
Introduction

by Erol Seke

For the course “FPGA Structures for Digital Comm.”

ESKİŞEHİR OSMANGAZI UNIVERSITY

Electronic Communication

Transmitted Signal

Analog Communication

Transmitter Receiver

Channel

Noise

Digital Communication

Signal’s all values are important at every point

and cannot be completely repaired when damaged

Ts

Finite number of symbols represented

by finite number of waveforms within Ts

analog or digital circuits

(infinite number of possible values)

Digital Communication

Advantages :

- Mathematical/Logical Processing on the data is possible

- Therefore : higher protection against noise

- More flexible when performed using reconfigurable / reprogrammable elements

- ?

Disadvantages :

- Complexity is higher

- Higher speed devices are required

- Analog signals need to be converted/deconverted using ADC/DAC

- ?

against analog communication

General Communication System

Simplest Waveforms

PAM : Pulse Amplitude Modulation (Amplitude of the signal carries the information)

Simplest PAM (binary antipodal signaling)

Binary 0 Binary 1

Bit Rate = 1/Tb

Tb = Bit interval

Spectrally more efficient waveform set

(Pulse shape determines the spectral characteristics)

PAM signaling is generally used in baseband channels Why?

It would have been called ASK otherwise :)

Example Data : 0100110100...

Binary PAM

Transmitted signal is a sum of the corresponding waveforms at appropriate positions

Transmitted signal

Received signal
(black)

Problem of the receiver : Determine the 1-0 data sequence from the noisy signal

Instead of 2 levels (binary) M levels (M-ary) can be used. M is selected so that
k

M 2

...1001110100... Example : k =2

10

01

11

00

Symbols are 2 bits

Symbol interval = 2 Bit interval

since 1 change transfers 2 bits

For M-ary case

b
kTT 

M-ary PAM

2 bits are transmitted at each T now, but the receiver’s job is more complicated

Signal Generation for Driving Channel

Output buffer / Line driver

D-type FF

0100110100...
Din

clk

Q

DAC

Analog buffer / driver
clk

Digital

signal/sequence

generator

data

data

Channel signal

(analog signal representing digital values)

baseband

baseband or bandpass

Carrier

mixer

bandpass

in some cases

mixer?

Frequency converter

RF Modulator

Upconverter

Example

1 MHz BPSK signal is to be generated without using frequency upconversion.

DAC

Analog buffer / driver
clk

Digital

signal/sequence

generator

+

modulator

serial

data

bandpass

Carrier frequency (center freq. of BPSK signal) = 1 MHz

Samples per carrier period ≥ 10

Sample rate = 10 x 1 MHz = 10 Msps (min for DAC and generator)

Serial Data rate = 1 MHz / samples_per_period / carrier_periods_per_bit = 1MHz / (10x5) = 20 kbps (max)

bus_width

Carrier periods per bit ≥ 5

Let the design requirements be

Calculations

Corollary : You need high speed digital equipment even for low data rates.

Constraints are tighter at the receiver side.

Primitive (not optimized) Sequence Generator

N-bit counter

N bits

Address Data Waveform samples

B bits

sample clk

ROM Look-up Table

2N x B
For the previous example

Samples per carrier period = 2N

sample values in B bits

Address

Data

since 10 is not an integer power of 2, a 16 x B ROM is used (remaining 6 locations are not used)

and the counter should count from 0 to 9 for the previous example (rethink efficiency/design)

BPSK on Sinusoidal Sequence

Digital

signal/sequence

generator

sign change
Mux

BPSK (samples)

Binary Data

select

sample clk

All these circuits, except DAC/ADC, can be implemented by digital circuits.

FPGAs are full of digital circuit primitives. Therefore these circuits can be

implemented on FPGAs.

Advantages of FPGAs ? :

- reconfigurable

- small, power efficient

- short development time

What are FPGAs ?

Field Programmable Gate Array :

We have a bunch of digital circuit primitives with user programmable connections

designer

There are several ways to design digital circuits on FPGAs

One option is to use a HDL

Hardware Description Language :

We describe the circuits in plain text just like a programming language.

But it is not a programming language! it is a description language.

HDL

VHDL

Verilog

SystemC

?

Very High Speed Integrated Circuit Hardware Description Language

The devices range (where HDL is used)

PAL, PLD, EPLD, SPLD, CPLD , ASIC, FPGA

In this course, we will be using VHDL

A

B

S

X

Consider the following combinatorial digital circuit and truth table

Start with a Simple Digital Example

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

We can describe the function as

X = A when S=0, B when S=1

X = (A and not S) or (B and S)

or

or, with a switch analogy

A

B

X

S=0

S=1

A

B
X

It is a 1-bit 2-to-1 multiplexer as we know

We can make other multiplexers using this basic mux.

A

B

S

X 2 to 1

C

D

S0 S1

A2

B0

A1

B1

S

X0

X1

1 bit 4 to 1 mux

3 bits 2 to 1 mux

X2

A0

B2

c0

c1

c2

B0/.

A0/.

S/S0

A1/A

A2/C

B1/B

B2/D

X0/X

X1/.

X2/.

 ./S1

Configurable.!

1

2 3

Programmable / Configurable devices basically work just like that

In a device, we have a finite number of

1. Flip-Flops, Registers

2. RAMs

3. Look Up Tables (LUTs)

4. Gates

5. Arithmetic Units

6. MUXs

7. Other (clock managers, buses, I/O blocks etc)

that we can interconnect them as we wish and design the digital circuit needed

or we can use a HDL and let a compiler/synthesizer do the design and

optimization for the resource/performance balance.

Example (Xilinx-Spartan3E structure)

Slice

CLB

Example (Altera-Cyclone II structure)

LE
LAB

It may not be what it looks like

Combinatorial functions are usually implemented with look-up tables

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

A

B

S

X
X = (A and not S) or (B and S)

this is the function you want

this is the circuit you expect this is the truth table implemented

8 bit ROM

LUT

S

A

B

Adr-2

Adr-1

Adr-0

X
Dout

So, no matter how complex your function is

it is as simple as a look-up rom with 2N addresses

with N being the number of variables in the function.

this is what you get

Steps of VHDL Design Flow

Write VHDL code

Synthesize

Simulate

Libraries

Implement for Device Constraints

Generate FPGA Configuration File

Compile

Program and Test

we mostly work here

Since we have Spartan3E kits in the lab. we will be referring Xilinx ISE tool from now on, remembering that other

vendors/manufacturers provide similar tools too. Tools for the steps mentioned here are mostly device/vendor specific.

Hello World

A

B

S

X 2 to 1

Consider the MUX
entity mux2to1 is

 Port (A : in BIT;

 B : in BIT;

 S : in BIT;

 X : out BIT);

end mux2to1;

How about the behavior of the mux box?

X = (A and not S) or (B and S)

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S);

end Behavioral;

remember

after synthesizing we get

BIT type signals can assume one of two values : 0 or 1

How we do it using ISE tool (ver 14.7)

1 Start ISE

2 Create a new project named mux2to1

Select your VHDL projects folder.

It will come up automatically

everytime you create a new project.

Click Next

or

An ISE project file is a text file

consisting of names/references of

*.VHD source files, constraints files,

implementation specifiers etc.

3 Select your device

If you cannot find your board in this

list, select ‘none specified’ and just

select your FPGA chip

These should be as shown here

Click Next

and click ‘Finish’ on the Project Summary dialog box

4 Create a source file

Right-Click on an empty space in the ‘Hierarchy’

pane of the ‘Implementation’ view of the ‘Design’

tab. Click ‘New Source...’

Enter new source file name.

Any valid file name is ok, but be vise.

Source file is a text file with *.vhd extension

where you put your VHDL code

Since we are creating a VHDL source

file, we should select ‘VHDL Module’

here.

this should be selected, otherwise you

need to add the file to the project later.
Click Next

5 Define ports of the entity

The convention is to create a

source file for each entity (circuit).

Here you may define inputs/outputs

of this entity.

Since source files are text files,

many coders skip this step and

insert/edit the port description by

hand.

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

Default signal type is STD_LOGIC.

Click Next

and click ‘Finish’ on the Summary dialog box

We now have a source file editor window with entity description, some

comments and library definitions and an empty architecture section.

Architecture section is where you describe your circuit’s behaviour.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S)

end Behavioral;

6 Edit/Insert VHDL Code

Insert logical expressions here
(between begin and end keywords of

Architecture section)

Click Save icon

When saving, automatic syntax check is performed. Watch Console for error messages

7 Syntax Check

You can also check syntax by right

clicking on the Check Syntax item in

Design Tab and selecting Run,

or double click on Check Syntax

If there is an error you will see it on the

Check Syntax item

and in the Console.

This time, the syntax error is caused by a missing ; in X <= (A and not S) or (B and S);

Do corrections and repeat Syntax Check until you see
the green syntax validation checkmark

8 Synthesize

Synthesizing means that your code is

realizable by logic components.
(but it does not mean that it is physically realizably

within your device (FPGA) and VHDL rules)

You should see the green checkmark on Synthesize item too after synthesizing

Now we need to implement a physical circuit for our selected device from this workable

circuit description

It is imperative to define actual input output pins for a correct implementation as our design

is a complete circuit and wee need to test it by applying actual signals to the inputs and

monitoring the outputs.

Therefore, we need to tell "which signal goes to which pin of the device" before this step.

We do this by creating a constraint file.

9 Pin Connections

Create a new source as done before but this time select

‘Implementation Constraints File’ on the dialog box

Click Next

and click ‘Finish’ on the Summary dialog box

we will see a new editor window named as mux2to1.ucf (User Constraint File)

NET "A" LOC = "H18" ;

NET "B" LOC = "L14" ;

NET "S" LOC = "N17" ;

NET "X" LOC = "F12" ;

User Constraint File is a text file used for describing various constraints.

There is a complete book on the possible contents of this file.

This time we are just interested in pin connections.

Enter the following lines in the window and save it.

A S B

X (LED)

It tells the implementor to connect the I/Os of

our multiplexer to the physical switches and

LEDs on our Spartan 3E Evaluation Board. switches

For example: A is the signal name, H18 is the pin number of the FPGA which is physically connected to the second

switch on the board

attribute LOC: string;

attribute LOC of "A" : signal is "H18";

attribute LOC of "B" : signal is "L14";

attribute LOC of "S" : signal is "N17";

attribute LOC of "X" : signal is "F12";

Note : Instead of editing UCF as described above, you may also enter the following into the

declaration part of the architecture section of the VHDL file. Differences will be mentioned later.

10 Implement Design

Now we can implement the design

and create the programming file

Programming File is a binary file with *.BIT extension.

This file will be loaded onto FPGA through FPGA’s programming pins.

Our Spartan 3E Starter Board has a USB programming feature

through which this file can be sent.

For this purpose, we will be using IMPACT program which can be

initiated by Configure Target Device item.
(IMPACT can also be started externally)

12 Putting Your Design Into FPGA

This warning is OK to

dismiss

Double Click on Boundary Scan

Right Click on the blank window and select Initialize Chain to search for devices on the board

11 Connect your board to your PC using its USB cable

power

to USB port of PC

Turn on the board

and wait for the cable drivers to install

We should see the devices on the board in a chain configuration.

We also see a warning message about the configuration file(s). This time we will asssign the

configuration file manually, therefore, dismiss this dialog box and the next one.

For the Spartan 3E Starter Board, there should be 3 programmable devices in the chain.

The first one (xc3s500e) is the FPGA device and the one we are to program.

Click on xc3s500e to select device. Right click and select Assign New Configuration File...

Find and select mux2to1.bit file and click Open

We should see the selected file name under the device name

Dismiss the dialog box about attachment of the SPI / PROM devices by clicking No

Select xc3s500e again, right click on the device and select Program

We should see the Program Succeeded message in the window

We can now test our multiplexer using switches and observing the LED

warning : Please try not to load files for xcf04s and xc2c64a devices and program them.

This will destroy their original content and disables us to use simple test feature at the power up

A

B
X

C

D

S0 S1

1 bit 4 to 1 mux

created using 2 to 1 muxes

A

B

S

X 2 to 1

Reusability

We have this

A

B

S (2 bits)

X 4 to 1

D

C

and want to have this

1 bit 4 to 1 mux

M1

M2

M3

B

D

C

A

X
A

B

A

B

A

B

X

X

X

S0 S1

internal signals

external connections external connections

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S);

end Behavioral;

Back to Code

entity mux4to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 C : in STD_LOGIC;

 D : in STD_LOGIC;

 S0 : in STD_LOGIC;

 S1 : in STD_LOGIC;

 X : out STD_LOGIC);

end mux4to1;

architecture mux4to1 of mux4to1 is

 component mux2to1 is Port (-- component declaration

 A: in STD_LOGIC;

 B: in STD_LOGIC;

 S: in STD_LOGIC;

 X: out STD_LOGIC);

 end component;

 signal X1, X2 : STD_LOGIC;

begin

 M1: mux2to1 port map (-- component instantiation

 A => A,

 B => B,

 S => S0,

 X => X1

);

 M2: mux2to1 port map (

 A => C, B => D, S => S0, X => X2

);

 -- Complete the rest yourselves

end mux4to1;

You may obviously describe a 4

to 1 multiplexer in one entity
 (it may be more efficient and readable too)

optional labels

declare components here

declare intermediate signals here too

these are called instantiations

you can shape text to your taste

Hmw : design a 4 to 1 mux

STD_LOGIC Type

STD_LOGIC types can take the following values

0 : logic 0

1 : logic 1

Z : high impedance (Hi-Z)

X : unknown

W : weak unknown

L : weak low

H : weak high

- : don't care

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

oe

1

1

1

1

1

1

1

1

0 Z - - -

use of Z for a multiply driven signal

Hmw : design a 4 to 1 mux using two 2 to 1 mux with oe inputs 

read for these at home

S1 (if Hi-Z available)

most FPGAs (including Spartan) do not have internal Hi-Z.

Hi-Z can be used at I/O ports (pins).

A

B
X

C

D

S0

oe

oe

s

s

STD_LOGIC_VECTOR Type

A collection of STD_LOGIC types

signal sel, sel2 : STD_LOGIC_VECTOR (0 to 3);

signal LEDS : STD_LOGIC_VECTOR (7 downto 0);

Example :

sel <= "0110";

sel2(2 to 3) <= "01";

LEDS <= (7=>'1', 6=>'0', others=>'Z');

LEDS(4) <= '0'; -- notice single quotes

LEDS <= LEDS +1;

-- requires use IEEE.STD_LOGIC_ARITH.ALL;

LEDS(7 downto 4) <= sel;

Since Hi-Z based bus systems are not possible in FPGAs

RAM1 I/O CPU

bus

RAM1 I/O etc CPU

Not possible

What is done

Another Combinatorial Example

LEDS <= "00000001" when SWS="000" else

 "00000010" when SWS="001" else

 "00000100" when SWS="010" else

 "00001000" when SWS="011" else

 "00010000" when SWS="100" else

 "00100000" when SWS="101" else

 "01000000" when SWS="110" else

 "10000000";

3 to 8 decoder SWS
3 8

LEDS

with SWS select

 LEDS <= "00000001" when "000",

 "00000010" when "001",

 "00000100" when "010",

 "00001000" when "011",

 "00010000" when "100",

 "00100000" when "101",

 "01000000" when "110",

 "10000000" when others;

LEDS(0) <= '1' when SWS = "000" else '0';

LEDS(1) <= '1' when SWS = "001" else '0';

LEDS(2) <= '1' when SWS = "010" else '0';

LEDS(3) <= '1' when SWS = "011" else '0';

LEDS(4) <= '1' when SWS = "100" else '0';

LEDS(5) <= '1' when SWS = "101" else '0';

LEDS(6) <= '1' when SWS = "110" else '0';

LEDS(7) <= '1' when SWS = "111" else '0';

do not forget to cover all possibilities
when using select

if(SWS="000") LEDS<="00000001";

elsif(SWS="001") LEDS<="00000010";

...

else ...

end if;

classic if-elsif-else-end if; can be

used in processes

library IEEE;

use IEEE.STD_LOGIC_VECTOR.ALL;

entity decoder3to7 is

 Port (D : in STD_LOGIC_VECTOR(2 downto 0);

 Q : out STD_LOGIC_VECTOR(7 downto 0));

end decoder3to7;

architecture decoder3to7 of decoder3to7 is

begin

 Q <= "00000001" when D="000" else

 "00000010" when D="001" else

 "00000100" when D="010" else

 "00001000" when D="011" else

 "00010000" when D="100" else

 "00100000" when D="101" else

 "01000000" when D="110" else

 "10000000";

end decoder3to7 ;

3 to 7 Decoder

D-type FF

used as output buffer

Din

clk

Q

data

N

Din

clk

Q

line driver line receiver

clk

N

data

As simple as it gets

channel

TX RX

Din

clk

Q

Din

clk

Q

data

data

clk

Shift register transfers stored

bit values from one FF to

another at each clk pulse

Differences:

- Path length

- Added noise

0 1 2 3

clk

data

SPI
master SPI

slave-1

SPI
slave-2

SCK

MISO

MOSI

CS-1

CS-2

...

SPI : Serial Peripheral Interface

SPI is a modern way to communicate between master and slave IC's on a single PC-board

0 1 2 3

SCK

MOSI
is a clocked serial communication protocol for short lengths

Din

Transmitter

output buffers of Tr.

clk

Receiver

might be a twinax cable

with common ground

0 1 2 3 bits

propagation delay

0 1 2 3

Initial Design (Synchronous Serial)

Let us assume that data and clock line lengths differ by 10 cm

one of the signals arrive 0.5 picoseconds late.

(speed of e.m. wave on copper is about 2x108 m/s)

Problem is : for a 1GHz clock, 0.5 ps is about half a clock cycle.

what you need/want

what you get

Solution

Solution is to generate clock from data at the receiver.

The data signal should necessarily be designed to perform such an operation

Transmitter

Din

clk sync.

Receiver

sync.

received data signal

generated

clock

A Phase Locked Loop (PLL) can be used if there are enough transitions in the signal

Use of Ground as signal return

Transmitter
Din

clk sync.

Receiver

This requires that grounds at both side must have the same potential which we cannot guarantee

What is likely to happen ?

constant

receiver ground

transmitter ground

when this flactuates

this flactuates
This is called jitter

threshold between L and H

L

H

Differential Signaling

Transmitter

+

-
Din

clk sync.

Receiver

Receiver uses the voltage difference between two inputs.

The voltage between a signal line and the ground is not in the formula here,

but we have another problem.

If there is a voltage difference between two grounds then there will be a

common mode current on the signal lines returning from ground.

common mode current

Capacitors to prevent CMC

+

-
Din

clk sync.

Receiver

Problem is different this time.

received signal

measured signal

if there are long runs of 0s or 1s

in the signal the receiver might

loose the synchronization and/or

cannot read the data.

Long runs of 0s and 1s is solved by coding

Example : Manchester coding

NRZ

Diff. Man.

Example : 8B/10B

7 6 5 4 3 2 1

a b c d f g h e i

0

j

5 to 6

LSB MSB

3 to 4 conversion tables

and disparity

If a circuit needs some values calculated from previous input values, it has

to have some way of remembering these values.

What is a Sequential Circuit?

Today, to make things simpler, almost all digital circuits are designed as

clocked sequential machines (Moore). Things are done synchronously with

the rising or falling (or both) edge of a clock signal.

Inputs Outputs

feedback previous values

One would design such circuits using two well known models;

Mealy (output depends on the inputs and stored values) and

Moore (output depends only on the stored values)

Inputs Outputs

clock

sequential

circuit

clock

ticks

Do some stuff Do other stuff Do some other stuff …

wait for the circuits to settle down between ticks

(this is one of the speed limiting constraints for circuits)

"Sequential", for digital circuits, does not mean that circuit pieces described

by each of our VHDL code lines do their stuff one after another . It means

that, outputs of designed circuits are someway affected from the previous

input sequences.

Remember that, VHDL is not a programming language. It is a description

language. We are describing a digital circuit  that does things concurrently
(keeping in mind the delays caused by the electronics and the finite speed of EM waves on silicon of course).

 : One may use VHDL for different purposes, but here we use it to describe circuits within FPGAs

Clocked & Synchronous

Some Attributes

Given
signal D : STD_LOGIC_VECTOR(7 downto 0);

signal X : STD_LOGIC_VECTOR(2 to 5);

D'LOW is 0 (lower array index)

X'LOW is 2

D'HIGH is 7 (upper array index)

X'HIGH is 5

D'LEFT is 7 (leftmost array index)

X'LEFT is 2

D'RIGHT is 0 (rightmost array index)

X'RIGHT is 5

D'LENGTH is 8 (size of the array)

X'LENGTH is 4

D'RANGE is (7 downto 0) (range of the array)

X'RANGE is (2 to 5)

D'REVERSE_RANGE is (0 to 7) (range of the array in reverse order)

X'REVERSE_RANGE is (5 downto 2)

signal Y: STD_LOGIC_VECTOR(D'RANGE);

...

D(D'RIGHT) <= '1'; -- set righmost bit to 1

Some Attributes

Given
signal CLK : STD_LOGIC;

CLK'EVENT is TRUE if there is an event on CLK

CLK'STABLE[t] is TRUE if there is no event on CLK in last t time unit

CLK'ACTIVE is TRUE when there is a transaction on (assignment) CLK

CLK'QUIET[t] is TRUE if there is no transaction on CLK during the last t time unit

'EVENT and 'STABLE attributes are synthesizable, others are for simulation only

if(CLK'EVENT and CLK='1') then

 ...

end if;

if(RISING_EDGE(CLK)) then

 ...

end if;

if keyword is a sequential

statement used in processes

processes

entity Toggle is

 Port (T : in STD_LOGIC;

 Q : out STD_LOGIC);

end Toggle;

architecture Toggle of Toggle is

 signal D : STD_LOGIC;

begin

 process(T,D) is begin

 if(RISING_EDGE(T)) then

 D <= not D;

 end if;

 end process;

 Q <= D;

end Toggle;

entity Toggle is

 Port (clk : in STD_LOGIC;

 T : in STD_LOGIC;

 Q : inout STD_LOGIC);

end Toggle;

architecture Toggle of Toggle is

 signal D : STD_LOGIC;

begin

 process(clk,T,D) is begin

 if(RISING_EDGE(clk)) then

 if((D~=T)and(T='1')) then

 Q <= not Q;

 end if;

 D <= T;

 end if;

 end process;

end Toggle;

synchronous fully synchronous

T Q T-FF
T Q T-FF

clk

Other Synthesizable Pre-Defined Simple Types

STD_ULOGIC : U stands for unresolved

BOOLEAN : True or False

INTEGER : 32 (max) bit integers (-2147483647 to +2147483647)

NATURAL : non-negative integers

 ...and arrays of these...

signal OE : STD_LOGIC;

signal count : integer;

signal IsOK, DOIT : BOOLEAN;

OE <= 'Z';

count <= count + 1;

IsOK <= not DOIT ;

DOIT <= False;

we need to use related library for some types

Vectors

Notice that integer and natural are actually collections of bits.

We have other collections too.

BIT_VECTOR : collection of BITs

STD_LOGIC_VECTOR : collection of STD_LOGIC types

STD_ULOGIC_VECTOR :

SIGNED, UNSIGNED : kinda integers

signal sel,sel2 : BIT_VECTOR (0 to 3);

signal LEDS : STD_LOGIC_VECTOR (7 downto 0);

signal count : integer range 0 to 15;

sel <= "0110";

sel2(2 to 3) <= "01";

LEDS <= (7=>'1', 6=>'0', others=>'Z');

count <= count +1; -- counts up to 15

LEDS(7 downto 4) <= sel; -- error, incompatible types

inherently creates a 4 bit signal

Homework : Read sections 1, 2, 3, 4

Do problems 3.2, 3.4, 4.1, 4.2.

Design a 7-segment decoder using a 10x7 ROM array.

Design a press-on/press-off button controlled LED circuit

Text Book : V.A. Pedroni, Circuit Design with VHDL, MIT Press.

Text Book : B. Sklar, Digital Communications (2nd Ed.)

Fundamentals and Applications, MIT Press.

Homework : Read section 2.3, 2.3.1, 2.8.5

Do problems 2.2, 2.3.

An Up-Counter With Asynchronous Reset

entity CntrWRst is

 Port (clk : in STD_LOGIC;

 Rst : in STD_LOGIC;

 Data : inout STD_LOGIC_VECTOR (3 downto 0));

end CntrWRst;

architecture CntrWRst of CntrWRst is

begin

 process(clk, Rst) is

 begin

 if(Rst='1') then

 Data <= "0000";

 else

 if(RISING_EDGE(clk)) then

 Data <= Data +1;

 end if;

 end if;

 end process;

end CntrWRst;

clk

Rst

D0

D1

D2

D3

Counter

process keyword

has sensitivity list
(think of a C-function

call when one or more

arguments change)

This is equivalent to
clk'EVENT and clk='1'

if-elsif-else-end if

is a sequential struct to be
used in processes

inout keyword

allows reading

back what is written

previously

Model of the Simulation

UUT

Unit Under Test

Simulation

Processes

Test Bench

simulation

signals

Simulation

Processes

signal

display

VHDL Test Bench & Simulation

1 Add a New Source File

since the extension will be *.VHD,

adding _tb to the name is a good

idea.

Select VHDL Test Bench

Click Next

Associate it with the implementation file and close the summary dialog

ARCHITECTURE behavior OF cntr4_tb IS

 COMPONENT CntrWRst

 PORT(

 clk : IN std_logic;

 Rst : IN std_logic;

 Data : INOUT std_logic_vector(3 downto 0));

 END COMPONENT;

 signal clk : std_logic := '0';

 signal Rst : std_logic := '0';

 signal Data : std_logic_vector(3 downto 0);

BEGIN

 uut: CntrWRst PORT MAP (

 clk => clk,

 Rst => Rst,

 Data => Data

);

 clk_process :process begin

 clk <= '0';

 wait for 10ns;

 clk <= '1';

 wait for 10ns;

 end process;

 stim_proc: process

 begin

 wait for 5ns;

 Rst <= '1';

 wait for 35ns; Rst <= '0';

 wait for 400ns; Rst <= '1';

 wait for 60ns; Rst <= '0';

 wait;

 end process;

END;

2 Create Generators

3 Start Simulation

A Simple Serial Communication System

Problem : Design of a asynchronous serial comm. system between

two boards with FPGA devices (Xilinx Spartan-3E starter kit)

Simple test setup 4 bit output to LEDS

4 bit data input from switches

serial output

serial input

GND (signal return)

these two can be

connected for a

loopback test

F9 E9 D11 C11 F11 E11 E12 F12

A6

B6

www.xilinx.com

This example is prepared using very basic VHDL constructs.

No or very little VHDL knowledge is necessary to understand the operations

Serial Peripheral Interface (SPI)

Master Slave SCLK

MOSI MOSI/SIMO

SCLK

1 2 3 4

Transmit: Master puts the bit to be transmitted on MOSI and raises the clock (SCLK)

Slave latches the serial input on the rising edge of the incoming clock.

SPI can not be used in long distance (a couple meters) communications, because of the timing

problems. The length difference between clock and data lines must be much smaller than the clock

wavelength.

SPI is used for board to board or chip to chip data transfers

MISO/SOMI MISO

Receive: Master raises the SCLK and reads in MISO on the falling edge of SCLK.

SS or SS SS or SS

Use of SPI in our Example

SCLK

MOSI MOSI/SIMO

SCLK

1 2 3 4

Transmiter: Master serializes the 4 bit data and puts each bit on the line.

MISO/SOMI MISO

Receiver: On the rising edge of SCLK slave reads in MOSI and deserializes every 4 bits.

SS or SS SS or SS

not used

not used

serializer

Transmitter Receiver

4 bit data

deserializer

4 LEDs

B4

A4

D5

C5

Single board test setup

(Loopback test)

entity SPIT is Port (

 clk : in STD_LOGIC; --we need a clock for action

 b : in STD_LOGIC_VECTOR(3 downto 0); -- parallel data in

 SCK : out STD_LOGIC; -- SPI clock

 MOSI : out STD_LOGIC); -- serial data out

end SPIT;

SCK <= clk;

TRNS: process(clk) is begin

 if(falling_edge(clk)) then

 MOSI <= b(cntr);

 cntr <= cntr+1;

 end if;

end process;

signal cntr : integer range 0 to 3;

Simple Transmitter

TRNS

b0

b1

b2

b3

b0 b2 b1 b3 b3 b0

LSB first

clk SCK

MOSI

b0 b1 b2 b3 b0

t

outputs

entity SPIR is Port (

 clk : in STD_LOGIC; -- do we need a clock for action?

 SCKin : in STD_LOGIC; -- SPI clock in

 MOSIin : in STD_LOGIC; -- serial data in

 LEDS : out STD_LOGIC_VECTOR(3 downto 0));-- parallel data out

end SPIR;

RECV: process(SCKin) is begin

 if(rising_edge(SCKin)) then

 recsig(reccntr) <= MOSIin;

 if(reccntr=3) then

 LEDS <= recsig;

 end if;

 reccntr <= reccntr +1;

 end if;

end process;

signal reccntr : integer range 0 to 3;

signal recsig : STD_LOGIC_VECTOR(3 downto 0);

Simple Receiver

RECV
SCKin

LEDS0

LEDS1

LEDS2

LEDS3

MOSIin

pclk (paralel data ready)

b0 b1 b2 b3 b0

t

inputs

prev. LEDS new

outputs

Simple Tranceiver

TRNS

b0

b1

b2

b3

clk
SCK

MOSI

RECV
SCKin

LEDS0

LEDS1

LEDS2

LEDS3

MOSIin

entity SPI is Port (

 clk : in STD_LOGIC; --we need a clock for action

 ------------- transmitter part

 b : in STD_LOGIC_VECTOR(3 downto 0); -- parallel data in

 SCK : out STD_LOGIC; -- SPI clock

 MOSI : out STD_LOGIC; -- serial data out

 ------------- receiver part

 SCKin : in STD_LOGIC; -- SPI clock in

 MOSIin : in STD_LOGIC; -- serial data in

 LEDS : out STD_LOGIC_VECTOR(3 downto 0));-- parallel data out

end SPI;

external connections

F9 E9 D11 C11 F11 E11 E12 F12

Q1 : What if We Use Two Transmitter & Receiver ?

B4

A4

D5

C5

C5

D5

A4

B4

Remote board connection
(full duplex)

gnd

warning : do not connect any power line other than the Gnd

MOSI

SCK

MOSI

SCK

Q2 : We directly connected SCK to internal 50 MHz oscillator.

How about not transmitting SCK and using internal 50 MHz on each board ?

Do we have any problems having correct LEDs lid ?

Asynchronous Transmitter & Receiver

TRNS

b0

b1

b2

b3

clk

MOSI
RECV

LEDS0

LEDS1

LEDS2

LEDS3

MOSIin

entity SPI is Port (

 clk : in STD_LOGIC; --we need a clock for action

 ------------- transmitter part

 b : in STD_LOGIC_VECTOR(3 downto 0); -- parallel data in

 MOSI : out STD_LOGIC; -- serial data out

 ------------- receiver part

 MOSIin : in STD_LOGIC; -- serial data in

 LEDS : out STD_LOGIC_VECTOR(3 downto 0));-- parallel data out

end SPI;

external connection

clk
f Hz f Hz

Q1: Do we have any problems having correct LEDs lid ?

Q2: Are LEDs stable ?

Solutions

RECV

LEDS0

LEDS1

LEDS2

LEDS3

MOSIin

sync

channel

solution to clock mismatch

solution to bit number ambiguity

1 1 1 1 0 b0 b1 b2 b3 1

Start marker actual data

fsw ... fsw b0 b1 b2 b3 1

use frame/word synchronization markers

example

When the rest of the receiver works with another clock

RECV FIFO circuit-1

sync

clock domain 1 clock domain 2

When the frame/word marker is actually a data word

That happens.!

A careful frame design and transmit/receive protocol are required.

Sometimes upper level sync words are inserted to the stream.

Q : Did you notice that problems are almost always on the receiver side?

Symbol Synchronization

The aim is to locally generate a signal that is synchronous to the incoming stream

incoming stream

timing of the locally generated periodic signal (not in sync)

t

timing of the locally generated in sync signal

t

incoming pulse

local

we are early
we are late

Correlation

is a measure of similarity of two signals (in signal processing)

() ()R r t t d t


 

()t ()r tand

received signal local signal

() , ()r t t 

is also named as inner product

low correlation low correlation high correlation

negative high correlation

correlation can be used to

adjust local oscillator

() ()
b

T

R r t t d t








 

we are to measure similarity for the symbol period (so that we can change it)



()t

decision

b
nT

()x t bits

integrator

correlator

detector

receiver

accumulator

 nu 1
z  nv

 nu

N-bit

register

reg.

adder

 nv
N-bit

accumulator

clk

Implementation with Digital Circuits

ACC: process(clkH) is begin

 if(rising_edge(clkH)) then

 R <= R + u;

 end if;

end process;

accumulator (discrete integrator) is as simple as a summation in VHDL

Integration for a Symbol Period

1
z … 1

z







[] []r n n

[]R n

() ()
b

T

R r t t d t








  [] [] []

N n

i n

R n r i i





 

N x 1 bit FFs

B bit register shift register for N clock delay

INTEGRATOR: process(clkH) is begin

 if(rising_edge(clkH)) then

 R <= R + ux - D[N-1];

 D[N-1] <= D[N-2];

 ...

 D[1] <= D[0];

 D[0] <= ux;

 end if;

end process;

An Ad-Hoc Method for Synchronization

s0 s1 s2

Input Signal

Sample input at triple-rate

Cases for si's:

1. All si are the same : No problem, continue at the same rate.

2. s0 is different : Clock is fast, so slow down (ignore next clock pulse)

3. s2 is different : Clock is slow, so move faster (use s2 as s0 for the next

bit period)

Take s1 as the bit value for all three cases.

Notes : Technique is simple and easy to design for digital systems like FPGAs.

It requires that the input to be very clean. With a little more effort a two sample

per bit method can be developed.

If the signal is noisy, multisample digital or analog integrator may be required.

An Ad-Hoc Method for Synchronization

architecture SerialRec of SerialRec is

 signal s0 : STD_LOGIC :='0';

 signal cntr : integer range 0 to 2 :=0;

 signal dummypulse : STD_LOGIC := '0';

begin

 process(clk) is begin

 if(RISING_EDGE(clk)) then

 if(dummypulse='1') then

 dummypulse <= '0'; cntr <= 0;

 else

 if(cntr=0) then

 s0 <= SDin; oclk <= '0'; cntr <= 1;

 elsif(cntr=1) then

 SDout <= SDin; oclk <= '0'; cntr <= 2;

 else

 if(s0/=SDout) then -- Data is slow (clock is fast

 dummypulse <= '1'; -- ignore next clock pulse

 elsif(SDin/=SDout) then -- Data is fast (clock is slow)

 s0 <= SDin; cntr <= 1;

 else

 cntr <= 0;

 end if;

 oclk <= '1';

 end if;

 end if; --dummypulse

 end if; -- clk

 end process;

end SerialRec;

entity SerialRec is Port (

 -- three clock per bit

 clk : in STD_LOGIC;

 SDin : in STD_LOGIC;

 SDout : inout STD_LOGIC;

 -- one pulse per output bit

 oclk : out STD_LOGIC);

end SerialRec;

1
z

[]r n

Another Ad-Hoc Method

3
c lk

1
z

1
z

a b c a b c

000

001

010

011

100

101

110

111

0

0

0

1

0

1

1

1

decision

-

increment cntr

x

decrement cntr

decrement cntr

x

increment cntr

-

cntr correction

0 to 2 counter

at every 2

Simple Problem

?
Received

Sinusoidal

Local

Oscillator adjust

Generated

Sinusoidal

measure

phase

?

better yet

We need to generate required waveforms locally



Start with Binary PAM (no waveform generation)

()x t

t

1 0 1 1 1 0
b

T






()R 

() 1t 

Binary PAM

1

0

Channel signal is composed of these

+A

-A

()R 



b
T

2
b

T

3
b

T 4
b

T

5
b

T

6
b

T

0

0

Noisy Signal Case

b
T 2

b
T 3

b
T 4

b
T



t

()x t

()R 

b
T 2

b
T 3

b
T 4

b
T

Decision points
t

Having synchronization is equivalent to correct detection of symbols

Early-Late Gating

early integral

late integral

current symbol

   

t

L
I

E
I

previous symbol next symbol

early

L
I

E
I

late

in-sync

in-sync
in-sync ?

| | | |
L E

I I : we are early

| | | |
L E

I I : we are late
| | | |

e g
d I I  can be used to adjust local clock (oscillator)

Waveform generation

ROM counter

clk

LUT filled with sin values

sin samples

n

0.198669330795061

0.389418342308651

0.564642473395036

0.717356090899523

-0.19866933079506

0

…

Address

A bits (waveform precision)

B bits (sample precision)

- How many samples per period?

- How many bits per sample?

- How Frequency/Phase controlled?

Samples

BRAM Primitives in FPGAs

There are several RAM blocks in Xilinx FPGAs including Spartan-3E

(and in other vendors' too)

Block

RAM

Address

Data in

EN

WE

CLK

Data out

Available Configurations in Spartan-3E

Block RAM instantiation templates can be seen using Language Templates

Dual Port

BRAM

Single Port

BRAM

Combining / Extending BRAMs

Single Port

BRAM

Single Port

BRAM

Data Bus (Horizontal) Extension Vertical Extension (more addresses)

Single Port

BRAM

Single Port

BRAM

additional address line

BRAM BRAM
BRAM

BRAM

entity DualPortRAM is

 Port (ADDR_A : in STD_LOGIC_VECTOR (6 downto 0);

 DATAIN : in STD_LOGIC_VECTOR (7 downto 0);

 WE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 DATAO_A : out STD_LOGIC_VECTOR (7 downto 0);

 ADDR_B : in STD_LOGIC_VECTOR (6 downto 0);

 DATAO_B : out STD_LOGIC_VECTOR (7 downto 0));

end DualPortRAM;

architecture Behavioral of DualPortRAM is

 type TDPRAM is array (0 to 127) of std_logic_vector (7 downto 0);

 signal MRAM : TDPRAM;

...

process(CLK) begin

 if (rising_edge(CLK)) then

 if (WE = '1') then

 MRAM(conv_integer(ADDR_A)) <= DATAIN ;

 end if;

 DATAO_A <= MRAM(conv_integer(ADDR_A));

 DATAO_B <= MRAM(conv_integer(ADDR_B));

 end if;

end process;

Defining RAMs with Inference

Synthesizer uses appropriate BRAMS if it can

Sample ROM

entity SinSamples is

 Port (CLK : in STD_LOGIC;

 DATA : out STD_LOGIC_VECTOR (7 downto 0));

end SinSamples ;

architecture Behavioral of SinSamples is

 type TDPRAM is array (0 to 31) of integer range -127 to 127;

 constant LUT: TDPRAM := {0,25,49,72,91,107,118,125,127,124,115,

 103,86,65,43,18,-7,-32,-56,-78,-96,-111,-121,-126,

 -127,-122,-112,-98,-80,-59,-35,-11};

 signal ADDR: integer range 0 to 31;

begin

 process(CLK) begin

 if (rising_edge(CLK)) then

 DATA <= conv_std_logic_vector(LUT(ADDR));

 ADDR <= ADDR+1;

 end if;

 end process;

end;

Variable Frequency

entity SinSamples is

 Port (Incr : in STD_LOGIC_VECTOR (4 downto 0);

 CLK : in STD_LOGIC;

 DATA : out STD_LOGIC_VECTOR (7 downto 0));

end SinSamples ;

architecture Behavioral of SinSamples is

 type TDPRAM is array (0 to 31) of integer range -127 to 127;

 constant LUT: TDPRAM := {0,25,49,72,91,107,118,125,127,124,115,

 103,86,65,43,18,-7,-32,-56,-78,-96,-111,-121,-126,

 -127,-122,-112,-98,-80,-59,-35,-11};

 signal ADDR: integer range 0 to 31;

begin

 process(CLK) begin

 if (rising_edge(CLK)) then

 DATA <= conv_std_logic_vector(LUT(ADDR));

 ADDR <= ADDR + conv_integer(Incr);

 end if;

 end process;

end;

LUT Based Controlled Frequency Waveform Generator

LUT

sin samples

n

phase accumulator

1
zfreq

(phase increment)

current phase

phase to value

conversion

phase accumulator

freq
(phase increment)

current phase

low bits are used in summation but not to drive LUT

B bits

most significant K bits

Maintain phase accuracy

unused

B-K bits

LUT

END

