
No: Answer Name: Solution Eskişehir Osmangazi University, Faculty of Engineering and Architecture Department of Electrical Engineering & Electronics, "Communications" Final

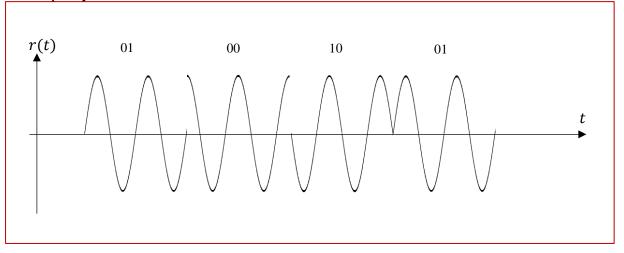
Upload until : 10:55

The following quadrature receiver is given. The oscillator in the receiver is in perfect sync with the in-phase component of the received signal r(t). Symbol period is 0.2s. Draw the incoming QPSK waveform in order for the receiver to output bcd-codes of the last two digits in your student-id (msb-first). Put timing marks/values on your drawing.

Put your answer **in the** drawing-canvas below. **Do not** change anything else except putting your name/id on top of the page.

Answer:

<i>r</i> (<i>t</i>)	It is impossible to obtain the required binary stream since the receiver does a quadrature carriers; Delayed signal is not orthogonal to signal generated by the local oscillator; Local oscillator output : $cos(20\pi t)$ 0.15s delayed signal : $-cos(20\pi t)$ Therefore, the second correlator output is just the negative of the first one.		


Upload your answer (word or pdf) before 10:55. No e-mails will be accepted.

Added: In order to be able to give points to the students who tried to solve the problem with the assumption that the receiver generates quadrature carriers (even though a constellation diagram is not given), the following miss-solution is added with an assumed QPSK constellation. Note that this answer is not correct for the question, therefore a maximum of 10 points is given.

An example constellation look-up table would have been like;

Symbol	Ι	Q	waveform
00	1	0	cos
01	0	1	sin
10	0	-1	-sin
11	-1	0	-cos

Let us assume that your student id ends with 49, which is 01001001 in bcd. The symbol sequence is then 01-00-10-01 corresponding to {sin,cos,-sin,sin} sequence. Since the carrier frequency is 10 Hz and the symbol period is 0.2s, we have two periods of carrier per symbol.

