No : Answers
Name : Solutions
Eskişehir Osmangazi University, Faculty of Engineering and Architecture Department of Electrical Engineering \& Electronics, "Communications" Final

1. For a communication system that your are going to design entirely, you are allowed to use a limited bandwidth from $f_{L}$ to $f_{H}$ and maximum power of $S_{\max }$ at all frequencies as illustrated in the following figure.


Your choices are:
a) A single BPSK carrier centered at $\left(f_{H}+f_{L}\right) / 2$ (band center) at symbol rate of $\left(f_{H}-f_{L}\right) / 2$ bits/s.

b) An OFDM system with 5 BPSK carriers and 3 null carriers. One of the null carriers is outside the band, the others are next to center. Carriers are placed $\left(f_{H}-f_{L}\right) / 8$ apart as illustrated. Symbol rate is obviously $\left(f_{H}-f_{L}\right) / 8$ and each symbol is 5 bits. No CP.


Both system can be preferred based on the qualities requested. Fill in the following table so that the systems can be compared.

| Quality | BPSK (a) | OFDM (b) |
| :--- | :--- | :--- |
| Bit rate | BW/2 | 5 BW/8 |
| BW efficiency | lower | higher |
| ? lower/higher |  |  |
| out-band activity | worse | better |
| complexity | lower | higher |
| carrier sync. | square law | square law |
| ? lower/higher |  |  |

BW efficiency : how efficient the available BW and power are utilized out-band activity : excess power wasted outside the band (also causes interference) complexity : how difficult to design the system
2. The following quadrature modulator is given.


Draw $y(t)$ when the symbol stream is $\{00,10,10,11,01\}$. Put quantitative (amplitude, time etc.) numbers on the graph.

3. $x(t)$ is a 2 Mbps binary antipodal random rectangular pulse stream. The following transmitter schema with DSSS is given. Chip rate of the m-sequence generator is 127 chips/bit.


Draw the single sides spectrum of the output $y(t)$. Mark frequencies.

4. A binary communication system uses the following waveforms;
$\psi_{0}(t)=\left\{\begin{array}{cl}\sin \left(\frac{2 \pi t}{T_{b}}\right), & 0<t<T_{b} \\ 0, & \text { otherwise }\end{array}, \quad \psi_{1}(t)=\left\{\begin{array}{cl}\cos \left(\frac{2 \pi t}{T_{b}}\right), & 0<t<T_{b} \\ 0, & \text { otherwise }\end{array}\right.\right.$
(note that the waveforms are not antipodal)
The receiver is basic correlator receiver with a single correlator.


Determine the correlator output at the decision instants when;
a) $r(t)=\psi_{0}(t)$
b) $r(t)=\psi_{1}(t)$
c) Draw approximate (estimated) $z_{n}$ vs $\theta$ graph when the sync circuit is out of sync by $\theta$. That is, the input is $\psi_{i}(t+\theta)$ ( $\theta$ ranges from $-90^{\circ}$ to $+90^{\circ}$ ).
a) $z_{n}=\int_{0}^{T_{b}}\left[\sin \left(\frac{2 \pi t}{T_{b}}\right)\right]^{2} d t=\int_{0}^{T_{b}}\left[\frac{1}{2}-\frac{1}{2} \cos \left(\frac{4 \pi t}{T_{b}}\right)\right] d t=\left[\frac{t}{2}-\frac{T_{b}}{8 \pi} \sin \left(\frac{4 \pi t}{T_{b}}\right)\right]_{0}^{T_{b}}=\frac{T_{b}}{2}$
b) $\left.z_{n}\right]_{r(t)=\psi_{1}(t)}=0$ (orthogonal)
c) $z_{n}(\theta)=\int_{0}^{T_{b}} \sin \left(\frac{2 \pi t}{T_{b}}\right) \sin \left(\frac{2 \pi t}{T_{b}}+\theta\right) d t=\frac{1}{2} \int_{0}^{T_{b}}\left[\cos (\theta)-\cos \left(\frac{4 \pi t}{T_{b}}+\theta\right)\right] d t$
$\left.=\frac{\cos (\theta) T_{b}}{2}-\frac{1}{2} \int_{0}^{T_{b}} \cos \left(\frac{4 \pi t}{T_{b}}+\theta\right) d t=\frac{\cos (\theta) T_{b}}{2}-\frac{T_{b}}{8 \pi} \sin \left(\frac{4 \pi t}{T_{b}}+\theta\right)\right]_{0}^{T_{b}}=\frac{T_{b}}{2} \cos (\theta)$



Any estimated drawings with such monotonic characteristics are acceptable.

