
Introduction

by Erol Seke

For the course “Introduction to VHDL”

ESKİŞEHİR OSMANGAZI UNIVERSITY

What are FPGAs ?

Field Programmable Gate Array :

We have a bunch of digital circuit primitives with user programmable connections

designer

There are several ways to design digital circuits on FPGAs

One option is to use a HDL

Hardware Description Language :

We describe the circuits in plain text just like a programming language.

But it is not a programming language! it is a description language.

HDL

VHDL

Verilog

SystemC

?

Very High Speed Integrated Circuit Hardware Description Language

The devices range (where HDL is used)

PAL, PLD, EPLD, SPLD, CPLD , ASIC, FPGA

In this course, we will be using VHDL

A

B

S

X

Consider the following combinatorial digital circuit and truth table

Start with a Simple Digital Example

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

We can describe the function as

X = A when S=0, B when S=1

X = (A and not S) or (B and S)

or

or, with a switch analogy

A

B

X

S=0

S=1

A

B
X

It is a 1-bit 2-to-1 multiplexer as we know

We can make other multiplexers using this basic mux.

A

B

S

X 2 to 1

C

D

S0 S1

A2

B0

A1

B1

S

X0

X1

1 bit 4 to 1 mux

3 bits 2 to 1 mux

X2

A0

B2

c0

c1

c2

B0/.

A0/.

S/S0

A1/A

A2/C

B1/B

B2/D

X0/X

X1/.

X2/.

 ./S1

Configurable.!

1

2 3

Programmable / Configurable devices basically work just like that

In a device, we have a finite number of

1. Flip-Flops, Registers

2. RAMs

3. Look Up Tables (LUTs)

4. Gates

5. Arithmetic Units

6. MUXs

7. Other (clock managers, buses, I/O blocks etc)

that we can interconnect them as we wish and design the digital circuit needed

or we can use a HDL and let a compiler/synthesizer do the design and

optimization for the resource/performance balance.

Example (Xilinx-Spartan3E structure)

Slice

CLB

Example (Altera-Cyclone II structure)

LE
LAB

It may not be what it looks like

Combinatorial functions are usually implemented with look-up tables

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

A

B

S

X
X = (A and not S) or (B and S)

this is the function you want

this is the circuit you expect this is the truth table implemented

8 bit ROM

LUT

S

A

B

Adr-2

Adr-1

Adr-0

X
Dout

So, no matter how complex your function is

it is as simple as a look-up rom with 2N addresses

with N being the number of variables in the function.

this is what you get

Steps of VHDL Design Flow

Write VHDL code

Synthesize

Simulate

Libraries

Implement for Device Constraints

Generate FPGA Configuration File

Compile

Program and Test

we mostly work here

Since we have Spartan3E kits in the lab. we will be referring Xilinx ISE tool from now on, remembering that other

vendors/manufacturers provide similar tools too. Tools for the steps mentioned here are mostly device/vendor specific.

Hello World

A

B

S

X 2 to 1

Consider the MUX
entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

How about the behavior of the mux box?

X = (A and not S) or (B and S)

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S);

end Behavioral;

remember

after synthesizing we get

BIT type signals can assume one of two values : 0 or 1

How we do it using ISE tool (ver 14.7)

1 Start ISE

2 Create a new project named mux2to1

Select your VHDL projects folder.

It will come up automatically

everytime you create a new project.

Click Next

or

An ISE project file is a text file

consisting of names/references of

*.VHD source files, constraints files,

implementation specifiers etc.

3 Select your device

If you cannot find your board in this

list, select ‘none specified’ and just

select your FPGA chip

These should be as shown here

Click Next

and click ‘Finish’ on the Project Summary dialog box

4 Create a source file

Right-Click on an empty space in the ‘Hierarchy’

pane of the ‘Implementation’ view of the ‘Design’

tab. Click ‘New Source...’

Enter new source file name.

Any valid file name is ok, but be vise.

Source file is a text file with *.vhd extension

where you put your VHDL code

Since we are creating a VHDL source

file, we should select ‘VHDL Module’

here.

this should be selected, otherwise you

need to add the file to the project later.
Click Next

5 Define ports of the entity

The convention is to create a

source file for each entity (circuit).

Here you may define inputs/outputs

of this entity.

Since source files are text files,

many coders skip this step and

insert/edit the port description by

hand.

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

Default signal type is STD_LOGIC.

Click Next

and click ‘Finish’ on the Summary dialog box

We now have a source file editor window with entity description, some

comments and library definitions and an empty architecture section.

Architecture section is where you describe your circuit’s behaviour.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S)

end Behavioral;

6 Edit/Insert VHDL Code

Insert logical expressions here
(between begin and end keywords of

Architecture section)

Click Save icon

When saving, automatic syntax check is performed. Watch Console for error messages

7 Syntax Check

You can also check syntax by right

clicking on the Check Syntax item in

Design Tab and selecting Run,

or double click on Check Syntax

If there is an error you will see it on the

Check Syntax item

and in the Console.

This time, the syntax error is caused by a missing ; in X <= (A and not S) or (B and S);

Do corrections and repeat Syntax Check until you see
the green syntax validation checkmark

8 Synthesize

Synthesizing means that your code is

realizable by logic components.
(but it does not mean that it is physically realizably

within your device (FPGA) and VHDL rules)

You should see the green checkmark on Synthesize item too, after synthesizing

Now we need to implement a physical circuit for our selected device from this workable

circuit description

It is imperative to define actual input output pins for a correct implementation as our design

is a complete circuit and we need to test it by applying actual signals to the inputs and

monitoring the outputs.

Therefore, we need to tell "which signal goes to which pin of the device" before this step.

We do this by creating a constraint file.

9 Pin Connections

Create a new source as done before but this time select

‘Implementation Constraints File’ on the dialog box

Click Next

and click ‘Finish’ on the Summary dialog box

we will see a new editor window named as mux2to1.ucf (User Constraint File)

NET "A" LOC = "H18" ;

NET "B" LOC = "L14" ;

NET "S" LOC = "N17" ;

NET "X" LOC = "F12" ;

User Constraint File is a text file used for describing various constraints.

There is a complete book on the possible contents of this file.

This time we are just interested in pin connections.

Enter the following lines in the window and save it.

A S B

X (LED)

It tells the implementor to connect the I/Os of

our multiplexer to the physical switches and

LEDs on our Spartan 3E Evaluation Board. switches

For example: A is the signal name, H18 is the pin number of the FPGA which is physically connected to the second

switch on the board

attribute LOC: string;

attribute LOC of "A" : signal is "H18";

attribute LOC of "B" : signal is "L14";

attribute LOC of "S" : signal is "N17";

attribute LOC of "X" : signal is "F12";

Note : Instead of editing UCF as described above, you may also enter the following into the

declaration part of the architecture section of the VHDL file. Differences will be mentioned later.

10 Implement Design

Now we can implement the design

and create the programming file

Programming File is a binary file with *.BIT extension.

This file will be loaded onto FPGA through FPGA’s programming pins.

Our Spartan 3E Starter Board has a USB programming feature

through which this file can be sent.

For this purpose, we will be using IMPACT program which can be

initiated by Configure Target Device item.
(IMPACT can also be started externally)

12 Putting Your Design Into FPGA

This warning is OK to dismiss

Double Click on Boundary Scan

Right Click on the blank window and select Initialize Chain to search for devices on the board

11 Connect your board to your PC using its USB cable

power

to USB port of PC

Turn on the power switch on the board

and wait for the cable drivers to install

We should see the devices on the board in a chain configuration.

We also see a warning message about the configuration file(s). This time we will asssign the

configuration file manually, therefore, dismiss this dialog box and the next one.

For the Spartan 3E Starter Board, there should be 3 programmable devices in the chain.

The first one (xc3s500e) is the FPGA device and the one we are to program.

Click on xc3s500e to select device. Right click and select Assign New Configuration File...

Find and select mux2to1.bit file and click Open

We should see the selected file name under the device name

Dismiss the dialog box about attachment of the SPI / PROM devices by clicking No

Select xc3s500e again, right click on the device and select Program

We should see the Program Succeeded message in the window

We can now test our multiplexer using switches and observing the LED

warning : Please try not to load files for xcf04s and xc2c64a devices and program them.

This will destroy their original content and disables us to use simple test feature at the power up

A

B
X

C

D

S0 S1

1 bit 4 to 1 mux

created using 2 to 1 muxes

A

B

S

X 2 to 1

Reusability

We have this

A

B

S (2 bits)

X 4 to 1

D

C

and we want this

1 bit 4 to 1 mux

M1

M2

M3

B

D

C

A

X
A

B

A

B

A

B

X

X

X

S0 S1

internal signals

external connections external connections

by replication of the previously defined multiplexer

entity mux2to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 S : in STD_LOGIC;

 X : out STD_LOGIC);

end mux2to1;

architecture Behavioral of mux2to1 is

begin

 X <= (A and not S) or (B and S);

end Behavioral;

Back to Code

entity mux4to1 is

 Port (A : in STD_LOGIC;

 B : in STD_LOGIC;

 C : in STD_LOGIC;

 D : in STD_LOGIC;

 S0 : in STD_LOGIC;

 S1 : in STD_LOGIC;

 X : out STD_LOGIC);

end mux4to1;

architecture mux4to1 of mux4to1 is

 component mux2to1 is Port (-- component declaration

 A: in STD_LOGIC;

 B: in STD_LOGIC;

 S: in STD_LOGIC;

 X: out STD_LOGIC);

 end component;

 signal X1, X2 : STD_LOGIC;

begin

 M1: mux2to1 port map (-- component instantiation

 A => A,

 B => B,

 S => S0,

 X => X1

);

 M2: mux2to1 port map (

 A => C, B => D, S => S0, X => X2

);

 -- Complete the rest yourselves

end mux4to1;

You may obviously describe a 4 to

1 multiplexer in one combinatorial

statement
 (it may be more efficient and readable too)

optional labels

declare components here

declare intermediate signals here too

these are called instantiations

you can shape text to your taste

Hmw : design a 4 to 1 mux

STD_LOGIC Type

STD_LOGIC types can take the following values

0 : logic 0

1 : logic 1

Z : high impedance (Hi-Z)

X : unknown

W : weak unknown

L : weak low

H : weak high

- : don't care

S1

A

B
X

C

D

S0

oe

oe

s

s

0

B S X A

0 0

0 0 1

0 0

0

1

1 1

1 0 0

0 1

0 1

1 1

1

1

1

0

0

1

1

0

1

0

1

A

B

oe

1

1

1

1

1

1

1

1

0 Z - - -

use of Z for a multiply driven signal

Hmw : design a 4 to 1 mux using two 2 to 1 mux with oe inputs 

read for these at home

S1 (if Hi-Z available)

most FPGAs (including Spartan) do not have internal Hi-Z.

Hi-Z can be used at I/O ports (pins).

STD_LOGIC_VECTOR Type

A collection of STD_LOGIC types

signal sel, sel2 : STD_LOGIC_VECTOR (0 to 3);

signal LEDS : STD_LOGIC_VECTOR (7 downto 0);

Example :

sel <= "0110";

sel2(2 to 3) <= "01";

LEDS <= (7=>'1', 6=>'0', others=>'Z');

LEDS(4) <= '0'; -- notice single quotes

LEDS <= LEDS +1;

-- requires use IEEE.STD_LOGIC_ARITH.ALL;

LEDS(7 downto 4) <= sel;

Since Hi-Z based bus systems are not possible within FPGAs

RAM1 I/O CPU

bus

RAM1 I/O etc CPU

Not possible

What is done

Another Combinatorial Example

LEDS <= "00000001" when SWS="000" else

 "00000010" when SWS="001" else

 "00000100" when SWS="010" else

 "00001000" when SWS="011" else

 "00010000" when SWS="100" else

 "00100000" when SWS="101" else

 "01000000" when SWS="110" else

 "10000000";

3 to 8 decoder SWS
3 8

LEDS

with SWS select

 LEDS <= "00000001" when "000",

 "00000010" when "001",

 "00000100" when "010",

 "00001000" when "011",

 "00010000" when "100",

 "00100000" when "101",

 "01000000" when "110",

 "10000000" when others;

LEDS(0) <= '1' when SWS = "000" else '0';

LEDS(1) <= '1' when SWS = "001" else '0';

LEDS(2) <= '1' when SWS = "010" else '0';

LEDS(3) <= '1' when SWS = "011" else '0';

LEDS(4) <= '1' when SWS = "100" else '0';

LEDS(5) <= '1' when SWS = "101" else '0';

LEDS(6) <= '1' when SWS = "110" else '0';

LEDS(7) <= '1' when SWS = "111" else '0';

do not forget to cover all possibilities
when using select

if(SWS="000") LEDS<="00000001";

elsif(SWS="001") LEDS<="00000010";

...

else ...

end if;

classic if-elsif-else-end if; can be

used in processes

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity decoder3to7 is

 Port (D : in STD_LOGIC_VECTOR(2 downto 0);

 Q : out STD_LOGIC_VECTOR(7 downto 0));

end decoder3to7;

architecture decoder3to7 of decoder3to7 is

begin

 Q <= "00000001" when D="000" else

 "00000010" when D="001" else

 "00000100" when D="010" else

 "00001000" when D="011" else

 "00010000" when D="100" else

 "00100000" when D="101" else

 "01000000" when D="110" else

 "10000000";

end decoder3to7 ;

3 to 7 Decoder

If a circuit needs some values calculated from previous input values, it has

to have some way of remembering these values.

What is Sequential?

Today, to make things simpler, almost all digital circuits are designed as

clocked sequential machines (Moore). Things are done synchronously with

the rising or falling (or both) edge of a clock signal.

Inputs Outputs

feedback previous values

One would design such circuits using two well known models;

Mealy (output depends on the inputs and stored values) and

Moore (output depends only on the stored values)

Inputs Outputs

clock

sequential

circuit

clock

ticks

Do some stuff Do other stuff Do some other stuff …

wait for the circuits to settle down between ticks

(this is one of the speed limiting constraints for circuits)

"Sequential", for digital circuits, does not mean that circuit pieces described

by each of our VHDL code lines do their stuff one after another . It means

that, outputs of designed circuits are someway affected from the previous

input sequences.

Remember that, VHDL is not a programming language. It is a description

language. We are describing a digital circuit  that does things concurrently
(keeping in mind the delays caused by the electronics and the finite speed of EM waves on silicon of course).

 : One may use VHDL for different purposes, but here we use it to describe circuits within FPGAs

Clocked & Synchronous

Some Attributes

Given
signal D : STD_LOGIC_VECTOR(7 downto 0);

signal X : STD_LOGIC_VECTOR(2 to 5);

D'LOW is 0 (lower array index)

X'LOW is 2

D'HIGH is 7 (upper array index)

X'HIGH is 5

D'LEFT is 7 (leftmost array index)

X'LEFT is 2

D'RIGHT is 0 (rightmost array index)

X'RIGHT is 5

D'LENGTH is 8 (size of the array)

X'LENGTH is 4

D'RANGE is (7 downto 0) (range of the array)

X'RANGE is (2 to 5)

D'REVERSE_RANGE is (0 to 7) (range of the array in reverse order)

X'REVERSE_RANGE is (5 downto 2)

signal Y: STD_LOGIC_VECTOR(D'RANGE);

...

D(D'RIGHT) <= '1'; -- set righmost bit to 1

Some Attributes

Given
signal CLK : STD_LOGIC;

CLK'EVENT is TRUE if there is an event on CLK

CLK'STABLE[t] is TRUE if there is no event on CLK in last t time unit

CLK'ACTIVE is TRUE when there is a transaction on (assignment) CLK

CLK'QUIET[t] is TRUE if there is no transaction on CLK during the last t time unit

'EVENT and 'STABLE attributes are synthesizable, others are for simulation only

if(CLK'EVENT and CLK='1') then

 ...

end if;

if(RISING_EDGE(CLK)) then

 ...

end if;

if keyword is a sequential

statement used in processes

processes

entity Toggle is

 Port (T : in STD_LOGIC;

 Q : out STD_LOGIC);

end Toggle;

architecture Toggle of Toggle is

 signal D : STD_LOGIC;

begin

 process(T,D) is begin

 if(RISING_EDGE(T)) then

 D <= not D;

 end if;

 end process;

 Q <= D;

end Toggle;

entity Toggle is

 Port (clk : in STD_LOGIC;

 T : in STD_LOGIC;

 Q : inout STD_LOGIC);

end Toggle;

architecture Toggle of Toggle is

 signal D : STD_LOGIC;

begin

 process(clk,T,D) is begin

 if(RISING_EDGE(clk)) then

 if((D~=T)and(T='1')) then

 Q <= not Q;

 end if;

 D <= T;

 end if;

 end process;

end Toggle;

synchronous fully synchronous

T Q T-FF
T Q T-FF

clk

Other Synthesizable Pre-Defined Simple Types

STD_ULOGIC : U stands for unresolved

BOOLEAN : True or False

INTEGER : 32 (max) bit integers (-2147483647 to +2147483647)

NATURAL : non-negative integers

 ...and arrays of these...

signal OE : STD_LOGIC;

signal count : integer;

signal IsOK, DOIT : BOOLEAN;

OE <= 'Z';

count <= count + 1;

IsOK <= not DOIT ;

DOIT <= False;

we need to use related library for some types

Vectors

Notice that integer and natural are actually collections of bits.

We have other collections too.

BIT_VECTOR : collection of BITs

STD_LOGIC_VECTOR : collection of STD_LOGIC types

STD_ULOGIC_VECTOR :

SIGNED, UNSIGNED : kinda integers

signal sel,sel2 : BIT_VECTOR (0 to 3);

signal LEDS : STD_LOGIC_VECTOR (7 downto 0);

signal count : integer range 0 to 15;

sel <= "0110";

sel2(2 to 3) <= "01";

LEDS <= (7=>'1', 6=>'0', others=>'Z');

count <= count +1; -- counts up to 15

LEDS(7 downto 4) <= sel; -- error, incompatible types

inherently creates a 4 bit signal

Homework : Read sections 1, 2, 3, 4

Do problems 3.2, 3.4, 4.1, 4.2.

Design a 7-segment decoder using a 10x7 ROM array.

An Up-Counter With Asynchronous Reset

entity CntrWRst is

 Port (clk : in STD_LOGIC;

 Rst : in STD_LOGIC;

 Data : inout STD_LOGIC_VECTOR (3 downto 0));

end CntrWRst;

architecture CntrWRst of CntrWRst is

begin

 process(clk, Rst) is

 begin

 if(Rst='1') then

 Data <= "0000";

 else

 if(RISING_EDGE(clk)) then

 Data <= Data +1;

 end if;

 end if;

 end process;

end CntrWRst;

clk

Rst

D0

D1

D2

D3

Counter

process keyword

has sensitivity list
(think of a C-function

call when one or more

arguments change)

This is equivalent to
clk'EVENT and clk='1'

if-elsif-else-end if

is a sequential struct to be
used in processes

inout keyword

allows reading

back what is written

previously

simple counters roll over at 11...1 to 00...0

Model of the Simulation

UUT

Unit Under Test

Simulation

Processes

Test Bench

simulation

signals

Simulation

Processes

signal

display

VHDL Test Bench & Simulation

1 Add a New Source File

since the extension will be *.VHD,

adding _tb to the name is a good

idea.

Select VHDL Test Bench

Click Next

Associate it with the implementation file and close the summary dialog

ARCHITECTURE behavior OF cntr4_tb IS

 COMPONENT CntrWRst

 PORT(

 clk : IN std_logic;

 Rst : IN std_logic;

 Data : INOUT std_logic_vector(3 downto 0));

 END COMPONENT;

 signal clk : std_logic := '0';

 signal Rst : std_logic := '0';

 signal Data : std_logic_vector(3 downto 0);

BEGIN

 uut: CntrWRst PORT MAP (

 clk => clk,

 Rst => Rst,

 Data => Data

);

 clk_process :process begin

 clk <= '0';

 wait for 10ns;

 clk <= '1';

 wait for 10ns;

 end process;

 stim_proc: process

 begin

 wait for 5ns;

 Rst <= '1';

 wait for 35ns; Rst <= '0';

 wait for 400ns; Rst <= '1';

 wait for 60ns; Rst <= '0';

 wait;

 end process;

END;

2 Create Generators

3 Start Simulation

END

