1. A baseband binary communication system is given below. The waveforms representing binary symbols are $\psi_{i}=\mp \sin \left(\pi t / T_{b}\right)$ for a symbol period T_{b} and 0 elsewhere. The receiver is in sync with the received signal. The pdf of the noise component at the correlator output is given as $f_{X}(x)=500 e^{-1000|x|}$.

Find the maximum bit rate achievable for $p_{e} \leq 0.01$

Answer:

Let $\psi(t)=\sin \left(\pi t / T_{b}\right)$.
$y\left(n T_{b}\right)=\int_{0}^{T_{b}} \psi_{i}(t) \psi(t) d t=\mp \int_{0}^{T_{b}} \sin \left(\pi t / T_{b}\right) \sin \left(\pi t / T_{b}\right) d t=\mp \int_{0}^{T_{b}} \sin ^{2}\left(\pi t / T_{b}\right) d t$
$=\mp \frac{1}{2} \int_{0}^{T_{b}}\left(1-\cos \left(2 \pi t / T_{b}\right)\right) d t=\mp \frac{1}{2}\left[t-\frac{T_{b}}{2 \pi} \sin \left(2 \pi t / T_{b}\right)\right]_{0}^{T_{b}}=\mp \frac{T_{b}}{2}=\mp E_{b}$
$p_{e}=500 \int_{\frac{T_{b}}{2}}^{\infty} e^{-1000 x} d x=-\left.\frac{1}{2} e^{-1000 x}\right|_{\frac{T_{b}}{2}} ^{\infty}=\frac{1}{2} e^{-500 T_{b}}$
for $p_{e} \leq 0.01, \frac{1}{2} e^{-500 T_{b}} \leq 0.01 \Rightarrow T_{b} \geq-\ln (0.02) / 500, T_{b} \geq \sim 7.824 \mathrm{~ms}$
$R_{\max }=\frac{1}{T_{\text {bmin }}}=127.8 \mathrm{bps}$
2. Given the spectrum of the baseband input signal, estimate and draw the output spectrum of the following system.

Answer:

3. Let the compression ratio is defined as the ratio of the average numbers of bits per symbols compressed data and the uncompressed data ($R_{\text {comp }}=L_{\text {avg-compressed }} / L_{\text {avg-uncompressed }}$). Calculate the compression ratios (using Huffman's dictionary preparation method) for the second and third extensions of the binary source given by $z=\{0.8,0.2\}$.

Answer:

Second extension of the source is $S_{2}=\{00,01,10,11\}$ with $z_{2}=\{0.64,0.16,0.16,0.04\}$. Huffman dictionary would have $L_{2}=\{1,2,3,3\}$. And $L_{2 a v g}=\sum_{i} p_{i} l_{i}=0.64+0.16 \times 2+0.16 \times 3+0.04 \times 3=1.56$ bits/symbol. Hence, the ratio is $R_{2}=\frac{1.56}{2}=0.78$.

Third extension source is $S_{3}=\{000,001,010,011,100,101,110,111\}$ with $z_{2}=$ $\{0.512,0.128,0.128,0.032,0.128,0.032,0.032,0.008\}$. Code lengths in the dictionary are calculated as $L_{3}=\{1,3,3,5,3,5,5,5\}$. Therefore,
$L_{3 a v g}=\sum_{i} p_{i} l_{i}=0.512+0.128 \times 3+0.128 \times 3+0.032 \times 5+0.128 \times 3+0.032 \times 5+0.032 \times 5+0.008 \times 5$
$L_{3 a v g}=2.184$ bits $/$ symbol
Ratio is then $R_{3}=\frac{2.184}{3}=0.728$.

