
No : Answers Name : Solutions

Eskişehir Osmangazi University Faculty of Engineering and Architecture

Department of Electrical Engineering & Electronics 26.01.2022

“Introduction To VHDL-FPGA” Final Exam

Note : Books, notes, computers are allowed, communication of all kind is prohibited. 90 minutes.

1. Determine if the VHDL designs involving the following problems require key-

debouncers. Explain why/why not?

a) An up/down counter controlled with two buttons named bUp & bDown; Pressing bUp

or bDown buttons increments or decrements the counter respectively.

Debouncers for both buttons are necessary. Otherwise counter may

increment/decrement multiple times when a button is pressed.

b) A button named bLight turns either on or off a light control circuitry; For example,

if the light is off, the user presses bLight to turn it on and presses again to turn it off.

Debouncer is necessary. Otherwise the toggle circuit may got triggered multiple times.

c) A three button key-entry circuit with button names b0, b1 and bEnter; User is

supposed to enter binary key sequence using b0 and b1 buttons. User is required to

press bEnter after each b0/b1 press. For example, if the user is trying to enter

"011", the key sequence he/she is expected to press is

"b0,bEnter,b1,bEnter,b1,bEnter".

Debouncer is not necessary since a bEnter key is required between button presses.

d) An up/down counter controlled with two buttons named bUp & bDown; Pressing one

of the buttons and keeping it pressed automatically increments/decrements the counter

at 0.5s intervals. For example, pressing bUp for 0.9 seconds increments the counter

twice; once just after the press event and once at 0.5s after that event. The remaining

0.4s will be forgotton if the user do not press any button for 0.5s afterwards.

Debouncer is not necessary. Because multiple increments/decrements are desired and

a delay of 0.5s acts like a debouncer anyway.

e) A circuit with two states is controlled with a switch and a button named as swS and

bS respectively; User is expected to set the swS according to the selected state and

presses the bS afterwards to activate the state.

Debouncer is not necessary, because the switch is not expected to change position

when the button is pressed. Multiple transitions of bS will cause the reading of the

same value on swS signal.

2. Design the following square-wave generator in VHDL. The design should force a

gracefull transition from one period selection to another (very important). T2 is given in

number of clk cycles.

entity SQGen is port (

 clk : in STD_LOGIC;

 T2 : in integer;

 SQW : out STD_LOGIC);

end SQGen;

architecture SQGen of SQGen is

 signal sqs : STD_LOGIC := '0';

 signal cntr : integer := 0;

begin

 SQW <= sqs;

 SQWGen:process(clk,T2,cntr,sqs) is begin

 if(rising_edge(clk)) then

 if(cntr>=T2-1) then

 cntr <= 0;

 sqs <= not(sqs);

 else

 cntr <= cntr+1;

 end if;

 end if;

 end process;

end SQGen;

square generator clk square wave

half period
...

T2

...

T2 (T2)

(SQW)

3. Sufficiently dense samples of the following stationary signal is given to a trigger

generating circuit. The circuit detects if the signal passes through a threshold level and

if so, generates a TRG signal for 1 clock cycle. Design the circuit in VHDL.

entity TrigGen is port (

 clk : in STD_LOGIC;

 S : in integer;

 TVal : in integer;

 TRG : out STD_LOGIC);

end TrigGen;

architecture TrigGen of TrigGen is

 signal pS : integer;

begin

 process(clk,S,TVal) is begin

 if(rising_edge(clk)) then

 pS <= S;

 if(((pS<=TVal)and(TVal<=S)) or

 ((pS>=TVal)and(TVal>=S))) then

 TRG <= '1';

 else

 TRG <= '0';

 end if;

 end if;

 end process;

end TrigGen;

S(t)

t

TVal

TRG

threshold level

4. Construct a 128x8 memory using 64x8 memory blocks given. (You may draw a legible

block diagram instead).

entity M128x8 is port (

 clk : in STD_LOGIC;

 WE : in STD_LOGIC; -- Write enable

 Adr : in STD_LOGIC_VECTOR(6 downto 0);

 Din : in STD_LOGIC_VECTOR(7 downto 0);

 Dout : out STD_LOGIC_VECTOR(7 downto 0));

end M128x8;

architecture M128x8 of M128x8 is

 component M64x8 is port(

 clk : in STD_LOGIC;

 WE : in STD_LOGIC; -- Write enable

 Adr : in STD_LOGIC_VECTOR(5 downto 0);

 Din : in STD_LOGIC_VECTOR(7 downto 0);

 Dout : out STD_LOGIC_VECTOR(7 downto 0));

 end component;

 signal WE0,WE1: STD_LOGIC;

 signal AdrL: STD_LOGIC_VECTOR(5 downto 0);

 signal Dout0,Dout1: STD_LOGIC_VECTOR(7 downto 0);

begin

 WE0 <= (not Adr(6)) and WE;

 WE1 <= Adr(6) and WE;

 AdrL <= Adr(5 downto 0);

 M0: M64x8 port map(clk,WE0,AdrL,Din,Dout0);

 M1: M64x8 port map(clk,WE1,AdrL,Din,Dout1);

 Dout <= Dout0 when Adr(6)='0' else Dout1;

end M128x8;

A5-A0 A6

WE
Dout

Din

Din

Din

Din

Dout

Dout

A

A

WE

WE

Dout0

Dout1

WE0

WE1

AdrL

A6

