Introduction

by Erol Seke

For the course “Introduction to VHDL’

(@) ESKISEHIR OSMANGAZI UNIVERSITY

What are FPGAS ?

Field Programmable Gate Array
We have a bunch of digital circuit primitives with U}ér programmable connections
designer

There are several ways to design digital circuits on FPGAs
One option is to use a HDL

Hardware Description Language :
We describe the circuits in plain text just like a programming language.
But it is not a programming language! it is a description language.

/ VHDL Very High Speed Integrated Circuit Hardware Description Language
HDL = Verilog

\ The devices range (where HDL is used)
SystemC
PAL, PLD, EPLD, SPLD, CPLD , ASIC, FPGA
I?

In this course, we will be using VHDL

Start with a Simple Digital Example

Consider the following combinatorial digital circuit and truth table

S A B | X
B 0 0 0|0
O 0 1|0
» A
A 0O 1 0|1
O 1 1|1/
1 0 0| 0
1 0 1|1
>
1 1 0|0 B
We can describe the function as 11 171"
X = Awhen S=0, B when S=1
or
X =(Aand not S) or (B and S) or, with a switch analogy
A — - S=0
< o X
S

B

It is a 1-bit 2-to-1 multiplexer as we know

We can make other multiplexers using this basic mux.

-

S, s,

1 bit 4 to 1 mux

AO
X

A 0
A, — 4

| X,
B0
B, X,
BZ

@ S

3 bits 2 to 1 mux

By/.
A.

A, /A

B,/B

A,/C

B,/D

2to 1 X

— Configurable.!

\ N X,/.
Xo/X
_\ -
/‘J > Xol.
N\

Programmable / Configurable devices basically work just like that

In a device, we have a finite number of

1. Flip-Flops, Reqgisters

2. RAMs

3. Look Up Tables (LUTSs)

4. Gates

5. Arithmetic Units

6. MUXs

7. Other (clock managers, buses, 1/0 blocks etc)

that we can interconnect them as we wish and design the digital circuit needed

or we can use a HDL and let a compiler/synthesizer do the design and
optimization for the resource/performance balance.

Exam P le (Xilinx-Spartan3E structure)

SHIFTIN cout . - . . .
I N L] L] L] L] L]
N . . . N
CrSER ovwuxa - g) Rt — 5 \\\ I T T N e T |
FXINA >] ey MU 1 || XoY3 | X1Y3 |I]] X2Y3 || X3Y3 || e e e
FXINE > LHXORG v = Sllce N 1 [|
; N — | [I
o o s =D];D = | =1 xovz || x1v2 |ij| xevz|[Xav2 | eee
7 G-LUT DYMUX) J l_—_—_—;'::;'l l_—:_—;'_—_—;'l
S were wers o af——_=va | I |
; — FEY S XOYT || XY] X2Y1 [[X3Y1 || eee
D\G;.vt-iux ws DI\ CE :\| [|
ALTDIG 227 I I i _C:R REV] | || I
1 |] || XOYO || X1Y0 ||| X2Y0|[X3Y0 | ewe
. (| W— | NS WU
GAND 1] 1
v [e, //’IIIIIIIIIIOBsIIIIII
° Top Portion o C L B ,I
e i !
CLK =+
snD—%
g .___W;vse ,’I : .
o x Y Device RAM Blocks | #bits
IR s K XC3S100E 4 73,728
i Common Logic ,I
? J XC3S250E 12 221,184
. L o S e /l XC3S500E 20 368,640
T e g o g XC3S1200E 28 516,096
T 4D]:D . XC3S1600E 36 663,552
Fl4:1] Ard:1] D II
F-LUT e OXMUX S Rev /’
: WF[1] MC15 B 0 a7 =X N
— FFX / CLB LUTs/ | Equivalent [RAM16/ |Distributed
gi ! Device Total |Slices |Flip-Flops |Logic Cells| SRL16 | RAM Bits
CYOF
] /| XC3S100E 240 960 1,920 2,160 960 15,360
;%; . CYINIT ,’I XC3S250E 612 |2,448 | 4,896 5,508 2,448 39,168
BX = P pe— eexoutl S| XC3S500E | 1,164 | 4,656 | 9,312 10,476 4,656 74,496
Y g ! XC3S1200E | 2,168 | 8,672 | 17,344 19,512 8,672 138,752
SHIFTOUT CIN ,
XC3S1600E | 3,688 |14,752| 29,504 33,192 14,752 236,032

.-
Exam P le (Altera-Cyclone Il structure)
.
o Register Chain
___________ Bouting From
Previous LE
+—» ' LAB-Wide Register Bypass
\ LAE Carry-In Synchronous
. N Load LAB-Wi Programmatie
\ icle acked Register
I_ A B s Synchronous Regisfar Select
™ \ L E Clear
L] \\ A4 L J Y
v g‘lt:;—h Lokl N Synch . -_“-—--.. Raow, Column,
X ata2————————— . - ~ ' And Dirsct Link
= o AR i v i TN e R g i
\ LU - ear Logi
- N datad e - tn J7 9 =
\ — | EMA
< 2 CLAN — Row, Column,
ICEs o —= And Direct Link
[L Raouting
|;z | | | T labelri —
labalrz —= Asynchronous .'I __..-_""
Embedded - { i
Multipliers N Chip-Wide Clear Logic / n—i-_,__.]_’ Local Routing
Reset —f f
L (DEV_CLRn) o o
\ ! egister Chain
S Clock & Ragisier Qutput
| Clogk Enabie Fepaback Hipu
Logic Legic Logic Logic \ labalk1 P
OEs Array Array Array Array OEs AN I:bzlkz > }
\‘\ labelkenat . 7
MK MK | labelkena2 ———p |
Blacks | «Blocks \ L LAB Carry-Out
m m Device M4K Blocks Total RAM Bits
IOEs
Fealure EP2C5 EP2C8 EP2C15 EP2C20 EP2C35 | EP2C50 | EP2CT0 EP2Cs 26 119.808
LEs 4.608 8,256 14,448 18,752 | 33.216 | 50,528 | 68,416 EP2C8 36 165,888
M4K RAM blocks (4 26 36 52 52 105 129 250 EP2C15 52 239,616
Kbits plus EP2C20 52 239,616
512 parity bits
Total RAM bits 119,808 165,888 239,616 239,616 483,840 | 594,432 | 1,152,00 EP2C35 105 483,840
0 EP2C50 129 594,432
multipliers ! !
PLLs 2 2 4 4 4 4 4

It may not be what it looks like

Combinatorial functions are usually implemented with look-up tables

this is the function you want

X=(Aand not S) or (B and S)

this is the truth table implemented

S A B | X
O 0 0O
O 0 1,0
O 1 0|1
O 1 1|1
1 0 0|0
1 0 1|1
1 1 0| O
1 1 1|1

>

>

A

B

B —
A —
S
Adr-2,

Adr-1.| 8 bit ROM
LUT

Adr-0

this is the circuit you expect

this is what you get

Dout

> X

So, no matter how complex your function is
it is as simple as a look-up rom with 2N addresses
with N being the number of variables in the function.

Steps of VHDL Design Flow

—______———__
—

-
-

- \
- \
I/ \|
! Write VHDL code Libraries
: Compile
Synthesize

'

Implement for Device

l

Generate FPGA Configuration File

\ l
\
\
\ Program and Test

—_ e o ===

Since we have Spartan3E kits in the lab. we will be referring Xilinx ISE tool from now on, remembering that other
vendors/manufacturers provide similar tools too. Tools for the steps mentioned here are mostly device/vendor specific.

Hello World

Consider the MUX
entity mux2tol is

A Port (A : in STD LOGIC;
B : in STD LOGIC;
2t01 X S : in STD LOGIC;
B—— X : out STD LOGIC);
end mux2tol;

BIT type signals can assume one of two values : O or 1

How about the behavior of the mux box?

architecture Behavioral of mux2tol is
remember begin

X = (Aand not S) or (B and S) ™ X <= (A and not S) or (B and S);

end Behavioral;

after synthesizing we get B> 2 :D

AMDZ OR2

g — T
—

AMDZB1

How we do it using ISE tool (ver 14.7)

Stark ~+0&x "™ ISE Project Navigator (P.20
Start I S E Welcome to the ISE® Design Suite File Edit Wiew Project Source

Project commands

Mew Praoject...
Cpen Project. .. | Project Browser... | Or Open Project...
_________ Mew Project... | Open Example. .. | Open Example. .. R
. T Praject Erowser. ..
Create a new project named mMuX2tol ' seexsoes
"™ New Project Wizard

Create Mew Project
Specify project location and tvpe,

—Enker a name, locations, and comment for the project

Marne: Imux2t01

Location: | CiiUsersiUser\DocumentsiYHDL_Projectsimuz2tol

Select your VHDL projects folder. __ .
It will come up automatically
everytime you create a new project.

N

——— P
w'orking Directory: |C:'l,LIsers'l,LIser'l,Dcu:uments\,VHDL_Pru:ujects'l,mutho1

=il My First YHDL project 1 1]

An ISE project file is a text file

consisting of names/references of
* VHD source fileS, constraints ﬁleS, —Select the bvpe of top-level source For the project
implementation specifiers etc.

Top-level saurce bype:

[=

More Info Textk = Cancel
_torero | | |
Click Next

@ Select your device

If you cannot find your board in this
list, select ‘none specified’ and just
select your FPGA chip

These should be as shown here ~ < _ | |

"™ New Project Wizard

Project Settings
Specify device and project properties,

—Select the device and design Flow For the project:

Property Mame Yalue
Evaluation Development Board -
Product Categary All ;I
- Family Spartan3E LI
Dievice HCASE0E =l
Package FE320 =l
Speed -4 =
Top-Level Source Tvpe HEL LI
Synthesis Tool #3T (YHDL Yerilog) ;I
Sirulatar 15in (¥HOL fverilog) |
Preferred Language WHDL LI
Property Specification in Project File Store all values LI
Manual Compile Order —
YHDL Source Analysis Standard WHDL-93 |
Enable Messane Filtering —

More Info | < Back | ek = I Cancel

Click Next

and click ‘Finish’ on the Project Summary dialog box

Design

@ Create a source file £

<08 x
Yiew: (%]:l"E:E Irnplermentation &6 Simulation

EE' Hietarchy -
HIEJ 'C'ﬂ muxZkal
Source file is a text file with *.vhd extension | e
where you put your VHDL code - Empty View
& § Theyigw || JUCERSENTRENS
L AfilgEry
_EL - Sroﬁecfsz Add Source...

. . . ans) =] d [{z] Add Copy of 5
Right-Click on an empty space in the ‘Hierarchy’ - - - e
pane of the ‘Implementation’ view of the ‘Design’
tab. Click ‘New Source...’

Select Source Type
Select source bype, Ffile name and its location.

Slnce we are Cl’eatlng a VHDL source i IP (CORE Generator & Architecture YWizard)
file, we should select ‘VHDL Module’ £ Shematie
here S < Yerilog Madule
' N - Werilog Test Fizture
a File marne:
P | WHOL Package _ 'Imuthnl
YHOL Test Bench - T—
Embedded Processor - =
_ - - IC:'l,Users'l,User'l,Dl:n:uments'l,\-'HDL_PrDjects'l,mutho1 gI
Enter new source file name. e
Any valid file name is ok, but be vise.
v add to project

- - V
- -
More Info | _ - - Mext = I Zancel
-
- -

this should be selected, otherwise you __--~
need to add the file to the project later.

Click Next

@ Define ports of the entity

The convention is to create a e e for modu,
source file for each entity (circuit).
Here you may define inputs/outputs e |“’”>‘2th
Of th|S entlty Architecture name IBehaworaI
Port Mame Direction Bus MSE LSE |~ |
A in O
B in = O
. . . 5 in =0
Since source files are text files, X 5T 10
many coders skip this step and in j' g
insert/edit the port description by -~ <0
hand. in =0
in O i
in LI O
in ~|r LI
Mare Infao | < Back | Mext = I Cancel |
Default signal type is STD_LOGIC.
entity mux2tol is
Port (A : in STD LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC;
X : out STD LOGIC) ;
end mux2tol; Click Next

and click ‘Finish’ on the Summary dialog box

We now have a source file editor window with entity description, some
comments and library definitions and an empty architecture section.
Architecture section is where you describe your circuit’s behaviour.

@ Edit/Insert VHDL Code library IEEE;

use IEEE.STD LOGIC 1164.ALL;

entity mux2tol is
Port (A : in STD LOGIC;
B : in STD LOGIC;
S : in STD LOGIC;
X : out STD LOGIC);
end mux2tol;

architecture Behavioral of mux2tol is

begin
Insert logical expressions here === =--—-=-- * X <= (A and not S) or (B and S)
(between begin and end keywords of
Architecture section) end Behavioral;

Click Save icon

When saving, automatic syntax check is performed. Watch Console for error messages

@ Syntax Check

You can also check syntax by right
clicking on the Check Syntax item in
Design Tab and selecting Run,
or double click on Check Syntax

If there is an error you will see it on the
Check Syntaxitem---_ _ _ _
and in the Console.

=
- -
e
- -

—
o
—
—

z9

g | 2 MoProcesses Running 20
I%lt Processes: muxZtol - Behavioral 31
ﬁt > = Design Summary /Reports 3a
il N8 Deesign itilities 33
FJ:J: -- IUser Constraints 34
— | = P2 synthesize - %57 £k
" [Z] view RTL Schematic 36
; Wiew Technology Schematic g;

‘Check Synkax

Generate Post-Synthesis Simul

Implement Design
----- 2 Gererate Programming File
-~ =N - - - P

Design Lkilities
User Constraints
Synthesize - ¥5T
i Wiew RTL Schematic
% View Technology Schematic

F2@ check Syntax

—--1likn
—--use

encice
P

end rm

ReRumn
Rerun al

7’ L-P) Generate Post-Synthesis Simula...
’ s - 83 Implement Design
'
7
7’
Console ‘
QERRCR:HDLParsers: 164 - "C:/Users/User/Documents,/ VHDL Projects/muxdtol/muxatol . whd"™ Line 45. parse error, unexpected END, expecting SEMICOLON

Frocess "Check 3yntax"™ failed

This time, the syntax error is caused by a missing ; in X <=

Do corrections and repeat Syntax Check until you see

the green syntax validation checkmark

.

(A and not S)

. G0
i

or

(B and S)<:>

-F) Synthesizs - 5T

Wigw RTL Schematic
Wigw Technology Schematic

-0

Check Syntax
Generate Post-Synkhesis Simula...
Implement Design

p= | P2 MoProcesses Running

. % Processes: mux2kol - Behavioral I
Synth eS I Z e B = Ciesign Summary/Reparts

'_{: G- A Design Ltilities
N - 7 User Constraints
= — = » — | RS
____________ ul 1 view RTL schematic Tl
== . - |F] Wigw Technology Sc Refun
Synthesizing means that your code is QO e ol

realizable by logic components.
(but it does not mean that it is physically realizably
within your device (FPGA) and VHDL rules)

Generate Post-Synl
- c}_ . - . Y :f Shmm

You should see the green checkmark on Synthesize item too, after synthesizing

Now we need to implement a physical circuit for our selected device from this workable
circuit description

It is imperative to define actual input output pins for a correct implementation as our design
Is a complete circuit and we need to test it by applying actual signals to the inputs and
monitoring the outputs.

Therefore, we need to tell "which signal goes to which pin of the device" before this step.
We do this by creating a constraint file.

Design +05F X |

@ P I n Con n eCtI ons [| Miew: = 18} Implementation ¢ & simulation »

ﬁg Hierarchy
o - B muxztol -
“[i_J E}é;g %c3s500e-4fg320
i nﬁnémuﬂtnl - Behavioral (mux2kol wh
== g' > B} Mew Source..
—————————————— _ —. Add Source, .
Create a new source as done before but this time select Eﬁ] Copy of Sounce..
‘Implementation Constraints File’ on the dialog box -
N N\
N\
N
N
N Select Source Type
N \ Select source type, file name and its location,
N\
N \ EIMM File
N &% Chipscope Definition and Connection File
\ Implementation Constraints File

¥
[IP (CORE Generator & Architecture Wizard)

MEM File

Schematic

User Document

Verilog Module Imux2t01

verilog Test Fixture

.| WHOL Module

YHOL Library IC:'|,Users'l,User'l,Documents'l,\-'HDL_Projects'l,muxztn1 _I

YHOL Package

YHOL Test Bench

Embedded Processor

Eile name:;

Location:

IV add to project

Mare Info | Mext = I Cancel

Click Next
and click ‘Finish’ on the Summary dialog box

we will see a new editor window named as mux2tol.ucf (User Constraint File)

User Constraint File is a text file used for describing various constraints.
There is a complete book on the possible contents of this file.
This time we are just interested in pin connections.

X (LED)

Enter the following lines in the window and save it.

NET "A" LOC = "H18" ;
NET "B" LOC = "L14" ;
NET "S" LOC = "N17" ;
NET "X" LOC = "F12" ;

It tells the implementor to connect the 1/Os of
our multiplexer to the physical switches and TS
LEDs on our Spartan 3E Evaluation Board. S A B switches

For example: A is the signal name, H18 is the pin number of the FPGA which is physically connected to the second
switch on the board

Note : Instead of editing UCF as described above, you may also enter the following into the
declaration part of the architecture section of the VHDL file. Differences will be mentioned later.

attribute LOC: string;

attribute LOC of "A" : signal is "H18";
attribute LOC of "B" : signal is "L14";
attribute LOC of "S" : signal is "N17";

attribute LOC of "X" : signal is "F12";

- 2 -- ser Conskrainks
Implement Design i E..Ef svmhesne - o
M Yiew RTL Schematic

Wiew Technology Schematic

{}O Check Syntax

.....

Generate Post-Synthesis Sinmula...
. . ——— TImplernent Design
Now we can implement the design - - e A
B 2 Map RERUN
- t2 . F‘Iaze E:Route Rerun 4
enerate Programmil
rh 30 i e T P 2 Stoo

Sl Bl e | SN I e S

EI E]O Implement Design
@

and create the programming file ~ - _ _

Cunflgure Target Dewce w

L@ Analyze Design Using ChipSco RERUR
Rerun Al

S Stop

Programming File is a binary file with *.BIT extension.

This file will be loaded onto FPGA through FPGA's programming pins.

Our Spartan 3E Starter Board has a USB programming feature

through which this file can be sent.

For this purpose, we will be using IMPACT program which can be

initiated by Configure Target Device item. —____ - PAE) Generate Pragramming File |

(IMPACT can also be started externally) el = Confioure Target Device
e 38 finalyze Design Using Chip W

Ferun Al
EM ~o__

@ Connect your board to your PC using its USB cable

Turn on the power switch on the board _ _

and wait for the cable drivers to install

@ Putting Your Design Into FPGA

This warning is OK to dismiss

Double Click on Boundary Scan

to USB port of PC

N E ISE iMPACT {P.20131013) - [Boundary Scan]
~ @ File Edit Wew Operations OCutput Debug

v 102 a6 = x all= ol

NMPACT Flows

—+ [0 F x

i gal Boundary Scan
i [2] Systemace

Bl |2] WebTalk Data

i | 2] Creske PROM File (PROM File Formatter)

power

" Warning X]

o iMPACT project file exists. Click CF bo open iMPACT, You will then need to define a
configuration chain, designate which device in that chain is the target device, and then
save the MPACT project file. Once this step is completed, subsequent runs of the

- 'Canfigure Target Device' process can program the target device withaut needing to open
the iMPACT GUI.
Right click to Add Device or Indtialize JTAG chain
Add zilinx Device, .. k4D
Add Mon-ziline Device... Cerl+k
Initialize Chain CEFI+T
P Cable Auto Connect
-
g Cable Setup...
-
-
- Dukput File Type 3

Right Click on the blank window and select Initialize Chain to search for devices on the board

We should see the devices on the board in a chain configuration.
We also see a warning message about the configuration file(s). This time we will asssign the
configuration file manually, therefore, dismiss this dialog box and the next one.

MPACT Flows +0&8 X

[+ ‘5gl Boundary Scan

o [2] SystemacE

i 2] Create PROM File (PROM File Formatter)
(- 2] webTalk Data

iMPACT Processes +0&8 X

Available Operations are:

= et Device ID

=P Gek Device SignaturefUsercade
=P Fead Device Status

TEBFLBED
H-
T ﬁ | e E XU
wc3eai0e wcflds xc2chida
bypazs bypazs bypaszs

TOO

\"I Do ywou wank ko continue and assign configuration files(s)r

¥ port show this message again, save the setting in preference.

Yes Mo

For the Spartan 3E Starter Board, there should be 3 programmable devices in the chain.
The first one (xc3s500e) is the FPGA device and the one we are to program.

Click on xc3s500e to select device. Right click and select Assign New Configuration File...

E Assign New Configuration File

(j) C) |~ vHDL Projects ~ muxztal - v &3 [search mucator ¥
Organize * New folder HE - E:l '@'
= Favorites 21 Mame ~ | Date madified | Type
B Deskiop J _ngo 26.09.2016 10:54 File: Folder
& Downloads | _xmsgs 260020161102 File folder
izl Recent Flaces | ipcore_dir 26.00.2016 08143 File: Folder
ﬁ Libraties . iseconfig 26.09,2016 09:05 File Folder
3 Documents 2 xlnx_auto_0_xdb 26.09,2016 10:54 File Folder
J“. TMusic) wst 26.09,2016 10:16 File folder
= Pictures B usczton b 26.09,2016 11:02 BIT File
E Videos e = — o Tvpe: BIT File
T PreTIITRE ™ = = = - R
18 Cornputer Dake modified: 26.09.2016 11:02

& sk (C:
e sl

File narme: | muxitoLbit

| | Design Files kit %ot *.nky =]

Open |v|

Cancel

Find and select mux2tol.bit file and click Open

1

1

;“‘““E |

! o xumee 1
Get Device ID !
Get Device §ignature,|'Us$'code

xe35500e
bypass

dd SPIJEFI Flash...
Assign Mew Configuration File, .

Set Programming Properties...

We should see the selected file name under the device name

SFIBET
=1

e —

F F F Attach SPI or BPI PROM x|
Ol § e § e 1§ E e i

i i i ” This device supports atkached Flash PROMs,

""""""""""" Do you wank to aktach an SPI or BPT PROM to this device?

xc3z500e xoflds xc2cBda

. Yes Mo

muzx2tal bit bypass bypass -

DO =

Y -
~ -

Dismiss the dialog box about attachment of the SPI / PROM devices by cIickin~g~No

Select xc3s500e again, right click on the device and select Program
|

-
ol % Prograrm

Get Device ID
wo3e500e @t Device SignaturefUsercode |4
mux2tel bt one Step SYF

mo— I
Orne Skep XSVE
&dd SPIJEPI Flash. ..
Assign Mew Configuration File. ..
We should see the Program Succeeded message in the window Program Succeeded

We can now test our multiplexer using switches and observing the LED

warning : Please try not to load files for xcfO4s and xc2c64a devices and program them.
This will destroy their original content and disables us to use simple test feature at the power up

We have this
A
2tol
B |
S

Reusability

and we want this

B—4t01 X

S (2 bits)

1 bit 4 to 1 mux

by replication of the previously defined multiplexer

external connections

>

O O

i M1 internal signals i
A / i
! B X / M3 H
I [4 A i
i X
. > i
. —A i
i X i
LB i

.]

S S

A
B X
|
5

S0 Sl

1 bit 4 to 1 mux
created using 2 to 1 muxes

X external connections

entity mux2tol is

Port (A : in STD LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC;
X : out STD_LOGIC) ;

end mux2tol;

architecture Behavioral of mux2tol is
begin

X <= (A and not S) or (B and S);
end Behavioral;

declare components here

declare intermediate signals here too —]
these are called instantiations —

optional labels

you can shape text to your taste ——

You may obviously describe a 4 to
1 multiplexer in one combinatorial

Back to Code

entity mux4tol is

Port (A : in STD LOGIC;
B : in STD_LOGIC;
C : in STD_LOGIC;
D : in STD_LOGIC;
SO : in STD_LOGIC;
S1 : in STD_LOGIC;
X : out STD_LOGIC);

end mux4tol;

architecture mux4tol of mux4tol is
component mux2tol is Port (-- component declaration

A: in STD_LOGIC;
B: in STD_LOGIC;
™ 8: in STD_LOGIC;
X: out STD_LOGIC) ;

end component;

> signal X1, X2 : STD LOGIC;
begin
L Ml: mux2tol port map (-- component instantiation
v A => A,
B => B,
S => SO0,
X => X1
o)7
M2: mux2tol port map (
= A=>C, B=>D, S=>80, X=>X2
);
-- Complete the rest yourselves

end mux4tol;

statement

(it may be more efficient and readable too)
Hmw : de

sign a 4 to 1 mux

STD LOGIC Type

STD LOGIC types can take the following values

o
D

: logic O
: logic 1
: high impedance (Hi-2)
: unknown

: weak unknown
: weak low

: weak high

\ — : don't care

> A

T H = X N - O

S, ((ifHi-z available)

r B

P PR P OOOO|Wm
PP OOFRPFROO|>
P OPFRPOFROPFR O|W

OR R RPRRRPRPRPR
NP ORFRORPREROO|X

—» read for these at home B —

use of Z for a multiply driven signal

most FPGAs (including Spartan) do not have internal Hi-Z.
Hi-Z can be used at I/O ports (pins).

A

So

Hmw : design a 4 to 1 mux using two 2 to 1 mux with oe inputs ©

STD LOGIC VECTOR Type

A collection of STD LOGIC types

Example :

signal sel, sel2 : STD LOGIC VECTOR (0 to 3);
signal LEDS : STD LOGIC VECTOR (7 downto 0);

sel <= "0110";

sel2 (2 to 3) <= "01";

LEDS <= (7=>'1', ©6=>'0"', others=>'72");
LEDS(4) <= '0'; -- notice single quotes

LEDS <= LEDS +1;
-— requires use IEEE.STD LOGIC ARITH.ALL;

LEDS (7 downto 4) <= sel;

Since Hi-Z based bus systems are not possible within FPGASs

Not possible RAM1 /O oo CPU

Y Y

<

\/{}/{}6 A

b
What is done RAM1 /O oo etc CPU
<~ —

smﬁ;;;fi>
3

Another Combinatorial Example

3 to 8 decoder

;;f$>LEDS
8

LEDS <= "00000001" when SWS="000" else
"00000010" when SWS="001" else
"00000100" when SWS="010" else
"00001000" when SWS="011" else
"00010000" when SWS="100" else
"00100000™ when SWS="101" else
"01000000™ when SWS="110" else
"10000000";

LEDS(0) <= '1l' when SWS = "000" else '0';
LEDS (1) <= '1l' when SWS = "001" else '0';
LEDS (2) <= '1l' when SWS = "010" else '0';
LEDS (3) <= '1l' when SWS = "011" else '0"';
LEDS (4) <= '1l' when SWS = "100" else '0';
LEDS (5) <= '1l' when SWS = "101" else '0"';
LEDS (6) <= '1l' when SWS = "110" else '0"';
LEDS(7) <= '"1' when SWS = "111" else '0';

with SWS select

LEDS <= "00000001"™ when "0O0O0",
"00000010" when "O0O1",
"00000100" when "O010",
"00001000" when "0O11",
"00010000" when "100",
"00100000" when "101",
"01000000"™ when "110",
"10000000"™ when others;

I

do not forget to cover all possibilities
when using select

1f (SWS="000") LEDS<="00000001";
elsif (SWS="001") LEDS<="00000010";

else
end 1if;

classic if-elsif-else-end if; can be
used in processes

3to 7 Decoder

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

entity decoder3to7 is
Port (D : in STD LOGIC VECTOR(2 downto 0);
Q : out STD LOGIC VECTOR(7 downto 0));
end decoder3to7;

architecture decoder3to7 of decoder3to7 is
begin

Q <= "00000001" when D="000" else
"00000010" when D="001" else
"00000100" when D="010" else
"00001000" when D="01l1l" else
"00010000" when D="100" else
"00100000" when D="101" else
"01000000" when D="110" else
"10000000";

end decoder3to7 ;

What is Sequential?

If a circuit needs some values calculated from previous input values, it has
to have some way of remembering these values.

Inputs —p

=== Outputs

previous values

el

feedback

One would design such circuits using two well known models;
Mealy (output depends on the inputs and stored values) and
Moore (output depends only on the stored values)

Today, to make things simpler, almost all digital circuits are designed as
clocked sequential machines (Moore). Things are done synchronously with
the rising or falling (or both) edge of a clock signal.

Inputs ===

clock —*

sequential
circuit

E> Outputs

Clocked & Synchronous

clock

ticks \‘

Do some stuff Do other stuff Do some other stuff ...

wait for the circuits to settle down between ticks
(this is one of the speed limiting constraints for circuits)

"Sequential", for digital circuits, does not mean that circuit pieces described
by each of our VHDL code lines do their stuff one after another. It means
that, outputs of designed circuits are someway affected from the previous
Input sequences.

Remember that, VHDL is not a programming language. It is a description

language. We are describing a digital circuit * that does things concurrently
(keeping in mind the delays caused by the electronics and the finite speed of EM waves on silicon of course).

% : One may use VHDL for different purposes, but here we use it to describe circuits within FPGAs

Some Attributes

Given
signal D : STD LOGIC VECTOR(7 downto O0);
signal X : STD LOGIC VECTOR(Z to 5);

D'LOW IS0 (lower array index)
X'LOW iS22

D'HIGH is 7 (upper array index)
X'HIGH iS5

D'LEFT IS 7 (leftmost array index)
X'LEFT IS 2

D'RIGHT is O (rightmost array index)

X'RIGHT IS5
D'LENGTH is 8 (size of the array)
X'LENGTH is 4

D'RANGE is (7 downto O0) (range of the array)
X'RANGE IS (2 to 5)
D'REVERSE RANGE is (0 to 7) (range of the array in reverse order)

X'REVERSE RANGE is (5 downto 2)

signal Y: STD LOGIC VECTOR (D'RANGE) ;

D(D'RIGHT) <= 'l'; -- set righmost bit to 1

Some Attributes

Given
signal CLK : STD LOGIC;

CLK'EVENT IS TRUE if there is an event on CLK

CLK'STABLE[t] is TRUE if there is no event on CLK in last t time unit
CLK'ACTIVE IS TRUE when there is a transaction on (assignment) CLK
CLK'QUIET[t] IS TRUE if there is no transaction on CLK during the last t time unit

'"EVENT and 'STABLE attributes are synthesizable, others are for simulation only

if (CLK'EVENT and CLK='1l') then

end if;

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

if keyword is a sequential |||
statement used in processes

if (RISING EDGE (CLK)) then

end if;

processes

synchronous

fully synchronous

entity Toggle is
Port (T : in STD LOGIC;
Q : out STD LOGIC) ;
end Toggle;

architecture Toggle of Toggle is

signal D STD LOGIC;

begin

process (T,D) is begin
if (RISING EDGE(T)) then
D <= not D;
end if;
end process;

Q <= Dy T— T-FF —Q

end Toggle;

entity Toggle is
Port (clk : in STD LOGIC;
T : in STD LOGIC;
Q : inout STD LOGIC) ;
end Toggle;

architecture Toggle of Toggle is
signal D STD LOGIC;
begin

process (clk,T,D) is begin
if (RISING EDGE (clk)) then
if((D~=T)and(T='1')) then

Q <= not Q;
end if;
D <=T;
end if;
, T—T-FF[—Q

end process; A
1
end Toggle; clk

Other Synthesizable Pre-Defined Simple Types

STD ULOGIC : U stands for unresolved
BOOLEAN : True or False
INTEGER : 32 (max) bit integers (-2147483647 to +2147483647)
NATURAL : non-negative integers
. . .and arrays of these. . .

signal OE : STD_ LOGIC;
signal count : integer;
signal IsOK, DOIT : BOOLEAN;

OE <= 'Z';

count <= count + 1;
IsOK <= not DOIT ;
DOIT <= False;

we need to use related library for some types

Vectors

Notice that integer and natural are actually collections of bits.
We have other collections too.

BIT VECTOR : collection of BITS

STD LOGIC VECTOR : collection of STD LOGIC types
STD ULOGIC VECTOR

SIGNED, UNSIGNED : kinda integers

signal sel,sel2 : BIT VECTOR (0 to 3);
signal LEDS : STD LOGIC VECTOR (7 downto 0);
signal count : integer range 0 to 15;

inherently creates a 4 bit signal
sel <= "0110";
sel2(2 to 3) <= "01";
LEDS <= (7=>'1', 6=>'0"', others=>'Z");
count <= count +1; -- counts up to 15

LEDS (7 downto 4) <= sel; -- error, incompatible types

Homework : Read sections 1, 2, 3,4
Do problems 3.2, 3.4, 4.1, 4.2.
Design a 7-segment decoder using a 10x7 ROM array.

An Up-Counter With Asynchronous Reset

inout keyword
allows reading entity CntrWRst is
back what is written Port (clk : in STD LOGIC;
previously \Rst : in STD_LOGIC;
Data : inout STD LOGIC VECTOR (3 downto 0));
end CntrWRst;

process keyword architecture CntrWRst of CntrWRst is

N begin
has sensitivity list \grocess(clk Rst) is

(think of a C-function This is equivalent to

call when one or more begin clk'EVENT and clk='1l"
arguments change) if(Rst='1"') then
Data <= "oooo'/
else
if (RISING EDGE (clk)) then clk L Do
/ Data <= Data +1; —>
end if; — D1
if-elsif-else-end if end if; Rst Counter L »D?
Is a sequential struct to be end process; —
used in processes end CntrWRst: —>D3

simple counters roll over at 11...1 to 00...0

Model of the Simulation

Test Bench

Simulation
Processes

—

simulation

signals

UuT
Unit Under Test

D

Simulation
Processes

signal
display

VHDL Test Bench & Simulation

@ Add a New Source File

Design +08 X

[| Wiew: © {8} Implementation & [Simulation

£l

=

r

Behavioral

Select VHDL Test Bench

”
”

since the extension will be *.VHD,
adding _tb to the name is a good
idea.

e

”

Select Source Type
Select source type, file name and its location.

BMM File
€= ChipScope Definition and Connection Fie
[Implementation Constraints File

4 IP (CORE Generator & Architecture \Wizard)
MEM File

[2] Schematic

[£] User Document:

verilog Module

[¥] verilog Test Fixture

YHOL Module
My vHOL Library
[F] YHOL Package
B VHDL Test Bench

Eile narme:

chird_th

- Location:
-’

and

I C:\Uzers\eseke’Documents\Projectsionird

V' a4dd to project

More Info |

Mext = I Cancel

Click Next

Associate it with the implementation file and close the summary dialog

ARCHITECTURE behavior OF cntr4_tb IS
COMPONENT CntrWRst
PORT (
@ Create Generators clk : IN std logic;
Rst : IN std logic;
Data : INOUT std logic_vector (3 downto 0));
END COMPONENT;

signal clk : std logic := '0';
signal Rst : std logic := '0';
signal Data : std logic vector (3 downto 0);
BEGIN
uut: CntrWRst PORT MAP (
clk => clk,

Rst => Rst,
Data => Data
)

clk process :process begin

clk <= '0"';
wait for 1lOns;
clk <= '1"';

wait for 10ns;
end process;

stim proc: process

begin
wait for 5ns;
Rst <= '1"';
wait for 35ns; Rst <= '0';
wait for 400ns; Rst <= '1l';
wait for 60ns; Rst <= '0';
wait;

end process;

END;

p | B2 Mo Processes Running
@ Start Simulation 7L | Processes: cnird_tb - behavior
L =% ISim Simulator
= -~ ¥) Behavioral Check Syntax
- iR |
Rerin Al
=L Stop

I1Sim (P.49d) - [Default.wcfg]
[z Fle Edit Wiew Simulaton Window Layout Help

[D3E]:[[%B0Xx®0 |t 9

“E?J|'.’ i u|m 2 .Xll.DDus 'I(’E Il |Q-Re—launch|

[std_logic_ur: & data[2:0]

Instanc... + 0O 8 X Ohjects <« 0O& X _*
’ﬁ’_a"?fflz »| Simulation Object., = val

——————— R alue

Instance and Pro IE’EEI_J’ ” ;fl

2 cntrd_tb Chject Mame o

(% std_logic_11r % ck ic |

[std_logic_ari s rst 5]

1=

=

2

END

