More VHDL

by Erol Seke

For the course “Introduction to VHDL’

(@) ESKISEHIR OSMANGAZI UNIVERSITY

CASE / WHEN

The syntax of CASE / WHEN sequential statement is

CASE [signal] is

WHEN [constant]
WHEN [constant]

=> [Statements]
=> [Statements]

<WHEN others => [Statements]>

END CASE;

Example : 3 Bit Binary to Gray-Code Converter

process (Bin) is begin
case Bin is
when "000" => GCode
when "001" => GCode
when "010" => GCode
when "011" => GCode
when "100" => GCode
when "101" => GCode
when "110" => GCode
when "111" => GCode
when others => null;
end case;
end process;

<="000";
<="001";
<="011";
<="010";
<="110";
<="111";
<="101";
<="100";

ROM

Bin GCode
Addr(2:0) Data(2:0)

case/when Is similar to when/else and
with/select/when but sequential (used in
processes like i f/else/end 1if)

entity Gray is Port (-—-
in STD_LOGIC;
inout STD LOGIC VECTOR (2 downto 0) :="000");

clk
GCode
end Gray;

process (clk) is begin
if (rising edge(clk)) then

case GCode 1is

when
when
when
when
when
when
when
when
when
end ca
end if;

end proces

Example

Gray Counter

"000" => GCode <="001"; -- such an approach can
"001" => GCode <="011"; -- be used for any
"01ll" => GCode <="010"; -- conversion

"010" => GCode <="110";

"110" => GCode <="111";

"111" => GCode <="101";

"101" => GCode <="100";

"100" => GCode <="000";

others => null; -- required for Z,X,U...
se;

Sy

| | |
e o rrrr

Another Binary To Gray Converter

entity Bin2Gray is Port (

Bin : in STD LOGIC;

Gray : inout STD LOGIC VECTOR (3 downto 0) :="000");
end Bin2Gray;

Architecture Bin2Gray of Bin2Gray is begin

Gray (Bin’ LEFT) <= Bin (Bin’ LEFT) ;
Gray (Bin’' LEFT-1 downto 0) <= Bin(Bin’ LEFT downto 1) xor
Bin(Bin’ LEFT-1 downto 0);
end Bin2Gray;

Bin (3) Gray (3)
Bin (2) —E:::} L Gray (2)
Bin (1) —:> ~— Gray (1)
Bin (0)) _— Gray (0)

How about Gray2Bin ?

FOR / GENERATE

Design : Parity generator for 8 bits input, 1 parity selector input (O=even, 1=o0dd) and a parity bit output

entity Parity is
Port (Din : in STD LOGIC VECTOR (7 downto 0);
Pin : in STD LOGIC; -- parity selection
P : out STD LOGIC); -- parity bit
end Parity;

architecture Parity of Parity is
signal T : STD LOGIC VECTOR (8 downto O0);

begin
T(0) <= Pin;
P <= T(8);

Ll: for i in 0 to 7 generate
T(i+l) <= T(i) xor Din(i); -- this circuit is
end generate; -- generated 8 times

end Parity;

This is an entirely combinatorial circuit

This circuit that is instantiated several times

Dln ::jD_l l+l

Note : Although we meant to generate the 8-
Xor gate circuit on the right, it is highly
probable that vendor specific synthesizers
realize the circuit using LUTs. (having the
same net result, of course)

Reason : LUT propagation times are
independent of the complexity of the circuit
and FPGAs are full of LUTs.

Simulation result

We Want a GENERIC Parity Bit Generator

so that we do not have write another module each time we need a parity bit generator with different size

entity Parity is
Generic (Nbits : integer := 8); -- can use a default size
Port (Din : in STD LOGIC VECTOR (Nbits-1 downto O0);
Pin : in STD LOGIC;
P : out STD LOGIC) ;
end Parity;

architecture Parity of Parity is

signal T : STD LOGIC VECTOR(Nbits downto 0);
begin

T(0) <= Pin;

P <= T (Nbits) ;

Ll: for i in 0 to Nbits-1 generate
T(i+l) <= T(i) xor Din(i); -- this circuit 1is

end generate; -- generated Nbits times

end Parity;

Hmw : Design a GENERIC Gray2Bin converter using for-loop

Instantiation of a Generic Module

entity EvenParity is
Port (Din : in STD LOGIC VECTOR (15 downto 0);
P : out STD LOGIC) ;
end EvenParity ;

architecture EvenParity of EvenParity is
component Parity is
Generic (Nbits : integer := 8);
Port (Din : in STD LOGIC VECTOR (Nbits-1 downto 0);
Pin : in STD LOGIC;

P : out STD LOGIC);
end component; -- a generic component ready to be used
begin
EvenPrt: Parity
generic map (-- if not used, default values are assumed
Nbits => Din'LENGTH -- force to generate 16 bit PG
)
port map (
Din => Din,
Pin => '0', -- means even-parity
P => P

) ;

end EvenParity ;

(@]

signal A, B,
signal D, E, F

signal G, H, I
A <= "1010";
C <= NOT A;
D <= A AND B;
E <= A OR B;
F <= A NAND B;
G <= A NOR B;
H <= A XOR B;
I <= A XNOR B;

-—- will work for bit,

D) O

Logical (Bitwise) Operators

STD LOGIC VECTOR (3 downto 0);
STD LOGIC VECTOR(3 downto 0);
STD LOGIC VECTOR(3 downto 0);

B <= "1100";

is 0101 now
is 1000 now
is 1110 now
is 0111l now
is 0001 now
is 0110 now
is 1001 now

|
|
H - Q=HMDAOQ

bit vector, std ulogic, std ulogic vector too --

refresh : match these

1> > A D e

Arithmetic Operators

signal A, B, D, E : STD LOGIC VECTOR(3 downto 0);

signal C, G : integer;
signal F : STD LOGIC VECTOR(7 downto 0);

A <= "0110"; B <= "0011"; C <= 6;

D<=A + B; -- D is 1001 now

E<=A - B; -—- E is 0011 now

F <=A * B; -—- F is 00010010 now
G<=C/ 2; -- G is 3 now '

Adders and multipliers are generally implemented
with ready-to-use hardware in FPGA.

Homework : how does division circuitry get implemented?

Conditional Operators

signal A, B: STD LOGIC VECTOR(3 downto O0);
signal C, G : integer;

if (A>B) then ... end if; -- greater than
if (CG) ... -- less than

if (A=B) ... -- equal to
if(A/=B) ... -- not equal to
if(Ck=G) ... -- less than or equal to
if(A>=B) ... -- greater than or equal to

—ey 300 GT |—vor —e 52100 LE (—

> <=

Bi3:0) unz=igned B{31:0) =igned

we expect that comparators are also ready-to-use in FPGAs

oo OO NS

Shift, Rotate and Concatenate Operators

signal A, B, C: BIT VECTOR(7 downto 0);

A <= "01001011"; B <= "11010010";

sll
sla
srl
sra
rol
ror

PP oy P w

B(6 downto 2) & A(7 downto
(‘1','1','1','1", A(1),

Noe

. Noe

. N

NDMNMNWDNER

14

2;

OOQO0OQ000a

is
is
is
is
is
is

10100100
00101111
00001001
11110100
00101101
11010010

now
now
now
now
now
now
4);

(rmb replicated)

(lmb replicated)

-- C is 01010100

IOV,IOI,VOI);

These operators themselves do not require any logic.

example

A

~No o wWwNEO

A rol 1

NoobhwNE O

Inference in VHDL (as opposed to Instantiation)

P <= A * B; -- inference with <18 bit signals
MULT18X18 inst : MULT18X18 -- direct instantiation
port map (
P =>P, -—- 36-bit multiplier output
A => A, -—- 18-bit multiplier input
B =>B -—- 18-bit multiplier input

) ;

O <= I1 when S='1l' else IO0;

MUXF8 inst : MUXF8

port map (
O =>0, -—- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF7 LO out)
Il => I1, -- Input (tie to MUXF7 LO out)

S =>8 -—- Input select to MUX
) ;

Example (Traffic Lights)

Traffic lights on a pedestrian crossing is controlled by a pedestrian request button (Bpr)
via a digital controller. Normally green lights for vehicles lit all the time until Bpr signals.
The timing of the lights is illustrated with the time-diagram below.

o @ Ry
- T)
T @ Gy

Br*
P 01001 01001 (1011

01100

0 T1 T2 T3 T4 T5 T6

State Diagram

wait T1 wait T2

01010 / x

01100/1

his will reset a timer
01100/0
10001 / x

01001 / x

wait T6

Simplified States

01100/1
wait until the
01100 /0 o ° sequence
completes
01100/ x
Enter state 1 Enter state O
o o — — — - o
o — o o o — o
— o o o o o —i
—i —i —i (@] —i —i —i
o o o — o o o
timervalue 0 T1 T2 T3 T4 T5 T6

Counter / Timer Component

architecture Timer of Timer is
signal clkl STD LOGIC; T
signal cntrls integer range 0 to CLOCK FREQ;
begin
CNT1l: process(clk) is begin
if (rising_edge(clk)) then
if (cntrls=CLOCK_FREQ) then
cntrls <= 0;

so that every tick is 1 second

clkl <= '1"'; entity Timer is \
else Generic (CLOCK FREQ : integer := 49999999);
cntrls <= cntrls +1; Port (clk in STD LOGIC;
clkl <= '0'; Rst in STD LOGIC;
end if; Tout : inout integer) ;
end if; end Timer;

end process;

CNT: process(clkl, Rst) is begin
if(Rst='1') then
Tout <= 0;
elsif (rising edge (clkl))
Tout <= Tout +1;
end if;
end process;

then

end Timer;

Keep in mind that every clock signal
reserves a dedicated clock route in
FPGA (if exist). One should seriously
consider fully synchronous designs
when this poses a problem in terms of
clock resources. Such problems usually
arouse when the designs are complex
and require multiple clock signals.

TMR: Timer port map (

clk => clk,
Rst => Rst,
Tout => Tout

) ;

LGTS: process(clk) is begin

if (rising_edge(clk)) then
if(state='0') then
if(Bpr='1') then

Rst <='1";

end if;
else
Rst <=

when
when
when
when
when
when
when

end if;
end if;
end process;

lO';
case Tout

Tl =
T2 =

T3
T4
T5

T6 =

state <=

Lights
Lights
Lights
Lights
Lights
Lights

others => Null;
end case;

signal Rst

signal Tout

STD_LOGIC;
integer;

-- Timer action wvalues

constant
constant
constant
constant
constant
constant

T1
T2
T3
T4
T5
T6

signal state B
signal Lights: STD LOGIC VECTOR (4 downto

integer
integer
integer
integer
integer
integer

STD LOGIC;

10;

=T1

T2
T3

= T4

T5

+ + + + +

10;
5;
20;
5;
3;

0);

= "01010";
"01001";
"10001";
"01001";
"01011";
= "01100";

state <=

IOI;

Homework :

In previous traffic lights problem, the intentional delay T1 before the lights start the sequence is
there to prevent a pedestrian keep pressing the Bpr button and continuously blocking the vehicles.

Change the design so that action starts right after the Bpr signal by having this delay at the end of
the sequence and after the Gv and Rp lights.

Bpr*
01001 10001 01001 01011

0110 01100 01100

Yv

Gv
Rp EEEEEN
Gp t

0 T1 T2 T3 T4 T5 T6

Enumerated Types and Subtypes

TYPE color is (red, yellow, green, blue, white, black);
SUBTYPE traffic colors is color range red to green;
type colorset is array (0 to 2) of color;

signal tr light : traffic colors;
signal forecolor, backcolor : color;

signal myset: colorset := (blue, white, black);
tr light <= red; -- OK

tr light <= blue; -- error

forecolor <= tr lights; -- OK

backcolor <= myset(l); -- OK

Records

TYPE RGBcolor is record

red : STD LOGIC VECTOR (7 downto 0);
green : STD LOGIC VECTOR(7 downto 0);
blue : STD LOGIC VECTOR(7 downto 0);

intensity : integer;
end record;

signal R : STD LOGIC VECTOR(7 downto O0) ;
signal RGB, RGB2 : RGBcolor;

RGB <= RGB2;
RGB.red <= R;

variable MyColor, X : RGBcolor;

MyColor := ("01010101",x"5B",x"24",14);
X := (red => R, others => '0'");

State Machines

Inputs §> _ _ %’ outputs
P combinatorial P
circuit
next state
previous state
sequential clock
circuit
Reset

output / input
(happens with clock)

What the state diagram means:

When we are in previous state move to the next state on the clock if the input is right.
Set the output as given.

A Template
type state is (state0, statel, state2,

-—- Combinatorial Part
process (prev_state) is
begin
case prev_state is
when state0 => precalculated value <= ...
if (condition) then next state <= stateX;
elsif (condition) then next state <= stateY;

when statel =>
end process;

-- Sequential Part
process (clock, Reset) is
begin
if(Reset = 'l') then
prev_state <= stateO;
elsif (RISING_EDGE (clock)) then
prev_state <= next state;
output <= precalculated value;
end if;

end process; Homework: Do the traffic lights

according to the template

Rotary Switch Reader with State Machine

Remember the rotary switch reader we have done in the lab. key bouncing
K18 Il [l [u"/ Clockwise

18 |" IH m m m— rotation
K18 Il [l] Il I Counterclockwise
G18 lII m m ||| rotation

/11

Homework :

Read sections 4.5,5.4, 8

Do problems 8.2, 8.3

Implement the rotary switch state machine.

END

