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The Kernel Common Vector Method: A Novel
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Pattern Recognition
Hakan Cevikalp, Member, IEEE, Marian Neamtu, and Atalay Barkana

Abstract—The common vector (CV) method is a linear sub-
space classifier method which allows one to discriminate between
classes of data sets, such as those arising in image and word
recognition. This method utilizes subspaces that represent classes
during classification. Each subspace is modeled such that common
features of all samples in the corresponding class are extracted.
To accomplish this goal, the method eliminates features that are
in the direction of the eigenvectors corresponding to the nonzero
eigenvalues of the covariance matrix of each class. In this paper,
we introduce a variation of the CV method, which will be referred
to as the modified CV (MCV) method. Then, a novel approach
is proposed to apply the MCV method in a nonlinearly mapped
higher dimensional feature space. In this approach, all samples
are mapped into a higher dimensional feature space using a kernel
mapping function, and then, the MCV method is applied in the
mapped space. Under certain conditions, each class gives rise to a
unique CV, and the method guarantees a 100% recognition rate
with respect to the training set data. Moreover, experiments with
several test cases also show that the generalization performance of
the proposed kernel method is comparable to the generalization
performances of other linear subspace classifier methods as well
as the kernel-based nonlinear subspace method. While both the
MCV method and its kernel counterpart did not outperform the
support vector machine (SVM) classifier in most of the reported
experiments, the application of our proposed methods is simpler
than that of the multiclass SVM classifier. In addition, it is not
necessary to adjust any parameters in our approach.

Index Terms—Common vector (CV), kernel-based subspace
method, pattern recognition, subspace classifier.

I. INTRODUCTION

THE LINEAR subspace classifiers are pattern recognition
methods, which use a linear subspace for each class [1].

The motivation behind the subspace classifiers is the optimal
reconstruction of multidimensional data with linear principal
components that carry the most significant representative fea-
tures. Therefore, the most conspicuous features are extracted
from each class by using the corresponding training samples in
the hope that those features also carry the most important dis-
criminatory information. Although this assumption is seldom
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valid, good recognition rates can be achieved when the dimen-
sionality of the sample space is large enough [2]. In subspace
methods, it is assumed that the vector distribution of each class
corresponds to a lower dimensional subspace of the original
sample space. The subspaces representing classes are defined
in terms of basis vectors that are linear combinations of the
sample vectors of each class. Therefore, basis vectors spanning
those subspaces must first be computed. Also, determining the
dimension of each subspace is a major issue since subspace di-
mensions have a strong influence on the performance of the sub-
space classifier. In particular, large subspace dimensions lead to
a low recognition performance due to the overlapping regions
among classes, whereas small subspace dimensions increase the
error rates because of a poor resulting approximation [2], [3].
After construction of subspaces, a test sample vector from an
unknown class is classified based on the lengths of the projec-
tions of that sample onto each of the subspaces or, alternatively,
on the distances of the test vector from these subspaces.

Watanabe et al. proposed the first subspace method, i.e., the
class-featuring information compression (CLAFIC), for pattern
classification [4]. This method employs the principal compo-
nents analysis (PCA) to compute the basis vectors spanning
the subspace of each class. However, the subspaces found by
the CLAFIC method may sometimes have a large overlapping
region in common, which causes poor classification of data
samples. Therefore, the method of orthogonal subspaces was
proposed, which attempts to remove the common regions of
the classes and makes the subspaces mutually orthogonal [5].
Fukunaga and Koontz proposed a new method, which enabled
to select the basis vectors in such a way that the projections
onto the so-called rival subspaces are minimized [6]. Finally,
learning subspace method (LSM), in which the subspaces are
iteratively modified to diminish the number of misclassifica-
tions, has been proposed in [7]. However, it turned out that
the final computed basis vectors that are obtained using the
LSM are sensitive to the presentation order of the training set
samples. This problem is resolved in [8] by the introduction
of the averaged learning subspace (ALS) method, in which the
correction of the subspaces is carried out in a batch fashion.
This process increased the statistical stability since the com-
puted basis vectors representing classes are independent of the
presentation order of the training set samples [9].

In some classification tasks, the dimensionality of the sample
space can be larger than the number of training samples in each
class. It is reasonable to expect that these high-dimensional
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spaces contain more information that can be used to detect
classes with more accuracy. However, because of the curse
of dimensionality phenomenon [10], most of the classification
techniques that carry out computations at full dimensionality
may not deliver the advantages of high-dimensional sample
spaces when the number of training samples is insufficient.
Therefore, the dimensionality of the sample space is usually
reduced before applying a classifier to data samples in the
original sample space. The PCA [11] and the Fisher’s linear
discriminant analysis [12] are two popular feature extraction
methods that are used for dimension reduction. However, di-
mensionality reduction through feature extraction may cause
loss of important discriminatory information. Unlike some
other classifiers, the subspace classifiers have been shown to
work well in classification tasks in high-dimensional sample
spaces. Therefore, Gulmezoglu et al. proposed the common
vector (CV) subspace classifier method that models subspaces
in such a way that their basis vectors span the null space of
the covariance matrix of each class, assuming that the number
of samples in each class is smaller than or equal to the dimen-
sionality of the sample space [13], [14]. This method has been
successfully applied in the isolated word recognition and face
recognition problems [14], [15]. It was demonstrated that if the
training set samples are linearly independent, then the extracted
features are optimal from the classification point of view, and all
training set samples can be classified correctly [13], [14].

The class decision boundaries that are obtained by the linear
subspaces are quadratic. However, the linear subspaces may
not extract nonlinear features of classes since each class is
associated with a linear subspace [16], [17]. The kernel-based
nonlinear subspace method, which is called the kernel CLAFIC,
was developed to overcome this limitation [16], [17]. In this
approach, it is assumed that samples from each class lie in some
nonlinear subspace. Therefore, all data samples in each class
are mapped to a higher dimensional feature space through a
nonlinear kernel mapping function, and the kernel PCA [18]
has been employed to compute the principal components of
the correlation matrices of classes in the mapped space. This
process spreads the data over a greater volume, which in turn
reduces overlapping regions among the classes and enhances
the potential for discrimination. The kernel CLAFIC method
is formulated in terms of dot products of the mapped samples,
and kernel functions are used to compute these dot products.
Therefore, the mapping function or the mapped samples are not
used explicitly, which makes the method feasible. In addition,
Tsuda showed that under some conditions, the subspaces in the
mapped space do not have overlapping regions [17]. It has been
reported that the performance of the kernel CLAFIC method is
superior to the linear subspace classifiers [16], [17].

In this paper, we introduce a variation of the CV method,
which is called the modified CV (MCV) method, which is then
extended to the nonlinear case. The new nonlinear method,
which will be referred to as the kernel CV method, consists
in applying the MCV method in the setting of a nonlinearly
mapped higher dimensional feature space. The remainder of
this paper is organized as follows: In Section II, we first
review the CV method and then introduce its variation, i.e.,
the MCV method. Section III describes the kernel CV method.

We discuss our experimental results in Section IV, and our
conclusions are given in Section V.

II. VARIATION OF THE CV METHOD

The CV method is a subspace classifier that extracts features
that are common to all samples in each class. To accomplish
this, the method eliminates certain features that are in the direc-
tion of the eigenvectors corresponding to the nonzero eigenval-
ues of covariance (or scatter) matrices of classes. In this way,
each class is represented by the null space of its own scatter
matrix. Therefore, to apply the method, the number of samples
in each class must be smaller than or equal to the dimensionality
of the sample space. One drawback of the CV method is that it
cannot be extended to the nonlinear case. To circumvent this
limitation, we propose a variant of the CV, which is called
the MCV method. Since the MCV method is built on the CV
method, we first recall the main idea of the CV method.

A. CV Method

Let the training set be composed of C classes, where the
ith class contains Ni samples, and let xi

m be a d-dimensional
column vector, which denotes the mth sample from the ith
class. There is a total of M =

∑C
i=1 Ni samples in the training

set. Suppose that d ≥ Ni, for i = 1, . . . , C. The scatter matrix
of each class is defined as

Si =
Ni∑

m=1

(
xi

m − µi

) (
xi

m − µi

)T
, i = 1, . . . , C (1)

where µi is the mean of the samples in the ith class. In the CV
method, each sample in the training set is represented as

xi
m = xi

m,dif + xi
com + εi

m, i = 1, . . . , C; m = 1, . . . , Ni

(2)

where xi
com is a unique vector representing the ith class,

which is called a CV, and εi
m is the error vector associated

with the sample xi
m. Here, the vector xi

m,dif represents the
projection of xi

m onto the so-called difference subspace of the
ith class that is spanned by the vectors {xi

2 − xi
1, xi

3 − xi
1, . . . ,

xi
Ni

− xi
1} [14]. It was also shown that the difference subspace

of any class is equal to the range of the scatter matrix of
samples in that class. The CV method attempts to minimize the
following criterion function for each class:

Fi = min

(
Ni∑

m=1

∥∥εi
m

∥∥2

)

= min

(
Ni∑

m=1

∥∥xi
m − xi

m,dif − xi
com

∥∥2

)
, i =1, . . . , C

(3)
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where ‖ · ‖ denotes the Euclidean norm. The criterion functions
attain their minimum, Fi = 0, i = 1, . . . , C, if the CVs of
classes are as chosen as

xi
com = xi

m − P
(i)
RSxi

m

= P
(i)
NSxi

m, i = 1, . . . , C; m = 1, . . . , Ni (4)

where P
(i)
RS ∈ �d×d and P

(i)
NS ∈ �d×d denote the orthogonal

projection matrices (also called orthogonal projection opera-
tors) of the range and the null spaces of Si, respectively. Note
that the CV of each class is still d dimensional, and the CVs are
independent of the choice of the sample index m. In fact, all
affine combinations of samples in the ith class,

∑Ni

m=1 λmxi
m,

where
∑Ni

m=1 λm = 1 and λm ∈ �, give rise to the same CV.
The projection matrices are unique, and they are obtained using
the eigenvectors of Si. In particular, the projection matrices can

be written as P
(i)
RS = UiU

T
i and P

(i)
NS = U iU

T
i , where Ui is the

matrix whose columns are normalized eigenvectors correspond-
ing to the nonzero eigenvalues of Si, and U i is the matrix whose
columns are normalized eigenvectors corresponding to the zero
eigenvalues of Si. To classify a test sample xtest, the test sample
is first projected onto the null space of the scatter matrix of
each class as

xi
test = xtest − P

(i)
RSxtest

= P
(i)
NSxtest, i = 1, . . . , C. (5)

Then, the feature vectors of the test sample are compared to
the CV of each class using the Euclidean distance, and the
test sample is assigned to the class that gives the minimum
distance, i.e.,

g(xtest) = arg min
i=1,...,C

(∥∥xi
test − xi

com

∥∥) . (6)

Assuming that the class conditional means are used for comput-
ing the CVs, the aforementioned equation can also be written as

g(xtest) = arg min
i=1,...,C

(∥∥P i
NS(xtest − µi)

∥∥)
= arg min

i=1,...,C

(∥∥U i(xtest − µi)
∥∥) . (7)

Note that the aforementioned formula shows that the projection
lengths can be efficiently computed in a lower dimensional
space using the normalized eigenvector matrices U i [2].

A similar method, which is called the discriminative CV
(DCV) method, was proposed for the recognition tasks where
the dimensionality of the sample space is larger than the total
number of samples in the training set (small sample size case)
[19]. In contrast to the CV method, the DCV method is built on
the assumption that all classes have similar covariance struc-
tures. Therefore, the DCV method uses the same subspace (the
null space of the within-class scatter) to model each class. All
samples are pooled together, and they are projected onto that
unique subspace in this method. As a consequence, the decision
boundaries that are obtained by the DCV method are linear
as opposed to the CV method, in which quadratic decision

boundaries are obtained. It was reported that the DCV method
usually outperforms the CV method in some face recognition
tasks, where the classes have similar covariance structures.
Keen reader can refer to [15] for a more detailed comparison of
these methods. Recently, the kernel DCV method was proposed
to apply the linear DCV scheme to recognition tasks without
small sample size problem [20]. In this method, all data samples
are first mapped to a higher dimensional feature space through
a nonlinear mapping function, and then, the DCV method is
applied in the mapped space.

B. MCV Method

It can be shown that the null space of the total scatter
matrix does not contain any discriminative information for
classification of data samples. This is because the projections of
all samples onto this subspace give rise to the same vector [14],
[20]. Therefore, without loss of generality, this subspace can
be discarded from our consideration in the CV method. Then,
the new subspace representing each class can be defined as the
intersection of the null space of that class’ scatter matrix and
the range space of the total scatter matrix. The MCV method
proposed here uses basis vectors spanning these mentioned
intersections to represent classes. This method yields the same
recognition accuracy as the CV method and, from this point
of view, does not offer any improvement over the CV method.
However, the MCV method enables us to extend the CV idea to
the nonlinear case, as explained in Section III. The total scatter
matrix is defined as

ST =
C∑

i=1

Ni∑
m=1

(
xi

m − µ
) (

xi
m − µ

)T
,

i = 1, . . . , C; m = 1, . . . , Ni (8)

where µ is the mean of all samples. As shown in Theorem 1, the
projection matrix of the null space N(Si) of the scatter matrix
of the ith class and the projection matrix of the range space
R(ST ) of the total scatter matrix commute in the sense that

P
(i)
NSP = PP

(i)
NS , i = 1, . . . , C (9)

where P
(i)
NS is the projection matrix of N(Si), and P is the

projection matrix of R(ST ). Therefore, the projection matrix
P

(i)
int of the intersection N(Si) ∩ R(ST ) for each class can be

found as

P
(i)
int = P

(i)
NSP = PP

(i)
NS , i = 1, . . . , C (10)

from [21]. Notice that, in general, the projection matrix of any
intersection cannot be obtained using (10) if the projection
matrices of the associated subspaces do not commute.

Theorem 1: Let P and P
(i)
NS be the projection matrices of the

subspaces R(ST ) and N(Si), i = 1, . . . , C, respectively. Then,
P and P

(i)
NS commute, i.e.,

P
(i)
NSP = PP

(i)
NS , i = 1, . . . , C.

Proof: See Appendix I.
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Since the MCV method uses the intersection subspaces P
(i)
int ,

i = 1, . . . , C, to represent classes, the basis vectors spanning
these intersections must be computed. The basis vectors span-
ning each mentioned intersection space P

(i)
int can be found by

using eigendecomposition techniques. In particular, the eigen-
vectors corresponding to eigenvalue of λ = 1 of P

(i)
int span

the intersection subspaces representing the classes of interest.
However, this approach is not always feasible in practice,
particularly if the number of samples in each class is much
smaller than the dimensionality of the sample space. In this
case, the size of the projection matrices can be very large (e.g.,
images of size 256 × 256 yield projection matrices of size
65 536 × 65 536). On the other hand, since the projection ma-
trices commute, we can first efficiently transform the samples
onto R(ST ) by using the basis vectors of R(ST ) and then
find the null spaces of the classes in the transformed space,
so as to compute basis vectors of the intersection subspaces.
The basis vectors of R(ST ) can be efficiently computed by
using the smaller matrices as described in [11] and [19].
The algorithm that implements this idea can be summarized
as follows:

Step 1) Transformation of the training set samples onto
R(ST ):
a) Compute the nonzero eigenvalues and corre-

sponding eigenvectors uk of ST . Set U =
[u1 · · · ur], where r is the rank of ST and
cannot be bigger than M − 1.

b) Transform the training set samples onto
R(ST ) by

yi
m = UT xi

m, i=1, . . . , C; m=1, . . . , Ni. (11)

Step 2) Finding the null spaces of classes in the transformed
space: In the transformed space, the new scatter
matrices of the classes will be

S̃i =
Ni∑

m=1

(
yi

m − µ̃i
) (

yi
m − µ̃i

)T
= UT SiU, i = 1, . . . , C (12)

where µ̃i is the mean of samples of the ith class in
the transformed space. Apply eigendecomposition
to each scatter matrix, S̃i ∈ �r×r. Let qi

k be the
eigenvectors corresponding to the zero eigenvalues
of S̃i. Set Q(i) = [qi

1 . . . qi
ni

], where ni is the

dimensionality of N(S̃i).
Step 3) Computation of the final basis vectors of the in-

tersection space N(Si) ∩ R(ST ): The final basis
vectors spanning the intersection subspaces will be

W (i) = UQ(i), i = 1, . . . , C. (13)

Note that the basis vectors span the intersection subspace
N(Si) ∩ R(ST ), and therefore, the following holds:

P
(i)
int = W (i)W (i)T

, i = 1, . . . , C. (14)

When the samples of each class are transformed onto their
corresponding intersection subspace, the feature vector Ω(i)

com =
[〈xi

m, wi
1〉 · · · 〈xi

m, wi
ni
〉]T of each sample is the same for

all samples in that class [14]. These feature vectors are called
the CVs, as in the CV method. Furthermore, a CV of any
class is different from the CVs of all other classes in the
case the data samples are linearly independent. Therefore, this
method guarantees 100% recognition accuracy when linearly
independent data samples are chosen for training. However, in
contrast to the CV method, the dimensionality of the feature
vectors is reduced to ni in this case since the basis vectors
are utilized for feature extraction. To recognize a test sample,
we compute the Euclidean distances between the test sample
feature vector Ω(i)

test = [〈xtest, w
i
1〉 · · · 〈xtest, w

i
ni
〉]T and the

CVs of each class using the Euclidean distance. Then, we assign
the test sample to the class that minimizes this distance, i.e.,

g(xtest) = arg min
i=1,...,C

(∥∥∥Ω(i)
test − Ω(i)

com

∥∥∥)
= arg min

i=1,...,C

(∥∥∥W (i)T

(xtest − µi)
∥∥∥) . (15)

Transformation of the training set samples onto R(ST ) can
also be done efficiently by employing the so-called difference
subspace of the total scatter matrix since the eigenvalues (i.e.,
an explicit symmetric Schur decomposition) of ST need not be
computed explicitly [19].

The MCV method yields the same results as the CV method;
however, the training phase requires more computations as
compared to the CV method. Although the method proposed
here may not appear particularly advantageous at first, it en-
ables us to extend the CV idea to the nonlinear case. Note
that it is not possible to extend the classical CV method to
the nonlinear case directly since it cannot be formulated using
dot products of the mapped samples. Next, we introduce a new
nonlinear method by incorporating the kernel trick into the
procedure proposed here.

III. KERNEL CV METHOD

This method consists in mapping the given training set sam-
ples into an implicit higher dimensional space  using a nonlin-
ear kernel mapping function and then applying the linear MCV
method in the mapped space. As in the other kernel methods
using the kernel trick, the kernel CV method is also formulated
in terms of the dot products of the mapped samples, which
are computed using kernel functions. As a result, the mapping
function and the mapped samples are not used explicitly, which
makes the method computationally feasible.

Let Φ = [Φ(1), Φ(2), . . . , Φ(C)] represent the matrix whose
columns are the mapped training samples in , where Φ(i) =
[φ(xi

1), φ(xi
2), . . . , φ(xi

Ni
)] is the matrix whose columns are

mapped samples of the ith class. The scatter matrix SΦ
i of each
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class and the scatter matrix SΦ
T of the pooled data in  are

given by

SΦ
i =

Ni∑
m=1

(
φ
(
xi

m

)− µΦ
i

) (
φ
(
xi

m

)− µΦ
i

)T
=
(
Φ(i) − Φ(i)1Ni

)(
Φ(i) − Φ(i)1Ni

)T

, i = 1, . . . , C

(16)

SΦ
T =

C∑
i=1

Ni∑
m=1

(
φ
(
xi

m

)− µΦ
) (

φ
(
xi

m

)− µΦ
)T

= (Φ − Φ1M )(Φ − Φ1M )T (17)

where µΦ
i is the mean of mapped samples in the ith class, and

µΦ is the mean of all mapped samples. Here, 1Ni
∈ �Ni×Ni is

a matrix whose elements are all 1/Ni, and 1M ∈ �M×M is a
matrix with entries 1/M . The kernel matrix of the mapped data
is given as K = ΦT Φ = (Kij) i=1,...,C

j=1,...,C
, where each submatrix

Kij ∈ �Ni×Nj is defined as

Kij =
(
kij

mn

)
m=1,...,Ni
n=1,...,Nj

=
〈
φ
(
xi

m

)
, φ
(
xj

n

)〉
= k

(
xi

m, xj
n

)
m=1,...,Ni
n=1,...,Nj

. (18)

In the aforementioned equation, k(·) represents the kernel
function.

Our aim is to find basis vectors for the intersection subspaces
N(SΦ

i ) ∩ R(SΦ
T ), i = 1, . . . , C, for each class. To find these

basis vectors, we follow the steps given in the previous section;
we first transform all training samples onto R(SΦ

T ) and then
find the null spaces of the classes in the transformed space. The
transformation of training set samples onto R(SΦ

T ) can be done
easily by employing the kernel PCA method. Then, we find the
vectors spanning the null spaces of the scatter matrices of the
transformed samples. The algorithm for the kernel CV method
can be summarized as follows.

Step 1) Transform the training set samples onto R(SΦ
T ) us-

ing the kernel PCA. Let K̃ be the kernel matrix
of the centered mapped samples [18]. If we apply
eigendecomposition to K̃, we obtain

K̃ = K − 1MK − K1M + 1MK1M

= UΛUT ∈ �M×M (19)

where Λ is the diagonal matrix of nonzero eigenval-
ues, and U is the matrix of normalized eigenvectors
associated to Λ. The matrix that transforms the train-
ing set samples onto R(SΦ

T ) is (Φ − Φ1M )UΛ−1/2.
Step 2) Compute the scatter matrix of each class in the trans-

formed space. The new scatter matrix S̃Φ
i ∈ �r×r

(r is the rank of R(SΦ
T ) and that cannot be larger

than M − 1) of each class in the reduced space
becomes

S̃Φ
i =

(
(Φ − Φ1M )UΛ−1/2

)T

SΦ
i (Φ − Φ1M )UΛ−1/2

= Λ−1/2UT K̃(i)K̃(i)T

UΛ−1/2, i=1, . . . , C. (20)

Here, the matrix K̃(i) ∈ �M×Ni is written as

K̃(i) = K(i) − K(i)1Ni
− 1MK(i) + 1MK(i)1Ni

=
(

K(i) − 1MK(i)
)

(I − 1Ni
) (21)

where the matrix K(i) ∈ �M×Ni is given by
K(i) = ΦT Φ(i) = (K(i)j)j=1,...,C , and each sub-
matrix K(i)j ∈ �Nj×Ni is defined as

K(i)j =
(

k(i)j
mn

)
m=1,...,Nj
n=1,...,Ni

=
〈
φ
(
xj

m

)
, φ
(
xi

n

)〉
= k

(
xj

m, xi
n

)
m=1,...,Nj
n=1,...,Ni

(22)

(see Appendix II for a formula of K(i)).
Step 3) For each class, find a basis of the null space of S̃Φ

i .
This can be done by an eigendecomposition. The
normalized eigenvectors corresponding to the zero
eigenvalues of S̃Φ

i form an orthonormal basis for
the null space of S̃Φ

i . Let Q(i) be a matrix whose
columns are the computed eigenvectors correspond-
ing to the zero eigenvalues, such that

Q(i)T

S̃Φ
i Q(i) = 0, i = 1, . . . , C. (23)

Step 4) The matrix of basis vectors W (i), whose columns
span the intersection subspace of the ith class, is

W (i) =(Φ − Φ1M )UΛ−1/2Q(i), i = 1, . . . , C. (24)

The number of basis vectors spanning the intersec-
tion subspaces is determined by the dimensionality
of N(S̃Φ

i ) for each class. After performing feature
extraction, all training set samples in each class give
rise to the CV of that class, which is given as

Ω(i)
com = W (i)T

φ
(
xi

m

)
= Q(i)T

Λ−1/2UT l̃im,

i = 1, . . . , C; m = 1, . . . , Ni (25)

where l̃im = (lim − 1M lim) ∈ �M , and lim ∈ �M

is a vector with entries k(xj
n, xi

m) j=1,...,C
n=1,...,Nj

(see

Appendix II for a formula for lim). Note that the
CV given in (25) is independent of the sample index
m, and hence, one can choose any sample from a
particular class to obtain the corresponding CV.

Tsuda proved that if the kernel matrix K is strictly positive,
then all mapped samples are linearly independent in the mapped
space [17]. Therefore, although data samples are not linearly
independent in the original sample space, if we choose a kernel
function that makes K a positive definite matrix, similarly to
the linear CV case, a 100% recognition accuracy with respect
to the training set data is also guaranteed for this method. To
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recognize a given test sample, we compute the feature vector of
a test sample by

Ω(i)
test = W (i)T

φ(xtest)

= Q(i)T

Λ−1/2UT l̃test, i = 1, . . . , C (26)

where l̃test = (ltest − 1M ltest) ∈ �M , and ltest ∈ �M is a vec-
tor with entries k(xi

m, xtest) i=1,...,C
m=1,...,Ni

. Then, we compare the

Euclidean distances between the CVs and the feature vector of
the test sample for each class, using (15), and we assign the test
sample to the class that minimizes this distance.

A. Comparison of the Linear and Kernel CV Methods

The differences between the MCV and kernel CV methods
can be summarized as follows.

1) The MCV method employs linear subspaces to represent
classes. Thus, the decision boundaries that are obtained
by this method are quadratic. However, the kernel CV
method employs nonlinear subspaces for each class since
the mapped space is nonlinearly related to the origi-
nal sample space. Therefore, one can obtain nonlinear
decision boundaries using the kernel CV method. Ad-
ditionally, we have the flexibility of creating different
nonlinear decision boundaries by simply changing the
kernel functions.

2) The MCV method can only be applied if the dimen-
sionality of the sample space is larger than the rank
of the scatter matrix of training samples in each class.
Furthermore, as in the other linear subspace classifiers,
the dimensionality of the sample space must be large as
compared to the number of samples in each class for good
recognition rates. However, these limitations do not apply
to the proposed kernel method. One can use the kernel
CV method even if the number of samples in each class is
larger than the dimensionality of the sample space using
kernel functions, which ensure the high dimensionality of
the implicit mapped space.

However, all these mentioned improvements are achieved at
the expense of more intense computations. In particular, the ker-
nel CV method roughly results in additional (CMd + 10M3)
multiplications in the training set, assuming that the linear
kernel function is used. However, we are mostly interested in
real-time performance of a method, which is determined by
the time that is required to classify a new test sample, since
the training phase can be performed offline. Assuming that the
linear kernel is used, a total of (dr +

∑C
i=1 rni) multiplica-

tions are required during classification for the MCV method,
whereas the classification phase of the kernel DCV requires
(CMd + M

∑C
i=1 ni) multiplications. Here, ni represents the

dimensionality of the null space of each class in the reduced
space, and ni < M − 1. Thus, if d >>

∑C
i=1 ni, then the

MCV method is approximately C times faster than the kernel
CV method since the rank r is usually equal to M − 1. Of
course, choosing kernel functions that are different from linear

might result in additional computational cost in the kernel
CV method.

IV. EXPERIMENTAL RESULTS

The ratio of the dimensionality of the sample space to the
training set size is a very important factor that affects recog-
nition performances of subspace classifiers. Therefore, in our
experiments, we used seven different real-world data sets hav-
ing varying ratios of training set sizes to dimensionalities. All
databases except the AR face database [22] and the Columbia
Object Image Library (Coil-100) database [23] are chosen from
the University of California-Irvine repository [24].

An appropriate selection of kernel functions for special
recognition tasks is still an open problem since different kernel
functions give rise to different constructions of the implicit
feature space [25]. We have experimented with polynomial ker-
nels k(x, y) = (〈x, y〉)n of degree n = 2, 3 and the Gaussian
kernel k(x, y) = exp(−‖x − y‖2/q). A small set of randomly
created training and test sets was employed to compute the
best Gaussian parameters q for each method. We first globally
searched for the best Gaussian parameter over a wide range
of the parameter space. Then, we carried out a local search
in the neighborhood of the Gaussian parameter that yielded
the best recognition rate and computed the final best Gaussian
parameter.

Beside the methods proposed here, we also tested the linear
CLAFIC method, the ALS method, the linear discriminant
analysis classifier utilizing the Mahalanobis distance, the DCV
method, the kernel CLAFIC method, the kernel DCV method,
and the support vector machine (SVM) classifier for a better
assessment of the recognition performances of the proposed
methods. Class correlation matrices were used to find the basis
vectors spanning the subspaces of classes for the CLAFIC
and kernel CLAFIC subspace methods. For these methods, the
dimension of each subspace was selected as the value by which
the ratio of the sum of the retained eigenvalues to the sum of
all eigenvalues exceeds 0.98 [26]. We used the same values for
both α and β parameters in the ALS method, as recommended
in [2]. To determine the best values for α and β, we followed
a similar procedure as in the computation of the Gaussian
kernel parameter. We covered the values between 0 and 6
during the selection phase of the best value in all experiments.
The maximum number of epochs in the ALS algorithm was
chosen to be 8 to avoid the overfitting problem. We adopted
the “one-against-one” (OAO) procedure to extend classic two-
class SVM problem to the multiclass recognition problem, and
the “max wins” voting approach was utilized during the testing
phase [27]. The OAO procedure constructs C(C − 1)/2 binary
classifiers where each classifier is trained on data samples from
two classes. We assumed that the regularization parameter γ is
the same for each binary classifier.

A. Experiments With the Fisher’s Iris Database

The Iris flower database [12] contains four measurements on
50 Iris specimens for each of the three species, namely Iris se-
tosa, Iris versicolor, and Iris virginica, for a total of 150 samples
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TABLE I
RECOGNITION RATES OF METHODS ON THE FISHER’S IRIS DATABASE

in the database. It was reported that the first class is linearly
separable from the other two and that the latter two are not
linearly separable from each other. The data are not normalized
in these experiments. Since the number of samples in each class
is much larger than the dimensionality of the sample space,
neither the MCV method nor DCV method can be used for
this database. However, we can use the kernel CV method by
employing the Gaussian kernel function. Note that we cannot
employ polynomial kernels in this case since the dimensionality
of the transformed feature space is smaller than the number
of samples in each class for those kernels. We adopted the
leave-one-out strategy to test the generalization performances
of the methods. The parameters α and β of the ALS method
were set to 0.75, which gave the lowest recognition error. The
regularization parameter γ of SVM classifier was chosen as 5.
The computed recognition rates and the Gaussian parameters
are given in Table I.

As can be seen in the table, the SVM and LDA classifiers
achieve the best recognition rate among all methods that are
tested here. Both the proposed method and the kernel CLAFIC
method yield the same recognition accuracy, which is also the
smallest. These experimental results show that the quadratic
decision boundaries that are obtained by the linear subspace
classifiers do a better job than the nonlinear decision bound-
aries that are obtained by kernel subspace classifiers for this
database. However, the quadratic decision boundaries perform
worse than the linear decision boundaries that are obtained by
the LDA classifier. The recognition rate of the proposed kernel
subspace classifier can be compared to the reported recognition
rate of the kernel generalized discriminant analysis (95.33%)
[28] on the same database.

B. Experiments With the Wine Database

The wine database [24] includes 178 data samples from
three different wine cultivars. Each data sample has 13 numeric
attributes that are derived from a chemical analysis of wines.
In our experiments, we normalized the data so that the values
of the attributes lie between −1 and 1. As in the previous
experiment, both the MCV and DCV methods cannot be used
for this database since the dimensionality of the sample space
is smaller than the training set samples in each class. The
leave-one-out strategy was again used to test the generalization
performances of the methods. The parameters α and β of the
ALS method were set to 3. The SVM regularization parameter

was set to 4 for all kernels. The computed recognition rates are
shown in Table II.

Among all methods, the best recognition rates were ob-
tained by the kernel CLAFIC and the kernel CV methods,
both utilizing the Gaussian kernel. On the other hand, the
recognition rates of the proposed method using polynomial
kernels were low. This was because employing polynomial
kernel functions yielded a smaller transformed space after the
kernel PCA step for this database. The sizes of the transformed
space were 91 and 170 for the polynomial kernel function
with degrees 2 and 3, respectively. As a result, the size of
each intersection subspace was small, which diminished the
separability among the classes. Thus, our proposed method did
not perform satisfactorily. In contrast, employing the Gaussian
kernel in the proposed method increased the dimensionality
of the transformed space to 176. Consequently, increasing the
dimensionality of the transformed space enhanced separation
and gave the highest recognition rate among all methods. Note
also that the kernel CLAFIC method outperformed its linear
counterpart for all kernel functions.

C. Experiments With the Image Segmentation Database

The image segmentation database [24] consists of samples
randomly drawn from a database of seven outdoor images. The
images were hand segmented to create a classification for every
pixel. Each sample has a 3 × 3 region and 19 attributes. There
are a total of seven classes, each having 330 samples. The
attributes were normalized to lie in interval [−1, 1].

We used randomly chosen 165 samples of each class for
training, and the remaining samples were used for testing.
Therefore, both training and test sets consisted of 1155 samples.
Note that there is no overlap between the training and test sets.
This process was repeated 25 times, and 25 different training
and test sets were created. The first five data sets were used for
parameter selection, whereas the remaining sets were used to
evaluate performance. Thus, the final recognition rates for the
experiment were found by averaging these 20 rates that were
obtained in each trial. We could not use the MCV and DCV
methods since the dimensionality of the sample space, which is
equal to 19, is smaller than the number of training set samples
of each class, which is equal to 165. Similarly, we could not use
the LDA classifier because of the singularity of the within-class
scatter matrix. Furthermore, it was not possible to apply the
kernel CV method using the polynomial kernel function with
degree 2 since the dimensionality of the transformed space via
kernel PCA was smaller than the number of samples in each
class utilizing this kernel function. We empirically set α and β
parameters to value of 0.035 for the ALS method. The SVM
regularization parameter was set to 50 for the polynomial ker-
nels and 40 for the Gaussian kernel. The means and the standard
deviations of computed recognition rates on this database are
given in Table III.

As can be seen in the table, the SVM classifier achieved the
highest recognition rates for all kernel functions that were used
here. Our proposed method outperformed all other subspace
classifiers in all cases. It is interesting that although the kernel
CLAFIC method with the Gaussian kernel outperformed the
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TABLE II
RECOGNITION RATES OF METHODS ON THE WINE DATABASE

TABLE III
RECOGNITION RATES OF METHODS ON THE IMAGE SEGMENTATION DATABASE

TABLE IV
RECOGNITION RATES OF METHODS ON THE FOURIER COEFFICIENTS DATABASE

linear subspace classifiers, its recognition rate for the polyno-
mial kernel is worse than those of linear subspace classifiers.

D. Experiments With the Digit Database of
Handwritten Numerals

This database [29] includes ten classes, each having 200
patterns. Sample patterns are available in the form of binary
images. These characters are represented in terms of different
feature sets forming distinct databases. In our experiments,
we used only 76-dimensional Fourier coefficients and 240-
dimensional pixel averages. The data were not normalized in
these experiments. We randomly chose 100 samples from each
class for training, and the remaining samples were used for
testing. Thus, a training set of 1000 samples and a test set of
1000 samples were created for both databases. This process
was repeated 25 times, and 25 different training and test sets
were created. The first five data sets were used for parameter
selection, and the rest were used for performance evaluation.

We could not use both the MCV and DCV methods for
the Fourier coefficients database since the dimensionality of
the sample space is smaller than the number of samples in
each class. However, we applied the kernel CV method to
this database by employing polynomial and the Gaussian ker-
nel functions. The parameters α and β of the ALS method
were empirically set to value of 0.025 for this database. The
regularization parameter of SVM classifier was set to 5 for
polynomial kernels and to 3 for the Gaussian kernel. The means
and the standard deviations of computed recognition rates on
the Fourier coefficients database are given in Table IV.

For the Fourier coefficients database, the best recognition
rate was obtained by the SVM classifier. The proposed ker-
nel CV method achieved the highest recognition rates among
all subspace classifiers. Note that it outperformed the kernel
CLAFIC method for all kernel functions that were used here.
The results also show that both kernel subspace classifiers offer
a significant improvement over the recognition rates of the
linear subspace classifiers and LDA.
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TABLE V
RECOGNITION RATES OF METHODS ON THE PIXEL AVERAGES DATABASE

In contrast to the Fourier coefficients database, classification
of the pixel averages database is a recognition task, for which
we can apply the MCV method. This is because the dimen-
sionality of the sample space, which is 240, is larger than the
number of samples in each class, which is 100. However, we
still cannot apply the DCV method since the dimensionality of
the sample space is smaller than the total number of training
samples, which is 1000. The subspaces found by the CLAFIC
method did not give rise to any misclassifications in the training
set. Thus, the ALS method was equivalent to the CLAFIC
method in this case. The regularization parameter of the SVM
classifier was chosen to be 10 for the polynomial kernels and
5 for the Gaussian kernel. The computed recognition rates for
the pixel averages database are given in Table V.

For the pixel averages database, the best recognition rate was
attained by the kernel DCV method. Both the kernel CLAFIC
and kernel CV methods outperformed the SVM classifier for
all used kernel functions. Similarly, kernel subspace classifiers
outperformed the linear subspace classifier methods as well as
the LDA classifier. Among the linear subspace classifiers, the
CLAFIC method gave better recognition rates than the MCV
method because of the low dimensionality of the sample space
as compared to the training set samples. Note that the original
dimensionality of the sample space was 240. Thus, the size
of the intersection subspaces representing classes was much
smaller, which caused poor recognition rates for the MCV
method. However, employing the kernel functions increased the
dimensionality of the intersection subspaces and improved the
recognition rates.

For both the Fourier coefficients and the pixel averages data-
bases, the LDA classifier resulted in the smallest recognition
rate. Recall that the LDA classifier is built on the assumption
that all classes have identical covariance structures. It is appar-
ent from the results that this assumption is not satisfied for these
two databases.

E. Experiments With the AR Face Database

The AR face [22] database includes 26 frontal images with
different facial expressions, illumination conditions, and occlu-
sions for 126 subjects. Images were recorded in two different
sessions, 14 days apart. Thirteen images were recorded under
controlled circumstances in each session. The size of the im-

ages in the database is 768 × 576 pixels, and each pixel is
represented by 24 bits of red, green, and blue color values.

We randomly selected 50 individuals (30 males and 20
females) for the experiment. Only nonoccluded images [(a)–(g)
and (n)–(t) as in Fig. 1] were chosen for every subject. Thus, our
face database size was 700, with 14 images per subject. First,
these images were converted to grayscale images. Second, we
preprocessed these images by aligning and scaling them so that
the distances between the eyes were the same for all images and
also ensuring that the eyes occurred in the same coordinates of
the image. The resulting images were then cropped. The final
size of the images was 222 × 299. Finally, based on empirical
observations, we decreased the dimensionality of the sample
space to 99 × 134 by downsampling. The training set consisted
of seven images that were randomly selected from each subject,
and the rest of the images were used for the test set. Thus, a
training set of 350 images and a test set of 350 images were
created. Similar to the previous cases, this process was repeated
15 times, and 15 different training and test sets were created.
The first five data sets were used for parameter selection, and
the rest were used for performance evaluation. The final recog-
nition rates for the experiment were found by averaging these
ten rates that were obtained in each trial. Note that we can apply
both the MCV and DCV methods here since the dimensionality
of the sample space, which is 13 226, is much larger than the
total number of samples in the training set. However, it is not
possible to apply the LDA classifier since the within-class scat-
ter matrix is rank deficient. Furthermore, we could not apply the
ALS method to this database because of computational difficul-
ties. The dimensionality of the sample space was reduced to 349
through PCA, and then, samples were standardized before the
application of the SVM classifier to reduce the computational
complexity of this method for these experiments. We set the
SVM regularization parameter to γ = 10 for all kernels. The
means and the standard deviations of computed recognition
rates on the AR face database are given in Table VI.

In terms of classification accuracy, the DCV and kernel DCV
methods using the Gaussian kernel achieved the highest recog-
nition rate. Both the MCV and kernel CV methods utilizing the
Gaussian kernel achieved the best recognition rates among all
subspace classifier methods. However, they did not outperform
the SVM, DCV, and kernel DCV methods. The kernel CLAFIC
method outperformed its linear counterpart, but it did not
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Fig. 1. Images of one subject in the AR face database. First, 13 images (a)–(m) were taken in one session and the others (n)–(z) in another session. Only
nonoccluded images (a)–(g) and (n)–(t) were used in our experiments.

TABLE VI
RECOGNITION RATES OF METHODS ON THE AR FACE DATABASE

offer any improvement over the MCV method. The kernel CV
method significantly outperformed the kernel CLAFIC method
in all cases. However, the method did not give rise to any
improvement over its linear counterpart, which is the MCV
method. This can be attributed to the fact that the face image
samples are mostly linearly separable since the original dimen-
sionality of the sample space is too large as compared to the
number of samples in the classes. Therefore, a further increase
of the sample space did not improve the results. Notice that the
MCV method significantly outperformed the CLAFIC method
in contrast to the comparison results that were obtained on the
pixel averages database, which is explained by the fact that the
dimensionality of the original sample space was too large.

Similarly to the results reported in [15], the DCV method
outperformed the MCV method for the AR face database. The
reason for this is that the number of samples in each class was
not large enough to model the intersection subspaces repre-
senting classes in the MCV method. These classes were better
represented by the unique subspace (the null space of the
within-class scatter matrix) that were obtained using all the
data samples in the training set by the DCV method. These
results also reveal the fact that the face images in the AR face
database have similar intraclass variations. If the number of

samples per class is increased, we expect that the generalization
performance of the MCV method would approach to the
generalization performance of the DCV for the AR face data-
base, as reported in [15].

F. Experiments With the Coil-100 Database

The aforementioned experiments on the AR face database
show that the face classes have similar covariance structures
since the DCV method outperformed all other methods. On the
other hand, the classes may have very different class covariance
structures for object recognition problems. The MCV method
will be a better choice for such classification tasks since it is
built on the assumption that classes have different intraclass
variations. To verify this hypothesis, we tested our proposed
methods on the Coil-100 database [23]. This database includes
100 different objects and 72 views of each object taken at
5-degree-apart orientations. All images are converted to gray-
scale images, and their original dimensionality 128 × 128
was reduced to 64 × 64 by downsampling. Based on the
appearances of objects, we chose 40 objects that are more
likely to have different covariance structures. These selected
object classes are shown in Fig. 2. We randomly selected
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Fig. 2. Selected objects from the Coil-100 database.

TABLE VII
RECOGNITION RATES OF METHODS ON THE COIL-100 DATABASE

36 samples from each object class for training, and the re-
maining 36 samples for used testing. This process was repeated
15 times, and 15 different training and test sets were created.
The first five data sets were used for parameter selection, and
the rest were used for performance evaluation. The dimension-
ality of the sample space was reduced to 1439 through PCA,
and then, samples were standardized before the application of
the SVM classifier, as in the previous case. We set the SVM
regularization parameter to γ = 10 for all kernels. The means
and the standard deviations of computed recognition rates on
the Coil-100 database are given in Table VII.

The MCV and kernel CV methods utilizing the Gaussian ker-
nel achieved the best recognition accuracy among all methods
as expected. In particular, the DCV method performed very
poorly, which indicates that the object classes have different
covariance structures. Both the kernel CLAFIC and kernel
CV methods did not show any improvement over their linear
counterparts. On the other hand, the kernel DCV method sig-
nificantly outperformed the linear DCV method. Notice that all
kernel methods yielded better results than the SVM classifier
in all cases.

G. Discussion

The aforementioned classification experiments demonstrate
various characteristics of our proposed methods and provide

insights concerning suitable environments for the application.
The kernel CV method did not show any superiority over the
linear subspace classifier methods on the Iris database. Note
that the number of training samples in each class is much larger
than the dimensionality of the sample space for this database.
Therefore, it is better to estimate distribution functions of
classes for these situations. Then, more sophisticated classifiers
can be constructed by using the estimated density functions.
The proposed kernel subspace classifier achieved the highest
recognition rate among all subspace classifier methods for the
image segmentation, the Fourier coefficients, and the pixel
averages databases. Moreover, the proposed method yielded
the highest recognition rate along with the kernel CLAFIC for
the wine database. Note that the number of samples in each
class was not too large as compared to the dimensionality of
the sample space for these classification tasks. The estimation
of density functions may not be overly reliable for these cases
since the dimensionality of the sample space and the number of
samples per class are comparable. It has been reported that the
number of samples in each class must be at least ten times the
dimensionality of the sample space for a reliable density esti-
mation [30], [31]. Thus, our proposed kernel subspace classifier
may be a good choice in such cases.

For the AR face database in which the classes have sim-
ilar covariance structures, both proposed methods achieved
the same recognition rate, which was the highest recognition
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TABLE VIII
TRAINING AND TEST TIMES (IN SECONDS) OF THE NONLINEAR METHODS USING THE GAUSSIAN KERNEL FUNCTIONS (IS: IMAGE SEGMENTATION;

FC: FOURIER COEFFICIENTS; PA: PIXEL AVERAGES; OAO: ONE AGAINST ONE; OAA: ONE AGAINST ALL)

rate among all subspace classifiers. However, the computed
recognition rate was inferior to the rates that were obtained by
the DCV and kernel DCV methods, which are more suitable
methods for data sets having similar intraclass variations. Sim-
ilarly, both proposed methods yielded the best recognition ac-
curacy among all methods for the Coil-100 database, where the
classes have typically different covariance structures. Note that
the dimensionality of the sample space is too large as compared
to the number of samples for these situations. On the other hand,
the MCV method was outperformed by the kernel CV method
on the pixel averages database because of the low dimension-
ality of the original sample space. It has also been observed
that the Gaussian kernels give rise to better recognition rates
than the polynomial kernels. The dimensionality of the kernel
PCA-transformed space that was obtained using the Gaussian
kernel was typically higher than the dimensionality that was
obtained by the polynomial kernels. All these results are a
verification of the fact that the generalization performances
of the proposed methods depend on the dimensionality of the
sample space in that higher dimensions give better recognition
rates. Therefore, we recommend the use of the CV method
in recognition tasks with classes having different covariance
structures in high-dimensional sample spaces since the kernel
CV method is computationally more expensive than the linear
CV method. However, if the dimensionality of the sample
space is not large enough for satisfactory recognition rates, one
should instead use the kernel CV subspace classifier with the
Gaussian kernel.

We gave the training and test times of the nonlinear methods
for Gaussian kernels in Table VIII. Additionally, the number of
total extracted support vectors (SVs) and the number of distinct
SVs among them are provided in the table. The regularization
parameters of SVM classifiers were available during calcula-
tions; thus, one needs additional training time to tune these
parameters. Note that we did not give the training and test times
on the AR and Coil-100 databases since the SVM classifier was
not directly applicable for these data sets. As can be seen in
the table, when the number of classes is increased, the training
computational complexity of the SVM classifier increases pro-
portionally. Notice that the training times of the SVM classifiers
are significantly different for the image segmentation and pixel
averages databases, although they have approximately the same
number of data samples. On the other hand, the training times
of other kernel methods are similar for those databases. It is

because the SVM classifier was originally developed for two
classes, and adopting it to multiclasses is time consuming [28].
More precisely, the OAO procedure, which was used to extend
the SVM classifier to the multiclass problems that were ad-
dressed in this paper, requires solving a quadratic optimization
problem for C(C − 1)/2 classifiers, and one must adjust the
regularization parameter for each binary classifier. Similarly,
the one-against-all (OAA) procedure constructs C classifiers
and solves a quadratic optimization problem for each classifier
using all data samples. As opposed to the SVM classifier, the
proposed kernel CV subspace classifier requires an eigende-
composition of a positive semidefinite matrix, which is easier
to solve for moderate sizes. Additionally, our proposed kernel
method is directly applicable to the multiclass classification
problems, and one does not need to optimize any parameters
in this approach. For our proposed nonlinear method, kernel
function evaluations that are carried out to form the kernel ma-
trix and eigendecomposition of this matrix constitute the major
computational burden of the training phase. The extra computa-
tions of the proposed method, which are performed to obtain the
null spaces in the transformed kernel PCA space, are negligible
when compared to the aforementioned computations. In terms
of the training time, assuming that the regularization parameters
of SVM classifiers are available, our proposed method was
faster than the SVM classifier using OAA procedure for all
databases except the image segmentation database. However,
the SVM classifier using OAO procedure was more efficient
than the proposed method in all cases. Although the OAO
procedure generally constructs more classifiers than the OAA
procedure, each classifier uses data samples coming from two
classes rather than using all data samples. As a result, the OAO
procedure works on smaller matrices, which in turn speeds up
the training phase. However, it should be taken into account
that the SVM algorithm must run several times to compute
the best regularization parameters for both approaches. Testing
time is the time that is required to classify a given sample. In
our proposed nonlinear method, we have to compute the feature
vector given in (26) to classify a test sample. This computation
requires M online kernel evaluations for each sample in the
training set. For the SVM classifiers, the number of kernel
evaluations is determined by the extracted SVs. As shown in
Table VIII, the number of extracted SVs is less than the total
number of data samples in the training set for the Iris, wine,
and image segmentation databases, where the number of classes
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is less than 10. As a result, SVM classifiers are more efficient
than the pr oposed method in terms of testing time for those data
sets. On the other hand, as the number of classes is increased,
the total number of extracted SVs increases proportionally.
Notice that the total number of extracted SVs is bigger than
the training set size for the Fourier coefficients and the pixel
averages databases, which indicates that some data samples are
used as SVs for more than one classifier in the SVM scheme.
The testing times of SVM classifier are similar to our proposed
method for those databases, as shown in the table. When the
number of total extracted SVs is bigger than the training set
size, one has to determine unique SVs among all extracted
SVs to prevent unnecessary kernel evaluations. Therefore, we
have to employ lookup tables during testing to call required
kernel evaluations, which brings additional computation. An-
other interesting observation is that as the number of classes is
increased, more data samples contribute as SVs, which makes
the SVM classifier less appealing for data sets having large
number of classes.

In general, experimental results confirm that the intersection
of the range space of the total scatter matrix and the null space
of each individual class scatter matrix is typically the best
subspace for discrimination. In addition, it is not necessary
to optimize parameters such as the subspace dimensions or
the parameters α and β. Therefore, the proposed methods are
more straightforward and practical as compared to the other
subspace classifiers mentioned in this paper. The computational
loads of the training and testing times of the linear CV and
CLAFIC methods are approximately same, and these methods
are more efficient than all discussed kernel methods in terms
of training and test times. The computational comparison that
is the most interesting to us is between the kernel CLAFIC
and kernel CV methods. In terms of training time, the kernel
CLAFIC method is more efficient than our proposed kernel
method. In fact, the kernel CLAFIC is the most efficient method
among all nonlinear methods in terms of training time. It is
because C different N × N kernel matrices are formed and C
eigendecompositions are carried out on these smaller matrices
in the kernel CLAFIC method, as opposed to the kernel CV
method, in which the eigendecomposition is performed on a
unique M × M kernel matrix. On the other hand, the testing
time of the kernel CLAFIC method is only slightly better than
the proposed method since the kernel CLAFIC method also
requires M kernel function evaluations during the testing phase.
Experimental results demonstrate that the proposed method
typically yields better results than the kernel CLAFIC method.
It should be noticed that the transformed space is constructed
only using class specific samples in the kernel CLAFIC method.
As a result, the relations among classes are ignored. In contrast,
the transformed space is more discriminative in our proposed
scheme since all pairwise distances are utilized during the
kernel PCA step.

The kernel DCV method also includes the kernel PCA step,
just as in our proposed method. Since this step constitutes
the major computational burden of the algorithm, the train-
ing times of the kernel CV and kernel DCV methods are
similar, as illustrated in Table VIII. Similarly, both methods
require M kernel evaluations during testing phase. Thus, the

testing times of those methods are also similar, as given in
Table VIII.

As mentioned earlier, kernel evaluations and eigendecompo-
sition of an M × M kernel matrix constitute the main com-
putational burden of our kernel approach. Furthermore, the
eigendecomposition of the kernel matrix may be problematic
for large M . There are several approaches to cope with this
pitfall. First, we can use a sparse approximation of the kernel
matrix, which sufficiently describes the dominant eigenvalues,
as described in [32]. A second solution would be to discard
some dependent samples so as to reduce the training set size
M . Finally, we can apply the proposed method locally. In this
scheme, we obtain the closest prototypes to a test sample by
using a crude distance metric (e.g., Euclidean distance) in the
original sample space. Then, the proposed nonlinear method
can be applied to the closest prototype samples.

V. CONCLUSION

In this paper, we proposed a new nonlinear subspace classi-
fier method, which extends the linear CV method to the nonlin-
ear case using the kernel trick. However, the nonlinearization
of the CV method was not trivial. The CV method needed to be
modified before the nonlinearization. To represent classes, the
proposed nonlinear method employs the intersection subspace
of the null space of the covariance matrix of each class and
the range space of the covariance matrix of pooled data. When
the training set samples are projected onto these intersection
subspaces, all training set samples in each class give rise to
a unique vector, which is called a CV. Thus, under certain
conditions, a 100% recognition rate is guaranteed for the train-
ing set samples. Our test results show that the generalization
ability of the proposed method compares favorably with other
linear subspace classifier methods and also the kernel-based
nonlinear subspace method. In particular, the proposed method
yields good recognition results when the number of samples is
not sufficient for reliable density estimation, which is widely
encountered in real-world recognition tasks. Therefore, the
proposed method can find broad application areas in pattern
recognition field.

APPENDIX I
PROOF OF THE THEOREM

Before we give the Proof of Theorem 1, we need the follow-
ing auxiliary lemma.

Lemma 1: Let H(1) and H(2) be subspaces of �d, H(1)⊥

and H(2)⊥ be their orthogonal complements, and P1 and P2

be the orthogonal projection matrices onto H(1) and H(2),
respectively. If H(1)⊥ ⊥ H(2)⊥ , then P1 and P2 commute, that
is, P1P2 = P2P1.

Proof: If H(1)⊥ ⊥ H(2)⊥ , then (I − P1)(I − P2) = 0
and (I − P2)(I − P1) = 0, where I is the identity matrix. Thus

(I − P1)(I − P2) = (I − P2)(I − P1) = 0 (27)

I − P1 − P2 − P1P2 = I − P1 − P2 − P2P1 (28)

which implies that P1P2 = P2P1. �
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Theorem 1: Let P and P
(i)
NS be the projection matrices of the

subspaces R(ST ) and N(Si), i = 1, . . . , C, respectively. Then,
P and P

(i)
NS commute, i.e.,

P
(i)
NSP = PP

(i)
NS , i = 1, . . . , C.

Proof: Let H(1) = R(ST ) and, for any fixed i, let H(2) =
N(Si). Clearly, H(1)⊥ = N(ST ) and H(2)⊥ = R(Si). Let SB

denote the between-class scatter matrix, which is defined as
SB =

∑C
i=1 Ni(µi − µ)(µi − µ)T . By using [19, Lemma 1]

N(ST ) = N(SB + S1 + . . . + SC)

= N(SB) ∩ N(S1) ∩ . . . ∩ N(SC) (29)

and, in particular, N(ST ) ⊂ N(Si), which, together with the
fact that N(Si) ⊥ R(Si), shows that

N(ST ) ⊥ R(Si) or H(1)⊥ ⊥ H(2)⊥ . (30)

The assertion of the theorem now follows from Lemma 1. �

APPENDIX II
KERNEL MATRIX AND VECTOR FORMULAS

The kernel matrix K = ΦT Φ = (Kij) i=1,...,C
j=1,...,C

of the

mapped samples can be displayed as

K 1 2 · · · M

1 k
(
x1

1, x1
1

)
k
(
x1

1, x1
2

) · · · k
(
x1

1, xC
NC

)
2 k

(
x1

2, x1
1

)
k
(
x1

2, x1
2

) · · · k
(
x1

2, xC
NC

)
...

...
...

...
...

M k
(
xC

NC
, x1

1

)
k
(
xC

NC
, x1

2

) · · · k
(
xC

NC
, xC

NC

)

where each submatrix Kij ∈ �Ni×Nj is

Kij 1 2 · · · Nj

1 k
(

xi
1, xj

1

)
k
(

xi
1, xj

2

)
· · · k

(
xi

1, xj
Nj

)
2 k

(
xi

2, xj
1

)
k
(

xi
2, xj

2

)
· · · k

(
xi

2, xj
Nj

)
...

...
...

...
...

Ni k
(

xi
Ni

, xj
1

)
k
(

xi
Ni

, xj
2

)
· · · k

(
xi

Ni
, xj

Nj

)

Similarly, the matrix K(i) =ΦT Φ(i) =(K(i)j)j=1,...,C ∈�M×Ni

can be displayed as

K(i) 1 2 · · · Ni

1 k
(
x1

1, xi
1

)
k
(
x1

1, xi
2

) · · · k
(
x1

1, xi
Ni

)
2 k

(
x1

2, xi
1

)
k
(
x1

2, xi
2

) · · · k
(
x1

2, xi
Ni

)
...

...
...

...
...

M k
(
xC

NC
, xi

1

)
k
(
xC

NC
, xi

2

) · · · k
(
xC

NC
, xi

Ni

)
where each submatrix K(i)j ∈ �Nj×Ni is

K(i)j 1 2 · · · Ni

1 k
(

xj
1, xi

1

)
k
(

xj
1, xi

2

)
· · · k

(
xj

1, xi
Ni

)
2 k

(
xj

2, xi
1

)
k
(

xj
2, xi

2

)
· · · k

(
xj

2, xi
Ni

)
...

...
...

...
...

Nj k
(

xj
Nj

, xi
1

)
k
(

xj
Nj

, xi
2

)
· · · k

(
xj

Nj
, xi

Ni

)
The vector lim ∈ �M can be displayed as

lim 1

1 k
(
x1

1, xi
m

)
2 k

(
x1

2, xi
m

)
...

...

M k
(
xC

NC
, xi

m

)
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