Upload until : 10:55

The following quadrature receiver is given. The oscillator in the receiver is in perfect sync with the in-phase component of the received signal $r(t)$. Symbol period is 0.2 s . Draw the incoming QPSK waveform in order for the receiver to output bed-codes of the last two digits in your student-id (msb-first). Put timing marks/values on your drawing.

Put your answer in the drawing-canvas below. Do not change anything else except putting your name/id on top of the page.

Answer:

It is impossible to obtain the required binary stream since the receiver does not generate

quadrature carriers;
$\begin{aligned} & r(t) \text { Delayed signal is not orthogonal to } \\ & \text { Local oscillator output : } \cos (20 \pi t) \\ & 0.15 \mathrm{~s} \text { delayed signal : }-\cos (20 \pi t)\end{aligned}$
Therefore, the second correlator output is just the negative of the first one.

Upload your answer (word or pdf) before 10:55. No e-mails will be accepted.

Added: In order to be able to give points to the students who tried to solve the problem with the assumption that the receiver generates quadrature carriers (even though a constellation diagram is not given), the following miss-solution is added with an assumed QPSK constellation. Note that this answer is not correct for the question, therefore a maximum of 10 points is given.

An example constellation look-up table would have been like;

Symbol	I	Q	waveform
00	1	0	\cos
01	0	1	\sin
10	0	-1	$-\sin$
11	-1	0	$-\cos$

Let us assume that your student id ends with 49 , which is 01001001 in bcd.
The symbol sequence is then 01-00-10-01 corresponding to $\{\sin , \cos ,-\sin , \sin \}$ sequence.
Since the carrier frequency is 10 Hz and the symbol period is 0.2 s , we have two periods of carrier per symbol.

