
Sequencing

by Erol Seke

For the course “Introduction to VHDL”

ESKİŞEHİR OSMANGAZI UNIVERSITY

Key Bounce

Making or opening circuits in mechanical switches take a finite amount of time

+Vcc tVb

Vb

+Vcc Vb

Low Pass Filter

Solution using discrete passive elements

t

Connect

t

Disconnect

Simple Digital Solution

t

Measure the logic input 3 times with approximately 5 ms apart.

If all 3 are the same then set the output (decision) to that value.

t

Logic readings

no change at the decision

decision = 0 decision = 1

threshold

Note : 5 ms is not decisive. It really depends on the mechanical characteristics of the contacts.

It can be from 2 ms upto 50 ms.

Debouncer Circuit

Clock

Divider

clk

DFFDFF DFFinput

NOR

AND

R

S

Set-Reset FF

debounced

5ms

Clock

Divider

clk

3 to 8 decoder

3 bit binary

counter

Sliding LEDs

?-bit counter

How about knight rider?

Knight-Rider with shift operators

architecture KnightRider of KnightRider is

signal direction: BIT := '0'; -- init is for simulation only

signal cntr: STD_LOGIC_VECTOR(21 downto 0);

begin

CLKDIV: process(clk) is begin -- clock divider 50MHz/2^22

if(RISING_EDGE(clk)) then

cntr <= cntr +1;

end if;

end process; -- can have as many processes as wished

RIDER: process(cntr(21)) is begin

if(cntr(21)'EVENT and cntr(21)='1') then -- same as RISING_EDGE

if(Rst='1') then -- synchronous reset

LEDS <= (LEDS'LOW=>'1',others=>'0');

elsif(LEDS(LEDS'LOW)='1') then

direction <= '1';

LEDS <= (LEDS'LOW => '0', LEDS'LOW +1 => '1', others=>'0');

elsif(LEDS(LEDS'HIGH)='1') then

direction <= '0';

LEDS <= (LEDS'HIGH => '0', LEDS'HIGH -1 => '1', others=>'0');

elsif(direction='1') then

LEDS <= LEDS sll 1; -- sll & srl work for BIT_VECTOR type

else

LEDS <= LEDS srl 1;

end if;

end if;

end process;

end KnightRider;

entity KnightRider is Port (

clk : in STD_LOGIC;

Rst : in STD_LOGIC;

LEDS : inout BIT_VECTOR (7 downto 0));

end KnightRider;

Knight-Rider (another design)

clk

U/D

Up/Down

Counter
X to 8 decoder

Limit

controller

Clock

Divider

LEDs

IEEE Standard Library Packages

numeric_bit : defines numeric types and arithmetic functions for unsigned & signed bit

numeric_std : defines numeric types and arithmetic functions for unsigned & signed std_logic

std_logic_1164 : some conversions and overloaded logic operators. rising_edge etc.

std_logic_arith : a set of arithmetic, conversion, and comparison functions

std_logic_misc : supplemental types, subtypes constants, and functions for the Std_logic_1164

std_logic_signed : a set of arith., conversion, and comparison functions for STD_LOGIC_VECTOR

std_logic_unsigned : a set of unsigned arith., conv., and comp. functions for STD_LOGIC_VECTOR

std_logic_textio :

math_complex :

math_real :

function max(L, R: INTEGER) return INTEGER is

begin

if L > R then

return L;

else

return R;

end if;

end;

function CONV_INTEGER(ARG: STD_ULOGIC)

return SMALL_INT is

variable tmp: STD_ULOGIC;

begin

tmp := tbl_BINARY(ARG);

if tmp = '1' then

return 1;

elsif tmp = 'X' then

assert false

report "<message truncated here>"

severity WARNING;

return 0;

else

return 0;

end if;

end;
Three example functions from std_logic_arith and std_logic_1164

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS

BEGIN

RETURN (s'EVENT AND (To_X01(s) = '1') AND

(To_X01(s'LAST_VALUE) = '0'));

END;

I : integer;

I : integer range H downto L;

I : integer range L to H;

S : signed (h downto l);

S : signed (l to h);

V : std_logic_vector (h downto l);

V : std_logic_vector (l to h);

U : unsigned (h downto l);

U : unsigned (l to h);

to_integer(S)

to_unsigned(I,U'length)

to_integer(U)

to_signed(I,S'length)

signed(V)

std_logic_vector(S)

unsigned(V)

std_logic_vector(U)

conv_std_logic_vector(I,V'lenght)

conv_integer(V)

(in std_logic_arith)

(others are in numeric_std)

Type Conversions

Signals with Multiple Drivers

Design : Inputs btn1 and btn2 are connected to S1 and S2 buttons respectively. Buttons are

normally open and inputs are pulled-down. Other ends of the buttons are connected to Vcc.
S1 button turns a LED on whilst S2 turns it off.

architecture MultDriven of MultDriven is

begin

P1: process(btn1) is begin

if(RISING_EDGE(btn1)) then

LED <= '1';

end if;

end process;

P2: process(btn2) is begin

if(RISING_EDGE(btn2)) then

LED <= '0';

end if;

end process;

end MultDriven;

btn1

btn2

LED

Incorrect Design

When you try to synthesize your code, you will get
ERROR:Xst:528 - Multi-source in Unit <MultDriven> on signal <LED>

or something similar.

on off

btn1

btn2

architecture MultDriven of MultDriven is

begin

process(btn1, btn2) is begin

if(RISING_EDGE(btn1)) then

LED <= '1';

elsif(RISING_EDGE(btn2)) then

LED <= '0';

end if;

end process;

end MultDriven;

Bad Synchronous Description

Try to think of a circuit that is described by the code above.

Is it possible?

Try to think of a circuit that does what is needed.

architecture SinglyDriven of SinglyDriven is

signal clk: STD_LOGIC;

begin

clk <= btn1 or btn2;

process(clk) is begin

if(RISING_EDGE(clk)) then

if(btn1='1') then

LED <= '1';

else

LED <= '0';

end if;

end if;

end process;

end SinglyDriven;

A Working Design

Obviously, when both inputs goes up
simultaneously, code lets btn1 to win

some combinatorial

some sequential

architecture SRLatch of SRLatch is

begin

process(btn1, btn2) is

begin

if(btn2='1') then

LED <= '0';

elsif(btn1='1') then

LED <= '1';

end if;

end process;

end SRLatch;

A Simpler Design

LATCH

Synthesizer may complain about inference

of a latch. If this is what we want, so we

shall ignore the warning here.

LATCH

architecture SRasync of SRasync is

begin

process(btn1, btn2) is

begin

if(btn2='1') then

LED <= '0';

elsif(RISING_EDGE(btn1)) then

LED <= '1';

end if;

end process;

end SRasync;

Another Simple Design

This line is changed.

The circuit will look like a simple FF with

asynchronous reset
D-FF

architecture SRSync of SRSync is

begin

process(clk, bon, boff) is

begin

if(RISING_EDGE(clk)) then

if(bon='1') then

LED <= '1';

elsif(boff='1') then

LED <= '0';

end if;

end if;

end process;

end SRSync;

A Synchronous Design

Double Rate Counter

Design : Output LEDS (8 bit) counts up one on both rising and falling edge of the single input clk.

1 2 3 4 5 6

clk

LEDS
...

architecture DoubleRate of DoubleRate is

begin

process(clk) is begin

if(RISING_EDGE(clk)) then

cntr <= cntr + 1;

end if;

end process;

process(clk) is begin

if(FALLING_EDGE(clk)) then

cntr <= cntr + 1;

end if;

end process;

Incorrect Design

When you try to synthesize the code, you will get
ERROR:Xst:528 - Multi-source in Unit <DoubleRate> on signal <LEDS<7>>

...

or similar.

architecture DoubleRate of DoubleRate is

signal cntr1: STD_LOGIC_VECTOR(7 downto 0);

signal cntr2: STD_LOGIC_VECTOR(7 downto 0);

begin

LEDS <= cntr1 + cntr2; -- + is a valid operator

-- for std_logic_vector

process(clk) is begin

if(RISING_EDGE(clk)) then

cntr1 <= cntr1 + 1;

end if;

end process;

process(clk) is begin

if(FALLING_EDGE(clk)) then

cntr2 <= cntr2 + 1;

end if;

end process;

Double Rate Counter - Working Design

architecture DoubleRate of DoubleRate is

signal Reg: STD_LOGIC;

signal cntr: STD_LOGIC_VECTOR(7 downto 0);

begin

process(clkH) is begin

if(RISING_EDGE(clkH)) then

if(Reg/=clk) then

cntr <= cntr + 1;

end if;

Reg <= clk;

end if;

end process;

Double Rate Counter – Synchronous w/ High Clock

Assumption : rate of the clkH is at least twice higher that the rate of the clk

Homework : Draw the logic circuit you expect before typing in the code.

Variables

Design : Calculate the number of ones in an 8 bit signal fed with a clock Din

clk

N

architecture Count1s of Count1s is

begin

process(clk) is begin

if(rising_edge(clk)) then

--N <= "000";

for i in 0 to 7 loop

if(Din(i)='1') then

N <= N + 1;

end if;

end loop;

end if;

end process;

end Count1s;

Incorrect

new keywords

Incorrect circuit.!

But no warning on synthesize.!

Putting this will generate "multiple driver" error.

architecture Count1s of Count1s is

begin

process(clk) is

variable T: STD_LOGIC_VECTOR(2 downto 0); -- declared here

begin

if(rising_edge(clk)) then

T := "000"; -- := is used for assignment to variables

for i in 0 to 7 loop

if(Din(i)='1') then

T := T + 1;

end if;

end loop;

N <= T; -- assignment to variables is immediate

end if; -- no need to wait for the next clock pulse

end process;

end Count1s;

Correct

Variables

Homework : Design a parity bit calculator. 7 bit input and 8 bit output.

…

Total of 7 adder and mux stages

Resulting circuit

HW: Could it be simpler?

Homework : Read sections 5, 6, 7

Do problems 5.2, 5.6, 6.1, 6.4, 6.8, 7.2, 7.5.

Design an Up-Down counter with Up, Down, clk and Rst inputs.

It shall not count when Up=Down='0' or Rst='1'.

END

