Sequencing

by Erol Seke

For the course “Introduction to VHDL’

(@) ESKISEHIR OSMANGAZI UNIVERSITY



Key Bounce

Making or opening circuits in mechanical switches take a finite amount of time

}

f = ?
Low Pass Filter l
i t L > t

Connect Disconnect



Simple Digital Solution

Measure the logic input 3 times with approximately 5 ms apart.
If all 3 are the same then set the output (decision) to that value.

threshold

M\‘

Logic readings

______________________ ®e® e o | [ L L b L b L L

decision = 0 ‘ y / decision = 1

no change at the decision

Note : 5 ms is not decisive. It really depends on the mechanical characteristics of the contacts.
It can be from 2 ms upto 50 ms.



\ 4

Debouncer Circuit

vV V V

NOR

Set-Reset FF

\ 4

vV VvV Vv

input

clk —»

>

Clock
Divider

DFF

DFF

\ 4

DFF

5ms

AND

debounced
—




r

Sliding LEDs

TTTTTTTT

3to 8 decoder

A A A

3 bit binary
counter

\ 4

Clock
Divider

?-bit counter

How about knight rider?



Knight-Rider with shift operators

architecture KnightRider of KnightRider is

signal direction: BIT := '0'; -- init is for simulation only
signal cntr: STD LOGIC VECTOR (21 downto 0);

begin
CLKDIV: process(clk) is begin -- clock divider 50MHz/2%22

if (RISING EDGE (clk)) then
cntr <= cntr +1;
end if;
end process; -- can have as many processes as wished

RIDER: process(cntr(21)) is begin
if (cntr(21) 'EVENT and cntr(21)='l') then -- same as RISING EDGE
if(Rst='1"') then -- synchronous reset
LEDS <= (LEDS'LOW=>'l',others=>'0");
elsif (LEDS(LEDS'LOW)='1"') then
direction <= '1';
LEDS <= (LEDS'LOW => '0', LEDS'LOW +1 => 'l', others=>'0");
elsif (LEDS (LEDS'HIGH)='1"') then
direction <= '0';
LEDS <= (LEDS'HIGH => '0', LEDS'HIGH -1 => 'l', others=>'0");
elsif (direction='1') then
LEDS <= LEDS sll 1; -- sll & srl work for BIT VECTOR type
else

LEDS <= LEDS srl 1; entity KnightRider is Port (

ené if; clk : in STD LOGIC;
end if; Rst : in STD LOGIC;
end process; LEDS : inout BIT VECTOR (7 downto 0));

end KnightRider; end KnightRider;




clk ——

>

Clock
Divider

Knight-Rider (another design)

\ 4

>

Up/Down
Counter

u/D

VY VY

X to 8 decoder

Limit
controller

LEDs



IEEE Standard Library Packages

numeric_bit . defines numeric types and arithmetic functions for unsigned & signed bit
numeric_std . defines numeric types and arithmetic functions for unsigned & signed std_logic
std_logic_1164 : some conversions and overloaded logic operators. rising_edge etc.
std_logic_arith . a set of arithmetic, conversion, and comparison functions

std_logic_misc : supplemental types, subtypes constants, and functions for the Std_logic_1164
std_logic_signed . a set of arith., conversion, and comparison functions for STD_LOGIC_VECTOR

std_logic_unsigned : a set of unsigned arith., conv., and comp. functions for STD_LOGIC_VECTOR

std_logic_textio

math_complex . | FUNCTION rising edge (SIGNAL s : std ulogic) RETURN BOOLEAN IS
math_real : | BEGIN
RETURN (s'EVENT AND (To_XOl(s) = '1l'") AND
(To_X01(s'LAST VALUE) = '0'));
END;
function CONV_INTEGER(ARG: STD_ULOGIC)
function max (L, R: INTEGER) return INTEGER is return SMALL INT is
begin variable tmp: STD_ ULOGIC;
if L > R then begin
return L; tmp := tbl BINARY (ARG) ;
else if tmp = '1l' then
return R; return 1;
end if; elsif tmp = 'X' then
end; assert false

Three example functions from std_logic_arith and std_logic_1164

report "<message truncated here>"
severity WARNING;
return 0;
else
return 0;
end if;
end;




Type Conversions

S :signed (h downto I);
S :signed (I to h);
signed(V)

to_integer(S) to_signed(l,S'length)
std_logic_vector(S)
conv_std_logic_vector(l,V'lenght)

|:integer, | TTTTTTTTTTTTTTTT * | V:std_logic_vector (h downto I);
(in std_logic_arith) )
| : integer range H downto L; V :std_logic_vector (I to h);
4_ ________________
| - integer range L to H; conv_integer(V)

(others are in numeric_std)
unsigned(V
to_integer(U) gned(V)
_ std_logic_vector(U)
to_unsigned(l,U'length) U : unsigned (h downto I);

U : unsigned (I to h);




Signals with Multiple Drivers

Design : Inputs btnl and btn2 are connected to S1 and S2 buttons respectively. Buttons are

normally open and inputs are pulled-down. Other ends of the buttons are connected to Vcc.
S1 button turns a LED on whilst S2 turns it off.

Incorrect Design
architecture MultDriven of MultDriven 1is

btnl begin
LED Pl: process(btnl) is begin
btn?2 > if (RISING EDGE (btnl)) then
— LED <= '1"';
end if;

end process;

btnl A P2: process(btn2) is begin
if(RISING_EDGE(bth)) then
LED <= '0"';
end if;
end process;
end MultDriven;

btn2 [

—

on off

When you try to synthesize your code, you will get
ERROR:Xst:528 - Multi-source in Unit <MultDriven> on signal <LED>

or something similar.



Bad Synchronous Description

architecture MultDriven of MultDriven 1is
begin
process (btnl, btn2) is begin
if (RISING EDGE (btnl)) then
LED <= '1"';
elsif (RISING EDGE (btn2)) then
LED <= '0';
end if;
end process;
end MultDriven;

Try to think of a circuit that is described by the code above.
Is it possible?

Try to think of a circuit that does what is needed.



A Working Design

architecture SinglyDriven of SinglyDriven is
signal clk: STD LOGIC;

begin
clk <= btnl or btn2; = some combinatorial
process (clk) is begin — some sequential

if (RISING EDGE (clk)) then
if(btnl='1') then
LED <= '1';
else
LED <= '0';
end if;
end if;
end process;
end SinglyDriven;

Obviously, when both inputs goes up
simultaneously, code lets btnl to win

woo

T FDR
— D Q LED

- _\—I_
(k> )J c

OR2

20



A Simpler Design

architecture SRLatch of SRLatch is
begin
process (btnl, btn2) is
begin
if (btn2='1"') then
LED <= '0';
elsif (btnl='1"') then
LED <= '1"';
end if;
end process;

Synthesizer may complain about inference
end SRLatch;

of a latch. If this is what we want, so we
shall ignore the warning here.

LATCH

e Adr a [TED>

D

[l Gate

[ clk2



Another Simple Design

architecture SRasync of SRasync is
begin
process (btnl, btn2) is
begin
if (btn2='1"') then
LED <= '0';
elsif (RISING EDGE (btnl)) then
LED <= '1"';
end if;
end process;
end SRasync;

This line is changed.

The circuit will look like a simple FF with D-FF

asynchronous reset

[k = R

[ clez




A Synchronous Design

architecture SRSync of SRSync is
begin
process (clk, bon, boff) is
begin
if (RISING EDGE (clk)) then
if(bon='1l"') then
LED <= '1"';
elsif (boff='1"') then
LED <= '0';

end if; 4 N
end if; gnd , fdse
end process; o 1
end SRSync; = ? o | le _
XST_GND ' & |
L PRSP SO S ‘:_>
LED
2 N
A I
h A




Double Rate Counter

Design : Output LEDS (8 bit) counts up one on both rising and falling edge of the single input c1k.

clk L

LEDS 1 2 3 4 5 6

Incorrect Design

architecture DoubleRate of DoubleRate is
begin
process (clk) is begin
if (RISING EDGE (clk)) then
cntr <= cntr + 1;
end if;
end process;

process (clk) is begin
if (FALLING EDGE (clk)) then
cntr <= cntr + 1;
end if;
end process;

When you try to synthesize the code, you will get
ERROR:Xst:528 - Multi-source in Unit <DoubleRate> on signal

or similar.

<LEDS<7>>



Double Rate Counter - Working Design

architecture DoubleRate of DoubleRate is
signal cntrl: STD LOGIC VECTOR(7 downto O0);
signal cntr2: STD LOGIC VECTOR(7 downto O0);
begin
LEDS <= cntrl + cntr2; -- + is a valid operator
-- for std logic vector

process (clk) is begin
if (RISING EDGE (clk)) then
cntrl <= cntrl + 1;
end if;
end process; —

OOUNT

process (clk) is begin
if (FALLING_EDGE (clk)) then
cntr2 <= cntr2 + 1;
end if; oolu:;ur
end process; —om oo

dk > c




Double Rate Counter — Synchronous w/ High Clock

architecture DoubleRate of DoubleRate is
signal Reg: STD LOGIC;
signal cntr: STD LOGIC VECTOR(7 downto O0) ;
begin

process (clkH) is begin
if (RISING EDGE (clkH)) then
if (Reg/=clk) then
cntr <= cntr + 1;
end if;
Reg <= clk;
end if;
end process;

Assumption : rate of the c1kH is at least twice higher that the rate of the c1k

Homework : Draw the logic circuit you expect before typing in the code.



Variables

Design : Calculate the number of ones in an 8 bit signal fed with a clock  Din =P
clk —»
Incorrect
architecture Countls of Countls is
begin
process (clk) is begin Putting this will generate "multiple driver" error.

if (rising edge(clk)) then
--N <= "000",‘
for i in 0 to 7 loop - new keywords

if(Din(i)='1"') then

N<=N + 1; .
end if;
end loop; )
end if;
end process; ED
end Countls;
:;:—
}7
}7
- - _N-\\
Incorrect circuit.! }% ~
But no warning on synthesize.! EE—
:}7
D 7.0 P —



Variables

Correct

architecture Countls of Countls is

begin
process (clk) is
variable T: STD LOGIC VECTOR(2 downto 0); -- declared here
begin
if(rising edge(clk)) then
T := "000"; -- := 1is used for assignment to variables
for i in 0 to 7 loop
if(Din(i)='1"') then
T :=T + 1;
end if;
end loop;
N <= T; -- assignment to variables is immediate
end if; -- no need to wait for the next clock pulse

end process;
end Countls;

Homework : Design a parity bit calculator. 7 bit input and 8 bit output.



Resulting circuit

Total of 7 adder and mux stages

T T _acichasbdnls (3
| L
};::j:::} —] i
pm . _____—a IT_sclaba st
T ol
I oo o
[ foine Ir e
IT_ ks 00y \\ T8 o)

ANDZB1

HW: Could it be simpler?

ANDZ

ORZ



Homework : Read sections 5, 6, 7

Do problems 5.2, 5.6, 6.1, 6.4, 6.8, 7.2, 7.5.

Design an Up-Down counter with Up, Down, clk and Rst inputs.
It shall not count when Up=Down='0"' or Rst="1".

END



