Upload until : 09:55

Two individual spectrums for two sub-channels of an OFDM communication system is shown below. The OFDM symbol duration T_{s} is given by $T_{s}=10+\mathrm{d} \mu \mathrm{s}$ where d is the $11^{\text {th }} \mathrm{digit}$ (second from the last) of your student-id. Find two sets of (f_{1}, f_{2}) where $f_{1} \geq 10 \mathrm{MHz}$.

Put your calculations/results in the drawing canvas below. Do not change anything else except putting your name/id on top of the page.

Solution:

$f_{n}=\frac{n}{(10+d) 10^{-6}}$ and $f_{\text {min }} \geq 10 \times 10^{6}$
Therefore, $n \geq 10 \times 10^{6}(10+d) 10^{-6}$
$n \geq 100+10 d$ and n is a positive integer.
Therefore n must be greater than or equal to 100 if your digit is $\mathrm{d}=0,110$ if $\mathrm{d}=1,120$ if $\mathrm{d}=2$, so on. In that case;
$f_{1}=\frac{100+i+10 d}{(10+d) 10^{-6}} \mathrm{~Hz}$ and $f_{2}=\frac{101+i+10 d}{(10+d) 10^{-6}} \mathrm{~Hz}$ where $i=0,1,2, \ldots$ integers
(put your digit into these)
Let us chose the minimum 2 appropriate numbers as n for f_{1} and f_{2} (an arbitrary selection) ($i=0$ and $i=1$)
$\mathrm{d}=0$, ($10 \mathrm{MHz}, 10.1 \mathrm{MHz}$) or ($10.1 \mathrm{MHz}, 10.2 \mathrm{MHz}$) or \ldots
$\mathrm{d}=1,(10 \mathrm{MHz}, 10.0909 \mathrm{MHz})$ or $(10.0909 \mathrm{MHz}, 10.1818 \mathrm{MHz})$ or \ldots
$\mathrm{d}=2$, ($10 \mathrm{MHz}, 10.0833 \mathrm{MHz}$) or ($10.0833 \mathrm{MHz}, 10.1667 \mathrm{MHz}$) or ...
$\mathrm{d}=3,(10 \mathrm{MHz}, 10.0769 \mathrm{MHz}$) or ($10.0769 \mathrm{MHz}, 10.1538 \mathrm{MHz}$) or ...
$\mathrm{d}=4,(10 \mathrm{MHz}, 10.0714 \mathrm{MHz}$) or (10.0714 MHz, 10.1429 MHz) or ...
$\mathrm{d}=5,(10 \mathrm{MHz}, 10.0667 \mathrm{MHz})$ or $(10.0667 \mathrm{MHz}, 10.1333 \mathrm{MHz})$ or ...
$\mathrm{d}=6,(10 \mathrm{MHz}, 10.0625 \mathrm{MHz})$ or $(10.0625 \mathrm{MHz}, 10.1250 \mathrm{MHz})$ or ...
$\mathrm{d}=7,(10 \mathrm{MHz}, 10.0588 \mathrm{MHz})$ or ($10.0588 \mathrm{MHz}, 10.1176 \mathrm{MHz}$) or ...
$\mathrm{d}=8,(10 \mathrm{MHz}, 10.0556 \mathrm{MHz})$ or $(10.0556 \mathrm{MHz}, 10.1111 \mathrm{MHz})$ or ...
$\mathrm{d}=9$, ($10 \mathrm{MHz}, 10.0526 \mathrm{MHz}$) or (10.0526 MHz, 10.1053 MHz) or ...

Keep in mind that both f_{1} and f_{2} must be integer multiples of $1 / T_{s}$. Arbitrary (random) selection of f_{1} and determining f_{2} accordingly does not work. If done so, one will obtain asked spectral shape but the signals (in time domain) will not be orthogonal. That is, 50% overlap of individual spectrums is a result of orthogonality, the reverse of this statement is not correct. I needed to add this explanation here because so many students seem to have selected arbitrary frequencies.

Upload your answer (word or pdf) before 09:55. No e-mails will be accepted.

