
No : Answers Name : Example Solutions

Eskişehir Osmangazi University, Faculty of Engineering and Architecture

Department of Electrical Engineering & Electronics 11.01.2023

“Introduction To FPGA-VHDL” Final Exam.

Note : Books, notes, computers are allowed, communication of all kind is prohibited. 105 minutes.

1. A serial input signal (D) with synchronous clock (CLK) is searched for two binary

patterns, one following the other but not necessarily consecutively. Let these patterns, for

example, be P0=x"AA" and P1=x"CC". The circuit has three outputs;

A0: set to 1 when P0 is detected.

A1: set to 1 when P1 is detected.

A2: set to 1 when P1 is detected after the detection of P0.

Outputs are set to zero when a reset sequence (Pr=x"01") is detected.

Serial data comes in msb-first. Design the VHDL entity of the circuit.

entity SDet is Port (

 D, CLK : in STD_LOGIC;

 A0, A1, A2 : out STD_LOGIC);

end SDet;

architecture SDet of SDet is

 signal X : STD_LOGIC_VECTOR(7 downto 0);

 constant P0 : STD_LOGIC_VECTOR(7 downto 0) := x"AA";

 constant P1 : STD_LOGIC_VECTOR(7 downto 0) := x"CC";

 constant Pr : STD_LOGIC_VECTOR(7 downto 0) := x"01";

 signal A0x : STD_LOGIC;

begin

 A0 <= A0x;

 process(CLK) is begin

 if(rising_edge(CLK)) then

 X <= X(6 downto 0) & D;

 if(X=P0) then A0x <= '1';

 elsif(X=P1) then A1 <= '1';

 A2 <= A0x; end if;

 elsif(X=Pr) then

 A0x <= '0'; A1 <= '0'; A2 <= '0';

 end if;

 end if;

 end process;

end SDet;

2. A square wave signal pair will be generated with 90° phase difference between them.

Frequency is adjustable by two inputs; Inc for increment Dec for decrement. Increment and

decrement are performed at the rising edges of these signals. (A sentence about limit

frequencies is removed from here during the exam in order to reduce confusion). Design the

circuit using VHDL.

entity Phased is Port (

 Inc, Dec : in STD_LOGIC;

 A, B : out STD_LOGIC;

 CLK : in STD_LOGIC); -- 1 MHz

end Phased;

architecture Phased of Phased is

 signal cntrLim, cntr: integer;

 signal pInc, pDec : STD_LOGIC;

 signal AB : STD_LOGIC_VECTOR(0 to 1);

begin

 A <= AB(0); B <= AB(1);

 process(CLK) is begin

 if(rising_edge(CLK)) then

 pInc <= Inc; pDec <= Dec;

 if((pInc&Inc="01")and(cntrLim<500)) then

 cntrLim <= cntrLim +1;

 elsif((pDec&Dec="01")and(cntrLim>0)) then

 cntrLim <= cntrLim -1;

 end if;

 if(cntr>=cntrLim) then

 case AB is

 when "00" => AB <= "10";

 when "10" => AB <= "11";

 when "11" => AB <= "01";

 when others => AB <= "00";

 end case;

 cntr <= 0;

 else cntr <= cntr+1;

 end if;

 end if;

 end process;

end Phased;

A

B

3. A circuit has two de-bounced button inputs and a logic output (to a LED for example).

Pressing and releasing the button b activates and deactivates the output respectively.

However, keeping the button pressed more than 2 seconds locks it. In that case output

stays high even after the button is released. Circuit exits the lock-mode when b or s

button is pressed and the output goes low afterwards.

entity MCONT is Port (

 CLK : in STD_LOGIC; -- 1 MHz

 b, s : in STD_LOGIC; -- buttons

 L : out STD_LOGIC); -- e.g. LED

end MCONT;

architecture MCONT of MCONT is

 constant C2s : integer := 2000000;

 signal cntr : integer range 0 to C2s;

 signal pb,Lx : STD_LOGIC := '0';

begin

 process(CLK) is begin

 if(rising_edge(CLK)) then

 pb <= b;

 if(s='1') then -- reset condition

 cntr <= 0; Lx <= '0';

 elsif(cntr=C2s) then -- locked case (2sn+)

 if(bp&b="01") then

 Lx <= '0'; -- off but wait for ↓

 elsif(bp&b="10") then -- to reset the counter

 if(Lx='0') then cntr <= 0; end if;

 end if;

 else -- normal operation

 Lx <= b;

 if(b='0') then cntr <= 0;

 else cntr <= cntr +1; end if;

 end if;

 end if;

 end process;

 L <= Lx;

end MCONT;

 two modes of operation

mode 2sn+

b s Lx cntr

0 0 1 C2s

↑ 0 0 C2s

↓ 0 0 0

x 1 0 0

 normal (cntr<C2s)

b s cntr Lx

0 0 0 0

1 0 cntr++ 1

x 1 0 0

4. A R/W array of records will be created. The record is made of a std_logic a

std_logic_vector of width 8 and an integer ranging from 0 to 127.

a) The record and array type (of size 512) is declared in a package as follows; (do your

own type declarations).

type rr is record

 flag : STD_LOGIC;

 data : STD_LOGIC_VECTOR(7 downto 0);

 val : integer range 0 to 127;

end record;

type MType is array (0 to 511) of rr;

b) Array will be used as a single port memory with address, data and WE connections.

Complete the design.

entity REC is Port (

 CLK : in STD_LOGIC;

 Adr : in integer range 0 to 511;

 Din : in rr;

 Dout : out rr;

 WE : in STD_LOGIC);

end REC;

architecture REC of REC is

 signal Mem : MType;

begin

 process(CLK) is begin

 if(rising_edge(CLK)) then

 if(WE='1') then

 Mem(Adr) <= Din;

 end if;

 Dout <= Mem(Adr);

 end if;

 end process;

end REC;

-- note: depending on the synthesizer capability, one may

-- need to convert & combine record members to

-- STD_LOGIC_VECTOR during read/write operations

-- in order to make use of BRAMs.

