits

N-bit counter

Address

2Nx B

B bits

Data 7 > Waveform samples

Data A

For the previous example
Samples per carrier period = 2N

sample values in B bits

0

l » Address

since 10 is not an integer power of 2, a 16 x B ROM is used (remaining 6 locations are not used)
and the counter should count from O to 9 for the previous example (rethink efficiency/design)

BPSK on Sinusoidal Sequence

Binary Data

sample clk —*| signal/sequence

generator > BPSK (samples)

Mux

Digital > select

sign change

All these circuits, except DAC/ADC, can be implemented by digital circuits.

FPGAs are full of digital circuit primitives. Therefore these circuits can be
implemented on FPGASs.

Advantages of FPGAs ? :
- reconfigurable

- small, power efficient

- short development time

What are FPGAS ?

Field Programmable Gate Array
We have a bunch of digital circuit primitives with U}ér programmable connections
designer

There are several ways to design digital circuits on FPGAs
One option is to use a HDL

Hardware Description Language :
We describe the circuits in plain text just like a programming language.
But it is not a programming language! it is a description language.

/ VHDL Very High Speed Integrated Circuit Hardware Description Language
HDL = Verilog

\ The devices range (where HDL is used)
SystemC
PAL, PLD, EPLD, SPLD, CPLD , ASIC, FPGA
I?

In this course, we will be using VHDL

Start with a Simple Digital Example

Consider the following combinatorial digital circuit and truth table

S A B | X
B 0 0 0|0
O 0 1|0
» A
A 0O 1 0|1
O 1 1|1/
1 0 0| 0
1 0 1|1
>
1 1 0|0 B
We can describe the function as 11 171"
X = Awhen S=0, B when S=1
or
X =(Aand not S) or (B and S) or, with a switch analogy
A — - S=0
< o X
S

B

It is a 1-bit 2-to-1 multiplexer as we know

We can make other multiplexers using this basic mux.

-

S, s,

1 bit 4 to 1 mux

AO
X

A 0
A, — 4

| X,
B0
B, X,
BZ

@ S

3 bits 2 to 1 mux

By/.
A.

A, /A

B,/B

A,/C

B,/D

2to 1 X

— Configurable.!

\ N X,/.
Xo/X
_\ -
/‘J > Xol.
N\

Programmable / Configurable devices basically work just like that

In a device, we have a finite number of

1. Flip-Flops, Reqgisters

2. RAMs

3. Look Up Tables (LUTSs)

4. Gates

5. Arithmetic Units

6. MUXs

7. Other (clock managers, buses, 1/0 blocks etc)

that we can interconnect them as we wish and design the digital circuit needed

or we can use a HDL and let a compiler/synthesizer do the design and
optimization for the resource/performance balance.

Exam P le (Xilinx-Spartan3E structure)

SHIFTIN cout . - . . .
I N L] L] L] L] L]
N . . . N
CrSER ovwuxa - g) Rt — 5 \\\ I T T N e T |
FXINA >] ey MU 1 || XoY3 | X1Y3 |I]] X2Y3 || X3Y3 || e e e
FXINE > LHXORG v = Sllce N 1 [|
; N — | [I
o o s =D];D = | =1 xovz || x1v2 |ij| xevz|[Xav2 | eee
7 G-LUT DYMUX) J l_—_—_—;'::;'l l_—:_—;'_—_—;'l
S were wers o af——_=va | I |
; — FEY S XOYT || XY] X2Y1 [[X3Y1 || eee
D\G;.vt-iux ws DI\ CE :\| [|
ALTDIG 227 I I i _C:R REV] | || I
1 |] || XOYO || X1Y0 ||| X2Y0|[X3Y0 | ewe
. (| W— | NS WU
GAND 1] 1
v [e, //’IIIIIIIIIIOBsIIIIII
° Top Portion o C L B ,I
e i !
CLK =+
snD—%
g .___W;vse ,’I : .
o x Y Device RAM Blocks | #bits
IR s K XC3S100E 4 73,728
i Common Logic ,I
? J XC3S250E 12 221,184
. L o S e /l XC3S500E 20 368,640
T e g o g XC3S1200E 28 516,096
T 4D]:D . XC3S1600E 36 663,552
Fl4:1] Ard:1] D II
F-LUT e OXMUX S Rev /’
: WF[1] MC15 B 0 a7 =X N
— FFX / CLB LUTs/ | Equivalent [RAM16/ |Distributed
gi ! Device Total |Slices |Flip-Flops |Logic Cells| SRL16 | RAM Bits
CYOF
] /| XC3S100E 240 960 1,920 2,160 960 15,360
;%; . CYINIT ,’I XC3S250E 612 |2,448 | 4,896 5,508 2,448 39,168
BX = P pe— eexoutl S| XC3S500E | 1,164 | 4,656 | 9,312 10,476 4,656 74,496
Y g ! XC3S1200E | 2,168 | 8,672 | 17,344 19,512 8,672 138,752
SHIFTOUT CIN ,
XC3S1600E | 3,688 |14,752| 29,504 33,192 14,752 236,032

.-
Exam P le (Altera-Cyclone Il structure)
.
o Register Chain
___________ Bouting From
Previous LE
+—» ' LAB-Wide Register Bypass
\ LAE Carry-In Synchronous
. N Load LAB-Wi Programmatie
\ icle acked Register
I_ A B s Synchronous Regisfar Select
™ \ L E Clear
L] \\ A4 L J Y
v g‘lt:;—h Lokl N Synch . -_“-—--.. Raow, Column,
X ata2————————— . - ~ ' And Dirsct Link
= o AR i v i TN e R g i
\ LU - ear Logi
- N datad e - tn J7 9 =
\ — | EMA
< 2 CLAN — Row, Column,
ICEs o —= And Direct Link
[L Raouting
|;z | | | T labelri —
labalrz —= Asynchronous .'I __..-_""
Embedded - { i
Multipliers N Chip-Wide Clear Logic / n—i-_,__.]_’ Local Routing
Reset —f f
L (DEV_CLRn) o o
\ ! egister Chain
S Clock & Ragisier Qutput
| Clogk Enabie Fepaback Hipu
Logic Legic Logic Logic \ labalk1 P
OEs Array Array Array Array OEs AN I:bzlkz > }
\‘\ labelkenat . 7
MK MK | labelkena2 ———p |
Blacks | «Blocks \ L LAB Carry-Out
m m Device M4K Blocks Total RAM Bits
IOEs
Fealure EP2C5 EP2C8 EP2C15 EP2C20 EP2C35 | EP2C50 | EP2CT0 EP2Cs 26 119.808
LEs 4.608 8,256 14,448 18,752 | 33.216 | 50,528 | 68,416 EP2C8 36 165,888
M4K RAM blocks (4 26 36 52 52 105 129 250 EP2C15 52 239,616
Kbits plus EP2C20 52 239,616
512 parity bits
Total RAM bits 119,808 165,888 239,616 239,616 483,840 | 594,432 | 1,152,00 EP2C35 105 483,840
0 EP2C50 129 594,432
multipliers ! !
PLLs 2 2 4 4 4 4 4

It may not be what it looks like

Combinatorial functions are usually implemented with look-up tables

this is the function you want

X=(Aand not S) or (B and S)

this is the truth table implemented

S A B | X
O 0 0O
O 0 1,0
O 1 0|1
O 1 1|1
1 0 0|0
1 0 1|1
1 1 0| O
1 1 1|1

>

>

A

B

B —
A —
S
Adr-2,

Adr-1.| 8 bit ROM
LUT

Adr-0

this is the circuit you expect

this is what you get

Dout

> X

So, no matter how complex your function is
it is as simple as a look-up rom with 2N addresses
with N being the number of variables in the function.

Steps of VHDL Design Flow

—______———__
—

-
-

- \
- \
I/ \|
! Write VHDL code Libraries
: Compile
Synthesize

'

Implement for Device

l

Generate FPGA Configuration File

\ l
\
\
\ Program and Test

—_ e o ===

Since we have Spartan3E kits in the lab. we will be referring Xilinx ISE tool from now on, remembering that other
vendors/manufacturers provide similar tools too. Tools for the steps mentioned here are mostly device/vendor specific.

Hello World

Consider the MUX
entity mux2tol is

A | Port (A : in BIT;
B : in BIT;
2tol X S : in BIT;
B] X : out BIT);
end mux2tol;

BIT type signals can assume one of two values : O or 1

How about the behavior of the mux box?

architecture Behavioral of mux2tol is
remember begin

X = (Aand not S) or (B and S) ™ X <= (A and not S) or (B and S);

end Behavioral;

after synthesizing we get B> 2 :D

AMDZ OR2

g — T
—

AMDZB1

How we do it using ISE tool (ver 14.7)

Stark ~+0&x "™ ISE Project Navigator (P.20
Start I S E Welcome to the ISE® Design Suite File Edit Wiew Project Source

Project commands

Mew Praoject...
Cpen Project. .. | Project Browser... | Or Open Project...
_________ Mew Project... | Open Example. .. | Open Example. .. R
. T Praject Erowser. ..
Create a new project named mMuX2tol ' seexsoes
"™ New Project Wizard

Create Mew Project
Specify project location and tvpe,

—Enker a name, locations, and comment for the project

Marne: Imux2t01

Location: | CiiUsersiUser\DocumentsiYHDL_Projectsimuz2tol

Select your VHDL projects folder. __ .
It will come up automatically
everytime you create a new project.

N

——— P
w'orking Directory: |C:'l,LIsers'l,LIser'l,Dcu:uments\,VHDL_Pru:ujects'l,mutho1

=il My First YHDL project 1 1]

An ISE project file is a text file

consisting of names/references of
* VHD source fileS, constraints ﬁleS, —Select the bvpe of top-level source For the project
implementation specifiers etc.

Top-level saurce bype:

[=

More Info Textk = Cancel
_torero | | |
Click Next

@ Select your device

If you cannot find your board in this
list, select ‘none specified’ and just
select your FPGA chip

These should be as shown here ~ < _ | |

"™ New Project Wizard

Project Settings
Specify device and project properties,

—Select the device and design Flow For the project:

Property Mame Yalue
Evaluation Development Board -
Product Categary All ;I
- Family Spartan3E LI
Dievice HCASE0E =l
Package FE320 =l
Speed -4 =
Top-Level Source Tvpe HEL LI
Synthesis Tool #3T (YHDL Yerilog) ;I
Sirulatar 15in (¥HOL fverilog) |
Preferred Language WHDL LI
Property Specification in Project File Store all values LI
Manual Compile Order —
YHDL Source Analysis Standard WHDL-93 |
Enable Messane Filtering —

More Info | < Back | ek = I Cancel

Click Next

and click ‘Finish’ on the Project Summary dialog box

Design

@ Create a source file £

<08 x
Yiew: (%]:l"E:E Irnplermentation &6 Simulation

EE' Hietarchy -
HIEJ 'C'ﬂ muxZkal
Source file is a text file with *.vhd extension | e
where you put your VHDL code - Empty View
& § Theyigw || JUCERSENTRENS
L AfilgEry
_EL - Sroﬁecfsz Add Source...

. . . ans) =] d [{z] Add Copy of 5
Right-Click on an empty space in the ‘Hierarchy’ - - - e
pane of the ‘Implementation’ view of the ‘Design’
tab. Click ‘New Source...’

Select Source Type
Select source bype, Ffile name and its location.

Slnce we are Cl’eatlng a VHDL source i IP (CORE Generator & Architecture YWizard)
file, we should select ‘VHDL Module’ £ Shematie
here S < Yerilog Madule
' N - Werilog Test Fizture
a File marne:
P | WHOL Package _ 'Imuthnl
YHOL Test Bench - T—
Embedded Processor - =
_ - - IC:'l,Users'l,User'l,Dl:n:uments'l,\-'HDL_PrDjects'l,mutho1 gI
Enter new source file name. e
Any valid file name is ok, but be vise.
v add to project

- - V
- -
More Info | _ - - Mext = I Zancel
-
- -

this should be selected, otherwise you __--~
need to add the file to the project later.

Click Next

@ Define ports of the entity

The convention is to create a e e for modu,
source file for each entity (circuit).
Here you may define inputs/outputs e |“’”>‘2th
Of th|S entlty Architecture name IBehaworaI
Port Mame Direction Bus MSE LSE |~ |
A in O
B in = O
. . . 5 in =0
Since source files are text files, X 5T 10
many coders skip this step and in j' g
insert/edit the port description by -~ <0
hand. in =0
in O i
in LI O
in ~|r LI
Mare Infao | < Back | Mext = I Cancel |
Default signal type is STD_LOGIC.
entity mux2tol is
Port (A : in STD LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC;
X : out STD LOGIC) ;
end mux2tol; Click Next

and click ‘Finish’ on the Summary dialog box

We now have a source file editor window with entity description, some
comments and library definitions and an empty architecture section.
Architecture section is where you describe your circuit’s behaviour.

@ Edit/Insert VHDL Code library IEEE;

use IEEE.STD LOGIC 1164.ALL;

entity mux2tol is
Port (A : in STD LOGIC;
B : in STD LOGIC;
S : in STD LOGIC;
X : out STD LOGIC);
end mux2tol;

architecture Behavioral of mux2tol is

begin
Insert logical expressions here === =--—-=-- * X <= (A and not S) or (B and S)
(between begin and end keywords of
Architecture section) end Behavioral;

Click Save icon

When saving, automatic syntax check is performed. Watch Console for error messages

@ Syntax Check

You can also check syntax by right
clicking on the Check Syntax item in
Design Tab and selecting Run,
or double click on Check Syntax

If there is an error you will see it on the
Check Syntaxitem---_ _ _ _
and in the Console.

=
- -
e
- -

—
o
—
—

z9

g | 2 MoProcesses Running 20
I%lt Processes: muxZtol - Behavioral 31
ﬁt > = Design Summary /Reports 3a
il N8 Deesign itilities 33
FJ:J: -- IUser Constraints 34
— | = P2 synthesize - %57 £k
" [Z] view RTL Schematic 36
; Wiew Technology Schematic g;

‘Check Synkax

Generate Post-Synthesis Simul

Implement Design
----- 2 Gererate Programming File
-~ =N - - - P

Design Lkilities
User Constraints
Synthesize - ¥5T
i Wiew RTL Schematic
% View Technology Schematic

F2@ check Syntax

—--1likn
—--use

encice
P

end rm

ReRumn
Rerun al

7’ L-P) Generate Post-Synthesis Simula...
’ s - 83 Implement Design
'
7
7’
Console ‘
QERRCR:HDLParsers: 164 - "C:/Users/User/Documents,/ VHDL Projects/muxdtol/muxatol . whd"™ Line 45. parse error, unexpected END, expecting SEMICOLON

Frocess "Check 3yntax"™ failed

This time, the syntax error is caused by a missing ; in X <=

Do corrections and repeat Syntax Check until you see

the green syntax validation checkmark

.

(A and not S)

. G0
i

or

(B and S)<:>

-F) Synthesizs - 5T

Wigw RTL Schematic
Wigw Technology Schematic

-0

Check Syntax
Generate Post-Synkhesis Simula...
Implement Design

p= | P2 MoProcesses Running

. % Processes: mux2kol - Behavioral I
Synth eS I Z e B = Ciesign Summary/Reparts

'_{: G- A Design Ltilities
N - 7 User Constraints
= — = » — | RS
____________ ul 1 view RTL schematic Tl
== . - |F] Wigw Technology Sc Refun
Synthesizing means that your code is QO e ol

realizable by logic components.
(but it does not mean that it is physically realizably
within your device (FPGA) and VHDL rules)

Generate Post-Synl
- c}_ . - . Y :f Shmm

You should see the green checkmark on Synthesize item too after synthesizing

Now we need to implement a physical circuit for our selected device from this workable
circuit description

It is imperative to define actual input output pins for a correct implementation as our design
Is a complete circuit and wee need to test it by applying actual signals to the inputs and
monitoring the outputs.

Therefore, we need to tell "which signal goes to which pin of the device" before this step.
We do this by creating a constraint file.

Design +05F X |

@ P I n Con n eCtI ons [| Miew: = 18} Implementation ¢ & simulation »

ﬁg Hierarchy
o - B muxztol -
“[i_J E}é;g %c3s500e-4fg320
i nﬁnémuﬂtnl - Behavioral (mux2kol wh
== g' > B} Mew Source..
—————————————— _ —. Add Source, .
Create a new source as done before but this time select Eﬁ] Copy of Sounce..
‘Implementation Constraints File’ on the dialog box -
N N\
N\
N
N
N Select Source Type
N \ Select source type, file name and its location,
N\
N \ EIMM File
N &% Chipscope Definition and Connection File
\ Implementation Constraints File

¥
[IP (CORE Generator & Architecture Wizard)

MEM File

Schematic

User Document

Verilog Module Imux2t01

verilog Test Fixture

.| WHOL Module

YHOL Library IC:'|,Users'l,User'l,Documents'l,\-'HDL_Projects'l,muxztn1 _I

YHOL Package

YHOL Test Bench

Embedded Processor

Eile name:;

Location:

IV add to project

Mare Info | Mext = I Cancel

Click Next
and click ‘Finish’ on the Summary dialog box

we will see a new editor window named as mux2tol.ucf (User Constraint File)

User Constraint File is a text file used for describing various constraints.
There is a complete book on the possible contents of this file.
This time we are just interested in pin connections.

X (LED)

Enter the following lines in the window and save it.

NET "A" LOC = "H18" ;
NET "B" LOC = "L14" ;
NET "S" LOC = "N17" ;
NET "X" LOC = "F12" ;

It tells the implementor to connect the 1/Os of
our multiplexer to the physical switches and TS
LEDs on our Spartan 3E Evaluation Board. S A B switches

For example: A is the signal name, H18 is the pin number of the FPGA which is physically connected to the second
switch on the board

Note : Instead of editing UCF as described above, you may also enter the following into the
declaration part of the architecture section of the VHDL file. Differences will be mentioned later.

attribute LOC: string;

attribute LOC of "A" : signal is "H18";
attribute LOC of "B" : signal is "L14";
attribute LOC of "S" : signal is "N17";

attribute LOC of "X" : signal is "F12";

- 2 -- ser Conskrainks
Implement Design i E..Ef svmhesne - o
M Yiew RTL Schematic

Wiew Technology Schematic

{}O Check Syntax

.....

Generate Post-Synthesis Sinmula...
. . ——— TImplernent Design
Now we can implement the design - - e A
B 2 Map RERUN
- t2 . F‘Iaze E:Route Rerun 4
enerate Programmil
rh 30 i e T P 2 Stoo

Sl Bl e | SN I e S

EI E]O Implement Design
@

and create the programming file ~ - _ _

Cunflgure Target Dewce w

L@ Analyze Design Using ChipSco RERUR
Rerun Al

S Stop

Programming File is a binary file with *.BIT extension.

This file will be loaded onto FPGA through FPGA's programming pins.

Our Spartan 3E Starter Board has a USB programming feature

through which this file can be sent.

For this purpose, we will be using IMPACT program which can be

initiated by Configure Target Device item. —____ - PAE) Generate Pragramming File |

(IMPACT can also be started externally) el = Confioure Target Device
e 38 finalyze Design Using Chip W

Ferun Al
EM ~o__

@ Connect your board to your PC using its USB cable

Turn on the board

—
—
—
—
-~ -
=
=
—
=

and wait for the cable drivers to install

@ Putting Your Design Into FPGA

This warning is OK to
dismiss
Double Click on Boundary Scan

N
N

to USB port of PC

AN E ISE iMPACT {P.20131013) - [Boundary Scan]
~ @ File Edit Wew Operations OCutput Debug

v 102 a6 = x all= ol

NMPACT Flows

—+ [0 F x

i gal Boundary Scan
i [2] Systemace

Bl |2] WebTalk Data

i | 2] Creske PROM File (PROM File Formatter)

power

——
—
o
—
—

" Warning X]

o iMPACT project file exists. Click CF bo open iMPACT, You will then need to define a
configuration chain, designate which device in that chain is the target device, and then
save the MPACT project file. Once this step is completed, subsequent runs of the

- 'Canfigure Target Device' process can program the target device withaut needing to open
the iMPACT GUI.
Right click to Add Device or Indtialize JTAG chain
Add zilinx Device, .. k4D
Add Mon-ziline Device... Cerl+k
Initialize Chain CEFI+T
P Cable Auto Connect
-
g Cable Setup...
-
-
- Dukput File Type 3

Right Click on the blank window and select Initialize Chain to search for devices on the board

We should see the devices on the board in a chain configuration.
We also see a warning message about the configuration file(s). This time we will asssign the
configuration file manually, therefore, dismiss this dialog box and the next one.

MPACT Flows +0&8 X

[+ ‘5gl Boundary Scan

o [2] SystemacE

i 2] Create PROM File (PROM File Formatter)
(- 2] webTalk Data

iMPACT Processes +0&8 X

Available Operations are:

= et Device ID

=P Gek Device SignaturefUsercade
=P Fead Device Status

TEBFLBED
H-
T ﬁ | e E XU
wc3eai0e wcflds xc2chida
bypazs bypazs bypaszs

TOO

\"I Do ywou wank ko continue and assign configuration files(s)r

¥ port show this message again, save the setting in preference.

Yes Mo

For the Spartan 3E Starter Board, there should be 3 programmable devices in the chain.
The first one (xc3s500e) is the FPGA device and the one we are to program.

Click on xc3s500e to select device. Right click and select Assign New Configuration File...

E Assign New Configuration File

(j) C) |~ vHDL Projects ~ muxztal - v &3 [search mucator ¥
Organize * New folder HE - E:l '@'
= Favorites 21 Mame ~ | Date madified | Type
B Deskiop J _ngo 26.09.2016 10:54 File: Folder
& Downloads | _xmsgs 260020161102 File folder
izl Recent Flaces | ipcore_dir 26.00.2016 08143 File: Folder
ﬁ Libraties . iseconfig 26.09,2016 09:05 File Folder
3 Documents 2 xlnx_auto_0_xdb 26.09,2016 10:54 File Folder
J“. TMusic) wst 26.09,2016 10:16 File folder
= Pictures B usczton b 26.09,2016 11:02 BIT File
E Videos e = — o Tvpe: BIT File
T PreTIITRE ™ = = = - R
18 Cornputer Dake modified: 26.09.2016 11:02

& sk (C:
e sl

File narme: | muxitoLbit

| | Design Files kit %ot *.nky =]

Open |v|

Cancel

Find and select mux2tol.bit file and click Open

1

1

;“‘““E |

! o xumee 1
Get Device ID !
Get Device §ignature,|'Us$'code

xe35500e
bypass

dd SPIJEFI Flash...
Assign Mew Configuration File, .

Set Programming Properties...

We should see the selected file name under the device name

SFIBET
=1

e —

F F F Attach SPI or BPI PROM x|
Ol § e § e 1§ E e i

i i i ” This device supports atkached Flash PROMs,

""""""""""" Do you wank to aktach an SPI or BPT PROM to this device?

xc3z500e xoflds xc2cBda

. Yes Mo

muzx2tal bit bypass bypass -

DO =

Y -
~ -

Dismiss the dialog box about attachment of the SPI / PROM devices by cIickin~g~No

Select xc3s500e again, right click on the device and select Program
|

-
ol Prograrm

Get Device ID
wo3e500e @t Device SignaturefUsercode |4
mux2tel bt one Step SYF

mo— I
Orne Skep XSVE
&dd SPIJEPI Flash. ..
Assign Mew Configuration File. ..
We should see the Program Succeeded message in the window Program Succeeded

We can now test our multiplexer using switches and observing the LED

warning : Please try not to load files for xcfO4s and xc2c64a devices and program them.
This will destroy their original content and disables us to use simple test feature at the power up

Reusability

We have this and want to have this A
A— | A— | B — y
2t01 X B — 14to1l X E
D—— | |
> S (2 bits) D

So 'S;

1 bit 4 to 1 mux
created using 2 to 1 muxes

1 bit 4 to 1 mux

O

] 1
i M1 internal signals i
A——Ia oo :
| g X / M3 i
! [| y A |
external connections i B X '—'—EX external connections
i M2 !
Ciia |
. —1B |

entity mux2tol is

Port (A : in STD LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC;
X : out STD_LOGIC) ;

end mux2tol;

architecture Behavioral of mux2tol is
begin

X <= (A and not S) or (B and S);
end Behavioral;

declare components here

declare intermediate signals here too —]
these are called instantiations —

optional labels

you can shape text to your taste ——

You may obviously describe a 4
to 1 multiplexer in one entity

Back to Code

entity mux4tol is

Port (A : in STD LOGIC;
B : in STD_LOGIC;
C : in STD_LOGIC;
D : in STD_LOGIC;
SO : in STD_LOGIC;
S1 : in STD_LOGIC;
X : out STD_LOGIC);

end mux4tol;

architecture mux4tol of mux4tol is
component mux2tol is Port (-- component declaration

A: in STD_LOGIC;
B: in STD_LOGIC;
™ 8: in STD_LOGIC;
X: out STD_LOGIC) ;

end component;

> signal X1, X2 : STD LOGIC;
begin
L Ml: mux2tol port map (-- component instantiation
v A => A,
B => B,
S => SO0,
X => X1
o)7
M2: mux2tol port map (
= A=>C, B=>D, S=>80, X=>X2
);
-- Complete the rest yourselves

end mux4tol;

(it may be more efficient and readable too)

Hmw : de

sign a 4 to 1 mux

STD LOGIC Type

STD LOGIC types can take the following values

o
D

: logic O
: logic 1
: high impedance (Hi-2)
: unknown

: weak unknown
: weak low

: weak high

\ — : don't care

> A

T H = X N - O

S, ((ifHi-z available)

r B

P PR P OOOO|Wm
PP OOFRPFROO|>
P OPFRPOFROPFR O|W

OR R RPRRRPRPRPR
NP ORFRORPREROO|X

—» read for these at home B —

use of Z for a multiply driven signal

most FPGAs (including Spartan) do not have internal Hi-Z.
Hi-Z can be used at I/O ports (pins).

A

So

Hmw : design a 4 to 1 mux using two 2 to 1 mux with oe inputs ©

STD LOGIC_ VECTOR Type

A collection of STD LOGIC types

Example :

signal sel, sel2 : STD LOGIC VECTOR (0 to 3);
signal LEDS : STD LOGIC VECTOR (7 downto 0);

sel <= "0110";

sel2(2 to 3) <= "01";

LEDS <= (7=>'1', 6=>'0', others=>'Z");
LEDS(4) <= '0'; -- notice single quotes

LEDS <= LEDS +1;
-— requires use IEEE.STD LOGIC ARITH.ALL;

LEDS (7 downto 4) <= sel;

Since Hi-Z based bus systems are not possible in FPGAs

Not possible RAM1 /O oo CPU

Y Y

<

\/{}/{}@ A

b
What is done RAM1 /O oo etc CPU
<~ —

smﬁ;;;fi>
3

Another Combinatorial Example

3 to 8 decoder

;;f$>LEDS
8

LEDS <= "00000001" when SWS="000" else
"00000010" when SWS="001" else
"00000100" when SWS="010" else
"00001000" when SWS="011" else
"00010000" when SWS="100" else
"00100000™ when SWS="101" else
"01000000™ when SWS="110" else
"10000000";

LEDS(0) <= '1l' when SWS = "000" else '0';
LEDS (1) <= '1l' when SWS = "001" else '0';
LEDS (2) <= '1l' when SWS = "010" else '0';
LEDS (3) <= '1l' when SWS = "011" else '0"';
LEDS (4) <= '1l' when SWS = "100" else '0';
LEDS (5) <= '1l' when SWS = "101" else '0"';
LEDS (6) <= '1l' when SWS = "110" else '0"';
LEDS(7) <= '"1' when SWS = "111" else '0';

with SWS select

LEDS <= "00000001"™ when "0O0O0",
"00000010" when "O0O1",
"00000100" when "O010",
"00001000" when "0O11",
"00010000" when "100",
"00100000" when "101",
"01000000"™ when "110",
"10000000"™ when others;

I

do not forget to cover all possibilities
when using select

1f (SWS="000") LEDS<="00000001";
elsif (SWS="001") LEDS<="00000010";

else
end if;

classic if-elsif-else-end if; can be
used in processes

3to 7 Decoder

library IEEE;
use IEEE.STD LOGIC VECTOR.ALL;

entity decoder3to7 is
Port (D : in STD LOGIC VECTOR(2 downto 0);
Q : out STD LOGIC VECTOR(7 downto 0));
end decoder3to7;

architecture decoder3to7 of decoder3to7 is
begin

Q <= "00000001" when D="000" else
"00000010" when D="001" else
"00000100" when D="010" else
"00001000" when D="01l1l" else
"00010000" when D="100" else
"00100000" when D="101" else
"01000000" when D="110" else
"10000000";

end decoder3to7 ;

As simple as it gets

dataJ
data —{D;, D,] nEnEnln
Shift register transfers stored QH Q> data — I : :
bit values from one FF to |
clk Delk o 1 2
another at each clk pulse l_'
clk ® >
> RX
data —| D. line driver | channel line receiver D,

A 4

Q'—>{ QF— data

clk —o—->>clk

Delk

N
used as output buffer
=/-I\ Differences:
- Path length
- Added noise

D-type FF i

SPI : Serial Peripheral Interface

SPI

master

Is a clocked serial communication protocol for short lengths MOs| —
SCK
SCK
MOSI 0 | |
MISO
d
y y
SPI SPI
slave-1 slave-2
CS-1 T
CS-2

SPI is a modern way to communicate between master and slave IC's on a single PC-board

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Receiver

Initial Design (Synchronous Serial)

might be a twinax cable
with common ground

propagation delay

[
T
Y

o

0

S

O
ﬁ ||||||||| -

>
O
4

>

o
+—

>

o

1

bits 0

Let us assume that data and clock line lengths differ by 10 cm

one of the signals arrive 0.5 picoseconds late.

(speed of e.m. wave on copper is about 2x108 m/s)

Problem is : for a 1GHz clock, 0.5 ps is about half a clock cycle.

<« What you need/want

what you get

«—

Solution

Solution is to generate clock from data at the receiver.

The data signal should necessarily be designed to perform such an operation

_l
—
Q
>
n
3,
pam
D
—

received data signal

0 R U R VR

=+ 0
=4
A
up
o 3 ‘
}
A
)
D

> Din

v | T i

K |
sync. —» >clk |

Receiver ’

generated
clock

A Phase Locked Loop (PLL) can be used if there are enough transitions in the signal

Use of Ground as signal return

A 4

sync. [

clk

Receiver

This requires that grounds at both side must have the same potential which we cannot guarantee

What is likely to happen ?

constant Lo
L_/: b

transmitter ground

receiver ground

This is called jitter when this flactuates

this flactuates

i threshold between L and H

Differential Signaling

common mode current

v

J|
A
®D
o
o}
<
®
@

Receiver uses the voltage difference between two inputs.
The voltage between a signal line and the ground is not in the formula here,
but we have another problem.

If there is a voltage difference between two grounds then there will be a
common mode current on the signal lines returning from ground.

Capacitors to prevent CMC

. |
g I+
: _ > Din
> |I_ v | I
sync. —{ >clk
= Receiver

Problem is different this time.

received signal m if there are long runs of Os or 1s

in the signal the receiver might

loose the synchronization and/or
measured signal m cannot read the data.

Long runs of Os and 1s is solved by coding

1 0 1 1 0 0
NRZ
Example : Manchester coding J (

Diff. Man.

MSB |7 (|6 ||5 (|43 2 (1]/o| LsB

Example . 8B/10B 5t06 conversion tables 3to4
and disparity

allbijc|d|le]lf gi(lh|ll [|]

What is a Sequential Circuit?

If a circuit needs some values calculated from previous input values, it has
to have some way of remembering these values.

Inputs —p

=== Outputs

previous values

el

feedback

One would design such circuits using two well known models;
Mealy (output depends on the inputs and stored values) and
Moore (output depends only on the stored values)

Today, to make things simpler, almost all digital circuits are designed as
clocked sequential machines (Moore). Things are done synchronously with
the rising or falling (or both) edge of a clock signal.

Inputs ===

clock —*

sequential
circuit

E> Outputs

Clocked & Synchronous

clock

ticks \‘

Do some stuff Do other stuff Do some other stuff ...

wait for the circuits to settle down between ticks
(this is one of the speed limiting constraints for circuits)

"Sequential", for digital circuits, does not mean that circuit pieces described
by each of our VHDL code lines do their stuff one after another. It means
that, outputs of designed circuits are someway affected from the previous
Input sequences.

Remember that, VHDL is not a programming language. It is a description

language. We are describing a digital circuit * that does things concurrently
(keeping in mind the delays caused by the electronics and the finite speed of EM waves on silicon of course).

% : One may use VHDL for different purposes, but here we use it to describe circuits within FPGAs

Some Attributes

Given
signal D : STD LOGIC VECTOR(7 downto O0);
signal X : STD LOGIC VECTOR(Z to 5);

D'LOW IS0 (lower array index)
X'LOW iS22

D'HIGH is 7 (upper array index)
X'HIGH iS5

D'LEFT IS 7 (leftmost array index)
X'LEFT IS 2

D'RIGHT is O (rightmost array index)

X'RIGHT IS5
D'LENGTH is 8 (size of the array)
X'LENGTH is 4

D'RANGE is (7 downto O0) (range of the array)
X'RANGE IS (2 to 5)
D'REVERSE RANGE is (0 to 7) (range of the array in reverse order)

X'REVERSE RANGE is (5 downto 2)

signal Y: STD LOGIC VECTOR (D'RANGE) ;

D(D'RIGHT) <= 'l'; -- set righmost bit to 1

Some Attributes

Given
signal CLK : STD LOGIC;

CLK'EVENT IS TRUE if there is an event on CLK

CLK'STABLE[t] is TRUE if there is no event on CLK in last t time unit
CLK'ACTIVE IS TRUE when there is a transaction on (assignment) CLK
CLK'QUIET[t] IS TRUE if there is no transaction on CLK during the last t time unit

'"EVENT and 'STABLE attributes are synthesizable, others are for simulation only

if (CLK'EVENT and CLK='1l') then

end if;

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

if keyword is a sequential |||
statement used in processes

if (RISING EDGE (CLK)) then

end if;

processes

synchronous

fully synchronous

entity Toggle is
Port (T : in STD LOGIC;
Q : out STD LOGIC) ;
end Toggle;

architecture Toggle of Toggle is

signal D STD LOGIC;

begin

process (T,D) is begin
if (RISING EDGE(T)) then
D <= not D;
end if;
end process;

Q <= Dy T— T-FF —Q

end Toggle;

entity Toggle is
Port (clk : in STD LOGIC;
T : in STD LOGIC;
Q : inout STD LOGIC) ;
end Toggle;

architecture Toggle of Toggle is
signal D STD LOGIC;
begin

process (clk,T,D) is begin
if (RISING EDGE (clk)) then
if((D~=T)and(T='1')) then

Q <= not Q;
end if;
D <=T;
end if;
, T—T-FF[—Q

end process; A
1
end Toggle; clk

Other Synthesizable Pre-Defined Simple Types

STD ULOGIC : U stands for unresolved
BOOLEAN : True or False
INTEGER : 32 (max) bit integers (-2147483647 to +2147483647)
NATURAL : non-negative integers
. . .and arrays of these. . .

signal OE : STD_ LOGIC;
signal count : integer;
signal IsOK, DOIT : BOOLEAN;

OE <= 'Z';

count <= count + 1;
IsOK <= not DOIT ;
DOIT <= False;

we need to use related library for some types

Vectors

Notice that integer and natural are actually collections of bits.
We have other collections too.

BIT VECTOR : collection of BITS

STD LOGIC VECTOR : collection of STD LOGIC types
STD ULOGIC VECTOR

SIGNED, UNSIGNED : kinda integers

signal sel,sel2 : BIT VECTOR (0 to 3);
signal LEDS : STD LOGIC VECTOR (7 downto 0);
signal count : integer range 0 to 15;

inherently creates a 4 bit signal
sel <= "0110";
sel2(2 to 3) <= "01";
LEDS <= (7=>'1', 6=>'0"', others=>'Z");
count <= count +1; -- counts up to 15

LEDS (7 downto 4) <= sel; -- error, incompatible types

Text Book : V.A. Pedroni, Circuit Design with VHDL, MIT Press.

Homework : Read sections 1, 2, 3,4

Do problems 3.2, 3.4, 4.1, 4.2.

Design a 7-segment decoder using a 10x7 ROM array.
Design a press-on/press-off button controlled LED circuit

Text Book : B. Sklar, Digital Communications (2nd Ed.)
Fundamentals and Applications, MIT Press.

Homework : Read section 2.3, 2.3.1, 2.8.5
Do problems 2.2, 2.3.

An Up-Counter With Asynchronous Reset

inout keyword
allows reading entity CntrWRst is
back what is written Port (clk : in STD LOGIC;
previously \Rst : in STD_LOGIC;
Data : inout STD LOGIC VECTOR (3 downto 0));
end CntrWRst;

process keyword architecture CntrWRst of CntrWRst is

N begin
has sensitivity list \lgbrocess(clk Rst) is

(think of a C-function This is equivalent to

call when one or more begin clk'EVENT and clk='1l"
arguments change) if(Rst='1"') then
Data <= "oooo'/
else
if (RISING EDGE (clk)) then clk L Do
Data <= Data +1; —>
end if; — D1
.if—elsif—else—end if end if; Rst Counter |, o
Is a sequential struct to be end process; —
used in processes end CntrWRst: —>D3

Model of the Simulation

Test Bench

Simulation
Processes

—

simulation

signals

UuT
Unit Under Test

D

Simulation
Processes

signal
display

VHDL Test Bench & Simulation

@ Add a New Source File

Design +08 X

[| Wiew: © {8} Implementation & [Simulation

£l

=

r

Behavioral

Select VHDL Test Bench

”
”

since the extension will be *.VHD,
adding _tb to the name is a good
idea.

e

”

Select Source Type
Select source type, file name and its location.

BMM File
€= ChipScope Definition and Connection Fie
[Implementation Constraints File

4 IP (CORE Generator & Architecture \Wizard)
MEM File

[2] Schematic

[£] User Document:

verilog Module

[¥] verilog Test Fixture

YHOL Module
My vHOL Library
[F] YHOL Package
B VHDL Test Bench

Eile narme:

chird_th

- Location:
-’

and

I C:\Uzers\eseke’Documents\Projectsionird

V' a4dd to project

More Info |

Mext = I Cancel

Click Next

Associate it with the implementation file and close the summary dialog

ARCHITECTURE behavior OF cntr4_tb IS
COMPONENT CntrWRst
PORT (
@ Create Generators clk : IN std logic;
Rst : IN std logic;
Data : INOUT std logic_vector (3 downto 0));
END COMPONENT;

signal clk : std logic := '0';
signal Rst : std logic := '0';
signal Data : std logic vector (3 downto 0);
BEGIN
uut: CntrWRst PORT MAP (
clk => clk,

Rst => Rst,
Data => Data
)

clk process :process begin

clk <= '0"';
wait for 1lOns;
clk <= '1"';

wait for 10ns;
end process;

stim proc: process

begin
wait for 5ns;
Rst <= '1"';
wait for 35ns; Rst <= '0';
wait for 400ns; Rst <= '1l';
wait for 60ns; Rst <= '0';
wait;

end process;

END;

p | B2 Mo Processes Running
@ Start Simulation 7L | Processes: cnird_tb - behavior
L =% ISim Simulator
= -~ ¥) Behavioral Check Syntax
- iR |
Rerin Al
=L Stop

I1Sim (P.49d) - [Default.wcfg]
[z Fle Edit Wiew Simulaton Window Layout Help

[D3E]:[[%B0Xx®0 |t 9

“E?J|'.’ i u|m 2 .Xll.DDus 'I(’E Il |Q-Re—launch|

[std_logic_ur: & data[2:0]

Instanc... + 0O 8 X Ohjects <« 0O& X _*
’ﬁ’_a"?fflz »| Simulation Object., = val

——————— R alue

Instance and Pro IE’EEI_J’ ” ;fl

2 cntrd_tb Chject Mame o

(% std_logic_11r % ck ic |

[std_logic_ari s rst 5]

1=

=

2

A Simple Serial Communication System

Problem : Design of a asynchronous serial comm. system between
two boards with FPGA devices ()

Simple test setup 4 bit output to LEDS

FOE9 D11 C11F11 E11 E12 F12
T e o g serial output these two can be
CFEEECEECE o connected for a
"""""""" 1gal serial lnput loopback test

GND (signal return)

SW3 SW2 SW1 SWO
(N17) (H18) (L14) (L13)

4 bit data input from switches A e S |

e

Tya/

This example is prepared using very basic VHDL constructs.

No or very little VHDL knowledge is necessary to understand the operations
www.xilinx.com

Serial Peripheral Interface (SPI)

Transmit: Master puts the bit to be transmitted on MOSI and raises the clock (SCLK)
Slave latches the serial input on the rising edge of the incoming clock.

RER D N S G G
MOSI MOSI/SIMO
o S N N D N R I O O
Master SCLK SCLK Slave
MISO/SOMI MISO
SSor SS SSor SS

Receive: Master raises the SCLK and reads in MISO on the falling edge of SCLK.

SPI can not be used in long distance (a couple meters) communications, because of the timing
problems. The length difference between clock and data lines must be much smaller than the clock
wavelength.

SPI is used for board to board or chip to chip data transfers

Use of SPIin our Example

Transmiter: Master serializes the 4 bit data and puts each bit on the line.

. (1 X2 X 3 X 4 X X)--- o
serializer deserializer
MOSI MOSI/SIMO
N ¢ I Y s I Y o Y {}
SCLK SCLK
4 bit data 4 LEDs
MISO/SOMI \/ not used MISO
SSorSS ~._ _~— "ot used SSorSS
Transmitter /\ Receiver

Receiver: On the rising edge of SCLK slave reads in MOSI and deserializes every 4 bits.

Single board test setup
(Loopback test)

Simple Transmitter

bo — bo b3 b2 bl bo b3
bl > +
b, — | TRNS > MOSI
A
clk » SCK
entity SPIT is Port (
clk : in STD_LOGIC; --we need a clock for action
b : in STD LOGIC VECTOR(3 downto 0); -- parallel data in
SCK : out STD LOGIC; -—- SPI clock
MOSI : out STD_ LOGIC) ; -- serial data out
end SPIT;
signal cntr : integer range 0 to 3;
outputs
SCK <= clk;
’ ----C b b b b b ---
TRNS: process(clk) is begin < : X : >< : X : >< . X >
if (falling edge(clk)) then A~ 1 F~ 1 F 1 F 1 1]

MOSI <= b(cntr);

v

cntr <= cntr+l;
end if;
end process;

Simple Receiver

|, LEDS,
MOSI,, . -, LEDS,
RECV ——— LEDS,
in > 5 pclk (paralel data ready)

entity SPIR is Port (

clk : in STD_LOGIC; -- do we need a clock for action?

SCKin : in STD LOGIC; -— SPI clock in

MOSIin : in STD LOGIC; -- serial data in

LEDS : out STD LOGIC VECTOR(3 downto 0));-- parallel data out
end SPIR;

signal reccntr : integer range 0 to 3;
signal recsig : STD LOGIC VECTOR (3 downto 0);

RECV: process (SCKin) is begin
if (rising edge (SCKin)) then inputs
recsig(reccntr) <= MOSIin;
if (reccntr=3) then - by X by X b, X b >< by ><)---
LEDS <= recsig;
end if; - - =1 1T LT |
reccntr <= reccntr +1; _
end if;
end process; < X prev. LEDS X new >

outputs

Simple Tranceiver

external connections

bo —
" TRNs [MOS MOSl, . LEDS,
by ——— RECV [~ LEDS:
‘ | — LEDS,
clk SCK SCHKn, ——— LEDS
3
entity SPI is Port (
clk : in STD_LOGIC; --we need a clock for action
————————————— transmitter part
b : in STD LOGIC VECTOR(3 downto 0); -- parallel data in
SCK : out STD LOGIC; -—- SPI clock
MOSI : out STD LOGIC; -- serial data out
————————————— receiver part
SCKin : in STD_ LOGIC; -— SPI clock in
MOSIin : in STD_ LOGIC; -- serial data in
LEDS : out STD LOGIC VECTOR(3 downto 0));-- parallel data out
end SPI;

FOE9 D11 C11F11 E11 E12 F12

EEETEE &0

SW3 SwW2 SWw1 SWOo
(N17) (H18) (L14) (L13)

Q1 : What if We Use Two Transmitter & Receiver ?

Remote board connection
(full duplex)

warning : do not connect any power line other than the Gnd

Do we have any problems having correct LEDs lid ?

Q2 : We directly connected SCK to internal 50 MHz oscillator.
How about not transmitting SCK and using internal 50 MHz on each board ?

Asynchronous Transmitter & Receiver

external connection

by —
by ——— TRNS | MOS! MOSI,, —— LEDS,
b, — > — LEDS
RECV 1
1 —
A
fHz fHz clk
entity SPI is Port (
clk : in STD_LOGIC; --we need a clock for action
————————————— transmitter part
b : in STD LOGIC VECTOR(3 downto 0); -- parallel data in
MOSI : out STD LOGIC; -—- serial data out
————————————— receiver part
MOSIin : in STD_ LOGIC; -—- serial data in
LEDS : out STD LOGIC VECTOR(3 downto 0));-- parallel data out
end SPI;

Q1: Do we have any problems having correct LEDs lid ?
Q2: Are LEDs stable ?

Solutions

solution to clock mismatch

channel MOSI,, — LEIPES[())S
RECV 1

—» LEDS,
sync —— LEDS,

\ 4

solution to bit number ambiguity

use frame/word synchronization markers

-~ fsw X .. X fsw X by X by X b, X by X 1)

example

1 X 0 X bo X b X by X by X 1)

\\\// V4

Start marker actual data

——| RECV FIFO [circuit-1

sync

When the rest of the receiver works with another clock

A\ 4

\ 4

clock domain 1 4——> clock domain 2

When the frame/word marker is actually a data word

That happens.!
A careful frame design and transmit/receive protocol are required.

Sometimes upper level sync words are inserted to the stream.

Q : Did you notice that problems are almost always on the receiver side?

Symbol Synchronization

The aim is to locally generate a signal that is synchronous to the incoming stream

incoming stream

RENEE NN

tlmlng of the Iocéally generaéted pééariodi(é: signfal (noét in s;flnc)

_____ EEERREEREERE N

timing of the locally generated in sync signal

we are late
we are early

Correlation

Is @ measure of similarity of two signals (in signal processing)
w (t) and r(t)

received signal local signal
- 7 is also named as inner product
R, = [r(ty (t)dt <r(t),y (t) >
low correlation high correlation low correlation

correlation can be used to
adjust local oscillator

negative high correlation

we are to measure similarity for the symbol period (so that we can change it)

a+T

R, = | r(t)y (t)dt

7

receiver

correlator

decision »Dits

j .

integrator ! b

v (t) detector

Implementation with Digital Circuits

) 4
N
AN
<
—
>
|
(-
—
Z >
& | F—
=
D
©«
<
| |
>
| I—

__

accumulator (discrete integrator) is as simple as a summation in VHDL

ACC: process(clkH) is begin
if (rising edge (clkH)) then
R <=R + u;
end if;
end process;

Integration for a Symbol Period

N x 1 bit FFs 4]
rin]y [n]
;L — 71 »R[n]

shift register for N clock delay " B bit register

v

N +n
a+T

R, = | “r(t)y (t)dt == R[n1= rlily[i]

INTEGRATOR: process (clkH) is begin
if (rising edge (clkH)) then
R <= R + ux - D[N-1];
D[N-1] <= D[N-2];

D[1] <= DI[O0];
D[0] <= ux;
end if;
end process;

An Ad-Hoc Method for Synchronization

i [Input Signal
CLETTITTETEEETEET samet nputat ipe-ate

SpS1 S,

Cases for s;'s:

1. Alls; are the same : No problem, continue at the same rate.

2. s, is different : Clock is fast, so slow down (ignore next clock pulse)

3. s, is different : Clock is slow, so move faster (use s, as s, for the next
bit period)

Take s, as the bit value for all three cases.

Notes : Technique is simple and easy to design for digital systems like FPGAs.
It requires that the input to be very clean. With a little more effort a two sample
per bit method can be developed.

If the signal is noisy, multisample digital or analog integrator may be required.

An Ad-Hoc Method for Synchronization

architecture SerialRec of SerialRec is
signal s0 : STD LOGIC :='0";
signal cntr : integer range 0 to 2 :=0;
signal dummypulse : STD LOGIC := '0';
begin
process (clk) is begin
if (RISING EDGE (clk)) then
if (dummypulse='1') then
dummypulse <= '0'; cntr <= 0;
else
if (cntr=0) then

s0 <= SDin; oclk <= '0'; cntr <=

. . 1sif =1 h
entity SerialRec is Port (elsif (entr=1) then

SDout <= SDin; oclk <= '0'; cntr <=
else
clk : in STD LOGIC;]
SDin : in STD LOGIC; if(s0/=SDout) then

dummypulse <= '1';
elsif (SDin/=SDout) then
s0 <= SDin; cntr <= 1;
else
cntr <= 0;

SDout : inout STD LOGIC;

oclk : out STD LOGIC);
end SerialRec;

end if;
oclk <= '1l"';
end if;
end if;
end if;
end process;
end SerialRec;

Another Ad-Hoc Method

a b C a b c decision cntr correction
rin] 1 1 000 O -
"z |27z 001 0 increment cntr
010 0 X
clk 011 1 decrement cntr
2 S 2 100 0 decrement cntr
101 1 X
110 1 increment cntr
0 to 2 counter 111 1 -

Received
Sinusoidal

Simple Problem

measure
" phase
' Generated
yy Sinusoidal
Local)
Oscillator | adjust
better yet
> o) I\'.\ ' "‘\

We need to generate required waveforms locally

Start with Binary PAM (no waveform generation)

+A
1
o 0 o
Binary PAM(\ Channel signal is composed of these
“ 0
0
-A
A x(t)
1 0 1 1 0 1
t T +Tb
J
p (1) =1
AR()
2T, 5T, .

Noisy Signal Case

T Wl Whlod

T 2T 3T AT

L]
v

Decision points

v

Having synchronization is equivalent to correct detection of symbols

Early-Late Gating

previous symbol current symbol next symbol

7

%

early integral i<

= late integral

]
]
]
K

early
in-svnc .
y in-sync |
in-sync

|1, |>]1.| :Wwe are early

d =[1,[-]1,] canbe used to adjustlocal clock (oscillator)
|1, I<| 1.] *we are late

Waveform generation

counter
/\

|

clk

sin samples

- rom = JTHH HHRLHHHHW i

LUT filled with sin values

0

0.198669330795061

A bits (waveform precision)|ly 389418342308651

Address |——: 0.564642473395036

0.717356090899523

-0.19866933079506

> Samples

B bits (sample precision)

- How many samples per period?

- How many bits per sample?
- How Frequency/Phase controlled?

BRAM Primitives in FPGAS

There are several RAM blocks in Xilinx FPGASs including Spartan-3E
(and in other vendors' too)

Address

Data in

Data out

EN
WE
CLK

gl

Block
RAM

CLK
WE

Data_in

Address

Data_out

EMAELE

I | |
| yau | \ |
i | | I
| | | |
| owooe ¥ | mmi— X | eme— X | XX
| |] | 1 |
1 1 II I II I
x I aa_\l X I kb | X | oo i X I dd_’\
| | I
| / | | |
000 ! XL--MEM[aa] ! X e 1111 ! x - 2250 : X\--MEr.h:dd]
_/ | | | 1
I I I I
DiStBLED | READ l WRITE l WRITE I READ
I I MEM bb)=1111 I MEM ccj=2222 I
MARD_12_(@080

Figure 4-12: WRITE_FIRST Mode Waveforms

Available Configurations in Spartan-3E

Block RAM instantiation templates can be seen using Language Templates

+ -[C1%erilog
=J-E3VHDL
+ [Device Macro Instantiation =23 Dal-Part [Matched Part \wWidths)
= 'S Device Prmitive Instantiation " . 16k » 1 [RAME1E_S1_51)
+-[1CPLD - [F] 1k % 16 + 2 Parity bits (RAMB1E_518_518)
= I FPGA - [T) 2k % 8 + 1 Parity bit [RAME1E_59_59)
+1- [Avithmetic: Functions [214k » 4 [RAMETE_S4_54]
+]- [Clack Components - [F1512 % 32 + 4 Paiity bits [RAMEB16_536_536]
+ [Config/B5CaN Components " . Bk % 2 [RAMB1E_ 52 52)
"‘ (23140 Companents = &3 Dual-Port [Miz-matched Port widths]
—-ERAM / ROM - [F1 1Bk A1k % 1/16 + 042 Parity bits [RAME16_51_518)
=3 Black RAM - [F1 16k 42k % 1/8 + A1 Paity bit [R&MB16_51_59]
+)- [Spartan-34 - [F] 1Bk 8k 1 1/4 [RAME16_51_54)
+l- (] Spartan-34 DSP - [F]1BKk/B12 % 1/32 + 074 Parity bits [RAMB16_51_536)
= --'S"-.-"irte:-:-||.-"||-|:'rl:|, Spartan-3/3E [T 16k 5k = 1/2 [RAMB16_S1_52)
+l- [Dual-Port [Matched Port Widths) - [B] 1k/512 % 16/32 + 274 Parity hits (RAME16_S18_536)
+1- [Dual-Port [Mis-matched Port widths] - [F] 2k 1k 2 BAE + 142 Paity bits [RAMB16_59_518)
=I- =3 Single-Port - [T) 2k/512 % 832 + 174 Parity [FAME16_59_536)
- [T] 16k » 1 [RAMBITE_S1] - [T) 4k Tk % 4416 + 0/2 Paity bits [RAMB16_54_518]
- [T] Tk # 16 + 2 Parity bits [RAMB1E_518] - [T 4k/2k % 4/8 + 041 Parity bit (RAMB16_S4_59)
- [T] 2k 8 + 1 Parity bit [RAMBT6_59] - [T) k4512 % 4/32 + 074 Paiity bits [RAME1E_54_536)
- [T] 4k » 4 [RAMET1E_54) [Bk/2k % 2/8 + 01 Parity bit [RAMB16_52 59)
- [T 512 0 32 + 4 Parity bitz [RAMBI6_S36] - [F) Sk % 274 [RAMB1E_ 52 54)
- |1 8k » 2 [RAMBTE_52] - [T Bk/F12 % 2/32 + 044 Parity bits (RAMEB16_S2_536)

gg: Single Port gg: Dual Port %:
—— BRAM ——» BRAM |«
—> —> «—
—> —> —

Combining / Extending BRAMs

additional address line

— E Single Port | - ; Single Port
» BRAM » BRAM
I ; Slngle Port ; S|ng|e Port
gﬁ » BRAM < ;E BRAM
Data Bus (Horizontal) Extension Vertical Extension (more addresses)
BRAM

BRAM BRAM

BRAM

Defining RAMs with Inference

entity DualPortRAM is

Port (ADDR A : in STD LOGIC VECTOR (6 downto 0);
DATAIN : in STD LOGIC VECTOR (7 downto 0);
WE : in STD LOGIC;
CLK : in STD LOGIC;
DATAO A : out STD LOGIC VECTOR (7 downto 0);
ADDR B : in STD LOGIC VECTOR (6 downto 0);

DATAO B : out STD LOGIC VECTOR (7 downto 0));
end DualPortRAM;
architecture Behavioral of DualPortRAM is
type TDPRAM is array (0 to 127) of std logic vector (7 downto O0);
signal MRAM : TDPRAM;

process (CLK) begin
if (rising edge (CLK)) then

if (WE = '1l') then
MRAM (conv_integer (ADDR A)) <= DATAIN ;
end if;

DATAO A <= MRAM(conv_integer (ADDR A)) ;
DATAO B <= MRAM(conv_integer (ADDR B)) ;
end if;
end process;

Synthesizer uses appropriate BRAMS if it can

Sample ROM

entity SinSamples is
Port (CLK : in STD LOGIC;
DATA : out STD LOGIC VECTOR (7 downto 0));
end SinSamples ;

architecture Behavioral of SinSamples is
type TDPRAM is array (0 to 31) of integer range -127 to 127;
constant LUT: TDPRAM := {0,25,49,72,91,107,118,125,127,124,115,
103,86,65,43,18,-7,-32,-56,-78,-96,-111,-121,-126,
-127,-122,-112,-98,-80,-59,-35,-11};
signal ADDR: integer range 0 to 31;
begin
process (CLK) begin
if (rising edge (CLK)) then
DATA <= conv_std logic vector (LUT (ADDR)) ;
ADDR <= ADDR+1;
end if;
end process;
end;

Variable Frequency

entity SinSamples is
Port (Incr : in STD LOGIC VECTOR (4 downto 0);
CLK : in STD LOGIC;
DATA : out STD LOGIC VECTOR (7 downto 0));
end SinSamples ;

architecture Behavioral of SinSamples 1is
type TDPRAM is array (0 to 31) of integer range -127 to 127;
constant LUT: TDPRAM := {0,25,49,72,91,107,118,125,127,124,115,
103,86,65,43,18,-7,-32,-56,-78,-96,-111,-121,-126,
-127,-122,-112,-98,-80,-59,-35,-11};
signal ADDR: integer range 0 to 31;
begin
process (CLK) begin
if (rising edge (CLK)) then
DATA <= conv_std logic vector (LUT (ADDR)) ;
ADDR <= ADDR + conv_integer (Incr);
end if;
end process;
end;

LUT Based Controlled Frequency Waveform Generator

phase accumulator

sin samples

#TH HhTr
1

(phase increment)

freq ‘ I 7! o LUT —

————————————————————————————— ' phase to value
current phase conversion

Maintain phase accuracy
/B bits

most significant K bits

" LUT
“~Nnused
B-K bits

_ current phase
(phase increment)

low bits are used in summation but not to drive LUT

i //
freq ; =Q—> 94—

END

