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Discriminative Common Vector Method With Kernels
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Abstract—In some pattern recognition tasks, the dimension
of the sample space is larger than the number of samples in the
training set. This is known as the “small sample size problem.”
Linear discriminant analysis (LDA) techniques cannot be applied
directly to the small sample size case. The small sample size
problem is also encountered when kernel approaches are used
for recognition. In this paper, we attempt to answer the question
of “How should one choose the optimal projection vectors for
feature extraction in the small sample size case?” Based on our
findings, we propose a new method called the kernel discriminative
common vector method. In this method, we first nonlinearly map
the original input space to an implicit higher dimensional feature
space, in which the data are hoped to be linearly separable. Then,
the optimal projection vectors are computed in this transformed
space. The proposed method yields an optimal solution for maxi-
mizing a modified Fisher’s linear discriminant criterion, discussed
in the paper. Thus, under certain conditions, a 100% recognition
rate is guaranteed for the training set samples. Experiments on
test data also show that, in many situations, the generalization
performance of the proposed method compares favorably with
other kernel approaches.

Index Terms—Discriminative common vectors, feature extrac-
tion, Fisher’s linear discriminant analysis, kernel methods, small
sample size.

I. INTRODUCTION

ISHER'’S linear discriminant analysis (FLDA) is a super-
F vised method that has been successfully applied in many
classification problems, such as image recognition, multimedia
information retrieval, and medical applications [1]. The method
employs the FLDA criterion, which attempts to maximize the
ratio Jrrpa (Wopt) = max(|WTSgW|/IWT SywW]|), where
W is the matrix whose columns are the projection vectors used
for feature extraction, Sy is the within-class scatter matrix, and
Sp is the between-class scatter matrix. The above criterion is
maximized when the eigenvectors of S‘},l Sp are employed as
projection vectors. Since the matrix S‘},l Sp is typically non-
symmetric, its eigendecomposition may be unstable. To circum-
vent this problem, the simultaneous diagonalization algorithm
is often employed [2], [3]. A major drawback of the FLDA
method is that it cannot be applied directly if the rank of the
within-class scatter matrix Sy is smaller than the dimension of
the sample space. The rank of Sy cannot exceed the number
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of samples in the training set; thus Sy will be singular if the
dimensionality of the sample space is larger than the size of the
training set. This problem is also known as the small sample size
problem [2]. To deal with this situation, the perturbation method
has been used in [4] and [5], in which Sy is perturbed so as to
become nonsingular. Swets and Weng [3] proposed a two-stage
PCA + FLDA method, also known as the Fisherface method,
in which principal component analysis (PCA) is first used for
dimension reduction in order to make Sy, nonsingular before
applying FLDA.

Recently, Yu and Yang proposed the direct-LDA method to
cope with the small sample size problem [6]. In this method,
which also employs the simultaneous diagonalization for
finding projection vectors in the range of Sp, the null space
of Sp is first discarded, and then the projection vectors min-
imizing the within-class scatter in the transformed space are
selected from the range of Sp. However, the range of Sp
does not necessarily include the optimal projection vectors for
discrimination [7]-[10].

Chen et al. proposed the null space method for the small
sample size case, based on the modified FLDA criterion
JMFLDA(Wopt) = max(|WTS’BW|/|WTS’TW ), where ST
is the total scatter matrix of the training set data [11]. In this
method, all training samples are first projected onto the null
space of Sy . Then, PCA is applied to the transformed samples
to obtain the final projection vectors. Chen et al. also proved
that by applying this method, the modified FLDA criterion
attains its maximum of one; therefore the null space method
extracts features, which are optimal from a discrimination point
of view. It turns out that the resulting orthonormal projection
vectors span the space obtained as the intersection of the null
space of Sy, and the range of Sp. We call this space the
optimal discriminant subspace since it is spanned by vectors
that extract optimal features for discrimination. However, Chen
et al. did not give an efficient algorithm for applying this
method in the original sample space. Instead, a preprocessing
step was used to extract geometric features and to reduce the
dimension of the original sample space. Then, they applied the
null space method in the reduced space. Vapnik [12] suggests
that when solving a given problem, one should avoid solving a
more general problem as an intermediate step. Abiding by this
principle, we showed that any preprocessing step, reducing the
original dimension of the null space, is likely to reduce the per-
formance of the method and therefore should be avoided [13].
In [13], we proposed the discriminative common vector (DCV)
method for finding optimal orthonormal projection vectors in
the optimal discriminant subspace. This method is equivalent
to the null space method, with the exception that the dimension
reduction step is omitted and therefore the method exploits
the original high-dimensional space. Two efficient algorithms
were given to compute the optimal projection vectors. One
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algorithm uses the range of Sy, while the other uses subspace
methods and the Gram—Schmidt orthogonalization procedure.
Another novel method, the PCA + null space method, was
proposed by Huang et al. in [9] for finding optimal projection
vectors spanning the optimal discriminant subspace. In this
method, PCA is first applied to remove the null space of the
total scatter matrix St. Then, optimal projection vectors are
found in the complementary lower dimensional space using the
null space method. However, this method is computationally
more expensive compared to the DCV method (see [13] for a
comparison of these methods).

In some cases, linear methods may not provide a sufficient
discriminating power for classifying linearly nonseparable
classes (e.g., exclusive-or problem). Therefore, discriminant
analysis techniques utilizing kernels have been recently pro-
posed in [14]-[16]. Their main idea is to transform the input
data into a higher dimensional space by a nonlinear mapping
function and then apply the linear discriminant analysis tech-
niques in that space. These methods are formulated in terms
of dot products of the mapped samples, and kernel functions
are used to compute these dot products. Therefore, the non-
linear mapping function and the mapped samples are not used
explicitly, which makes the methods computationally feasible.
However, the singularity problem of the involved matrices is
typically encountered in this approach since the dimensionality
of the mapped space is usually larger than the size of the
training set (in particular, this problem always arises if one
uses the Gaussian kernels). Two different techniques have been
adopted to solve this problem. Mika et al. use the original
FLDA criterion in the nonlinearly mapped space and add a
small perturbation matrix to the involved singular matrix [14].
Yang et al. use the modified FLDA criterion instead of the orig-
inal FLDA criterion in the mapped space [16]. They first project
the data onto the range of the total scatter matrix of the mapped
samples using the kernel PCA method [17]; then they apply the
LDA method, which maximizes the modified FLDA criterion in
this reduced space. The first approach above is called the kernel
Fisher’s discriminant analysis (kernel FDA) method, and the
latter approach is called the kernel PCA + LDA(KPCA +LDA)
method.

In this paper, we propose a new method, coined the kernel
DCV method, which applies the DCV method in the nonlin-
early transformed higher dimensional space. Since the modified
FLDA criterion is guaranteed to attain its maximum value when
using the kernel DCV method, just as in the DCV method, the
optimal features for discrimination are extracted from the non-
linearly transformed higher dimensional space.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the optimal discriminant subspace concept
in detail and then show how to extract the optimal projection
directions from this subspace. In Section III, the kernel DCV
method is introduced. In Section IV, we describe the data sets
and experimental results. Last, our conclusions are presented in
Section V.

II. OPTIMAL PROJECTION VECTORS

The modified FLDA criterion aims to maximize the ratio
JMFLDA(Wopt) = max(|WTS’BW|/|WTSTW|). However,
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this criterion is not appropriate since the maximization does not
have a unique solution in the small sample size case. In partic-
ular, every projection vector matrix W such that W7 Sy W = 0
and WTSpW # 0 maximizes the modified FLDA criterion.
Note that if Sy is singular, which is always the case for the
small sample size problem, there are many such matrices .
However, it is not reasonable to use matrices W with a small
number of projection vectors since they may not be sufficient
for optimal feature extraction. On the other hand, the following
criterion, called the null space based FLDA function criterion,
has a unique maximum for the projection vectors with unit
length and also maximizes the modified FLDA criterion:

InsFipa(Wopt) = max  [WESpW|
[WT Sy W|=0
=  max |[WTSrw|. (1
[WT'Sy W|=0

Note that the value of Jysprpa(W) is dependent on the
lengths of the projection vectors; thus one should normalize the
columns of W to have norm of one, to make the maximization
of Jxsrrpa (W) a well-posed problem. To find optimal pro-
jection vectors maximizing this criterion, we first project the
training set samples onto N (Sy ) and then obtain the projection
vectors by performing PCA. As a result, we obtain a set of
orthonormal vectors that forms a basis for the space, which
we call the optimal discriminant subspace. This subspace is
defined as the intersection of N(Sy ) and the range R(St) of
the total scatter matrix .Sp. The criterion given in (1) attains
its maximum for orthonormal vectors that form a basis for the
optimal discriminant subspace. There are numerous algorithms
for finding this optimal subspace and an orthonormal basis for
it. Some of them are given in [13].

Next, we investigate two methods, the DCV and the PCA +
null space methods, both of which employ orthonormal basis
vectors of the optimal discriminant subspace for feature extrac-
tion. We also give a proof of the fact that the basis vectors ob-
tained by these methods span the same subspace, and therefore
both of these methods yield equivalent solutions.

A. The Optimal Discriminant Subspace Concept

Let the training set be composed of C classes, where the
ith class contains IV; samples, and let xﬁn be a d-dimensional
column vector, which denotes the mth sample from the sth
class. Thus, there are a total of M = 210:1 N; samples in
the training set. The within-class scatter matrix Sy, the be-
tween-class scatter matrix Spg, and the total scatter matrix St
are defined as

< N . .

Sw =3 (ah, — pi)(wh, — pi)" )
1=1 m=1
C

Sp =Y Ni(pi — p)(pi — )" 3)
=1
c N

Sr=Y"% (ai, — )=, — )T =Sw+Ss (@)
1=1 m=1

where 1 is the mean of all samples and 1, is the mean of samples
in the sth class.
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If the dimension d of the sample space is larger than M — 1,
the ranks of Sy, Sp, and St can be at most M — C,C' — 1,
and M — 1, respectively. As a result, all scatter matrices will
be rank deficient in this case. Note that the dimension of the
range space of a scatter matrix is equal to its rank and that the
range and the null space of scatter matrices are orthogonal com-
plements of each other. Moreover, the eigenvectors of a scatter
matrix, corresponding to zero eigenvalues, span the null space
of this scatter matrix. As explained previously, if the projection
directions are chosen from N (Sy), the modified FLDA crite-
rion attains its maximum: one. Therefore, we must project the
training set data onto N (Sy ). Then, the optimal projection vec-
tors maximizing the null space based FLDA criterion given in
(1) can be obtained by applying PCA to the samples, which are
projected onto N (Sy ). The fact that the optimal projection vec-
tors span the optimal discriminant subspace follows from the
following lemma, whose proof is given in the Appendix.

Lemma 1: Suppose U is a matrix whose column vectors uy,
(k =rr+1,...,d, where rr is the rank of St) are orthonormal
vectors that span the null space N (St) of St. If all samples in
the training set are projected onto N(St), they give rise to a
unique common vector x such that

¢ =00

i=1,....,C, m=1,....N; (5

where x is independent of indexes ¢ and m.

This lemma shows that N (St) does not contain any discrim-
inative information, which can be used for obtaining the optimal
projection vectors maximizing the null space based FLDA cri-
terion function. Therefore, this null space can be discarded. The
appropriate subspace for extracting discriminating features will
then be the intersection of N(Sy ) and R(ST).

There are numerous algorithms for finding the optimal dis-
criminant subspace and optimal projection vectors that span it.
The following observation by Therrien [19] can be used to find
these optimal projection vectors and the corresponding optimal
discriminant subspace.

Observation 1: Let L®) i = 1,... n, be a subspace of R,
A vector e is contained in ()}, L if and only if it is an eigen-
vector of ¥ corresponding to an eigenvalue of one, where

U= zn:aiP(i)
=1

with P(*) being the projection matrix (also called the orthogonal
projection operator) of the ith subspace and for some a; satis-
fying 0 < a; < 1,>. ;a; = 1.

In our case, we can choose L(!) and L(® as R(Sr) and
N (Sw ), respectively, to find orthonormal vectors that span the
optimal discriminant space. However, this approach is not al-
ways practical for real applications since the size of projec-
tion matrices of subspaces could be too large (e.g., images of
size 256 by 256 result in projection matrices of size 65 536 by
65 536). There are computationally more suitable ways to find
the optimal projection vectors by using smaller sets of basis vec-
tors. This follows from the fact that the projection matrices of
N(Sw) and R(St) commute, as shown in Theorem 1 below.
Namely, PV P®2) = P2 P where P(M) and P® represent
the projection matrices of R(S7) and N (Syy ), respectively. In

(6)
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this case, the projection matrix of the intersection N(Sw ) N
R(ST) is found by

Pt = P p) — p2) p1) @)

where Py is the projection matrix of the optimal discriminant
subspace [20]. A consequence of this result is that to obtain the
optimal projection vectors, we can first project the training set
samples onto N (Sy) and then apply PCA or, alternatively, we
can first project the training set samples onto R(St) through
PCA and then find the null space in the transformed space.
All projections are performed economically by using basis vec-
tors instead of projection operators. The DCV method uses the
first approach, whereas the PCA + null space method uses the
second approach.

Before we prove Theorem 1, we need the following auxiliary
lemma.

Lemma 2: Let LY, L® be subspaces of R4, LL" L(*
be their orthogonal complements and P("), P(?) be the orthog-
onal projection matrices onto L™) and L), respectively. If
LT LL®" then PO and P commute, that is, P() P(2) —
P pQ),

Proof: If LW 1L®" | then clearly (I — PUOYI —
P®) =0and (I - P@)I - PM) = 0. Thus

(I—POYI-PP)=T-PP)I-PY)=0 8)
7— P _ p@ _ pMp@ _ 7_ p) _ p2) _ p® p)
&)

which implies PV P(2) = p(2) p(1), O
We are now ready to prove the following theorem.
Theorem 1: Let P() and P(®) be the projection matrices of
the subspaces R(S7) and N (Sy ), respectively. Then P(") and

P®) commute, i.e.,
PO p@ — p@) p)

Proof: Let L) = R(Sr) and L(®) = N(Sw). Clearly,
LM = N(S7) and L@ = R(Sy ). By [13, Lemma 1], we
have

N(Sr) = N(Sp + Sw)

= N(SB) N N(Sw) (10)

and, in particular, N(St) C N(Sw). This, together with the
fact that N (Sw ) LR(Sw ), shows that

N(S7)LR(Sw)or LV 11" (11)

The assertion of the theorem now follows from Lemma 2. [l

In [21]-[23], the authors claim that the direct-LDA method
finds the projection vectors in the intersection space of N (Sy)
and R(Sp), and they conclude that the projection vectors found
by this method are optimal and equivalent to the projection
vectors found by the null space method as well as the DCV
and the PCA + null space methods. However, these assertions
are incorrect in our opinion. First, the projection directions
obtained by the direct-LDA method are elements of R(Sg),
and hence they are not necessarily in the intersection of R(Sg)
and N(Sw). In fact, the intersection of R(Sp) and N(Sw)
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R(Sw)

N(S7)=N(Sg)NN(Sp) R(S7) A N(Sy)

Fig. 1. TIllustration of the optimal discriminant subspace.

is often trivial. Indeed, in all the face databases considered in
this paper, this intersection turns out to be trivial. This means
that the intersection of R(Sp) and N(Sw) should not be
used for recognition. Second, in light of Theorem 1, the null
space method (equivalently the DCV and the PCA + null
space methods) finds the projection vectors in the intersection
of R(St) and N(Sy ). Thus, the null space method yields
different results from the direct-LDA method. Last, it should
be noted that, in general, the intersection of N(Sy ) and
R(Sp) is not the same as the optimal discriminant subspace
R(ST) N N(Sw). These facts are also illustrated in Fig. 1. In
Fig. 1, two classes with identical covariance matrices having
two samples each in a three-dimensional space are plotted.
R(Sw) and R(Sp) are shown in the figure. In this example,
R(ST) is the plane spanned by the vectors representing R(Sw )
and R(Sp), and N(St) is the line perpendicular to this plane.
Note that N (St ) is also the intersection of N(Sg) and N(Sw ).
The optimal discriminant subspace R(St) N N(Sw ) is the
line in this plane that is perpendicular to R(Sw). N(Sw)
is the plane spanned by the vectors representing N (S7) and
R(ST) N N(Sw). As can be seen in the figure, the intersection
of N(Sw) and R(Spg) is the trivial space, i.e., the origin.

The projection vectors found by the direct-LDA method and
the null space method also differ in terms of their orthogonality
properties. In particular, the projection vectors found by the di-
rect-LDA method satisfy wa‘,,Vw]- = 0;;, whereas the pro-
jection vectors found by the null space method are such that
wlw; = §,;;, where §;; is the Kronecker’s delta.

B. Distinctness of Discriminative Common Vectors

If all samples in each class are projected onto N (Sy), they
give rise to a unique vector called the common vector
i =1,....C, m=1,....N; (12)
where P(?) is the orthogonal projection operator of N (Syy)
[13]. A natural question arises whether the common vectors
xéom 1=1,...,C,are distinct, i.e., whether each of these vec-
tors can be uniquely associated with the th class—or, put yet
another way, whether there is a one-to-one correspondence be-
tween the common vectors and the classes. For if this is not the
case, i.e., if for some i # j, then the DCV method

com

— 7
- ‘Tcom’
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would not be able to discriminate between the two classes ¢ and
7, which would render this method less useful.

The next result shows that this situation is in practice very
unlikely, even though it is possible in theory. First we state the
following necessary condition for the common vectors to be
distinct.

Observation 2: Let i # 7. For the common vectors
xi, @) tobe distinct it is necessary that the samples ¢, 27
in the corresponding two classes are such that one cannot find
real numbers o, G, satisfying Zﬁ;l = 1, Eg;l By =1,
and such that

N; N,

Z Ol = Zﬂnaﬂn. (13)
m=1 n=1
To explain this, let us first reformulate the above observation.

Recall that the affine hull aff(X) of a finite set X of vectors is
the set (called an affine space)

Nz, Y M =10, €RY. (14)
DS |

reX zeX

aff(X) := {

Thus, the above observation can be rephrased by saying that a
necessary condition for the common vectors of classes ¢ and j
to be distinct is that

A; N Aj =g (15)
where A;, A; are the affine hulls of the vectors in the ith and
jth classes, respectively. It is known that the common vectors
zi, ., can be obtained by projecting any z € A; onto N(Sy)
(for example, x can be chosen to be ;) [13]. Consequently, we
have

i =Py (16)
whenever z € A; and

zl =Py (17)
forz € Aj. Thus, if A; N A; # &, then clearly z?,,, = ©i,.,

since above one can take x € A;NA;, which would give z;,, =
Py =g .

Unfortunately, the above observation does not constitute a
sufficient condition for the common vectors to be distinct. This
can be easily seen by taking classes of vectors satisfying A; N
Aj = @, forall i # j, but such that N(Sy ) = {0}, in which
case all common vectors will be the trivial vectors. To arrive at
a sufficient condition, it will therefore be necessary to impose a
condition on linear separability of the considered classes.

For the purpose of the following result, we will say that the
givenclassest = 1,.. ., C are linearly separable if for each pair
i # j there exists a hyperplane H C R¢ strictly separating the
affine spaces A; and A, suchthat Ay,NH = &, forall k # ¢, 5.
Asusual, A; and A; are said to be strictly separated by H if A;
and A are on the opposite sides of H andif A,NH = A;NH =
. Thus, this concept of separability is stronger than the usual
“one against one” separability but weaker than the “one against
all” separability [24]. As is well known, the above definition is
equivalent to saying that there exists a linear functional ¢ on R?
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such that pA; < pH < pAj and p Ay, # oH, k # 1,7, where
 is such that @ H is constant.

We are now ready to prove the following sufficient condition
for existence of distinct common vectors.

Theorem 2: Suppose the classes ¢ = 1,...,C are lin-
early separable. Then, the corresponding common vectors are
distinct.

Proof: We will show that for any pair + # 7, we have
xi, . # xl . To this end, let ¢ be the linear functional whose
existence is guaranteed by the definition of separability. Let [ be
the unique one-dimensional subspace of R such that [ L H, and
let P; be the orthogonal projection operator onto this subspace.
Clearly, also IL A;, A;. We have, by separability

0P A; = pA; < pH < pAj = pPA; (18)
or, in particular, P A; # P A;. Next, let S; be the scatter ma-
trix of the ¢th class. It is known that the range of S; is equal
to the linear span of the vectors xi, — p;,m = 1,...,N;,
where p; is the mean of the vectors in the 4th class [13], and
thus R(S;) = A; — p;. Consequently, [ is a subspace of every
N(Si),1 = ,C, since [LA; and N(S;) is the orthog-
onal complement of R(.S;). Moreover, it was shown in [13] that
N(Sw) = ﬂlczl N(S;). Hence, I C N(Sw). Combining this
with the fact that P, A; # P, A;, we thus obtain

gl =PPA;#PPA; =0l (19)
since clearly, if the orthogonal projections onto a subspace
[ are distinct, then so are the projections onto a larger space
N(Sw). ]

Note that if there are only two classes with corresponding
affine hulls A; and A, then linear separability is equivalent to
the condition A; N As = &, which is a simple consequence
of the Hahn—Banach theorem. Thus, for two classes, the above
necessary condition is also sufficient.

Corollary 1: If all samples i ,i 1,...,C,m
1,..., N;, are linearly independent, then the common vectors
xi o i=1,...,C, are distinct.

The crux of the proof of this assertion consists in showing that
linear independence of the samples implies linear separability
of the classes, in the sense above. Since the proof of this fact is
elementary, it will be omitted.

If the common vectors are distinct, then clearly so are the dis-
criminative common vectors. The above conditions are typically
satisfied for the data sets in high-dimensional sample spaces.
For instance, for a typical face recognition problem with 256-
level grayscale face images of size 128 x 128, the volume of the
sample space is (16 384)%°. Since the dimension is so high, it
is very likely that the training set samples will be linearly inde-
pendent, and therefore the DCV method can be applied safely
for pattern recognition. It has been reported that the generaliza-
tion performance of the DCV method is superior to competing
methods for high-dimensional pattern classification tasks. In
fact, the generalization performance is related to the dimension-
ality of N(Sw ) in the sense that the higher dimensions yield
better results [13].

In some cases, the dimensionality of the sample space may
not be large enough to ensure that the discriminative common
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vectors are distinct. There are three basic approaches to cope
with this situation. First, we can discard all dependent samples.
A second solution is to add new orthonormal projection vec-
tors from outside the optimal discriminant subspace to the pro-
jection vectors spanning the optimal discriminant subspace. In
this case, since the new projection vectors will be from R(Sy ),
the feature vectors will no longer yield the same discrimina-
tive common vectors. Therefore, a 100% recognition accuracy
is no longer guaranteed since some training samples might be
misclassified in this case. A third solution would be to map the
training samples into a higher dimensional space, in which the
new discriminative common vectors of classes are distinct, as in
the kernel DCV method introduced in the next section.

III. KERNEL DISCRIMINATIVE COMMON VECTOR METHOD

Sometimes the discriminative common vectors are not dis-
tinct in the original sample space. In such cases one can map the
original sample space to a higher dimensional space &, where
the new discriminative common vectors in the mapped space are
distinct from one another. This is because a mapping ¢ : ®¢ —
& can map two vectors that are linearly dependent in the original
sample space onto two vectors that are linearly independent in
& [25]. Note that the mapped space could have arbitrarily large,
possibly infinite, dimensionality, which suggests the use of the
DCYV method. Tsuda proved that if the kernel matrix K, given
in (24), is positive definite, then all mapped samples are linearly
independent [26]. Therefore, even though the data samples may
be linearly dependent in the original sample space, it is guar-
anteed that the discriminative common vectors are distinct in &
as long as the kernel matrix K is positive definite. Therefore, a
100% recognition rate can be obtained for linearly nonseparable
classes when applying the linear DCV method in .

Let & = [p(a})g(ad) ... d(k,)b(a?) ... $(a, )] repre-
sent the matrix whose columns are the transformed training
samples in §. The within-class scatter matrix S{?},, the between-
class scatter matrix S, and the total scatter matrix S in S are
given by

C N,
St =D > ($ah) — u) () — )"
i=1 m=1
= (¢ - ¢G)(® — ®G)* (20)
C
SE =Y Ni(uf — p®)(uf — p®)T
=1
= (®U — ®L)(®U — &L)* 1)
< N7 . .
ST =Y > (dlap,) = ) d(ay,) — u®)"
=1 m=1
= (& —Ply)(®—Ply)T =850 +S5 (22

where ;® is the mean of all samples and /,4? is the
mean of samples of the ith class in . Here, G
diag[Gy,...,Gc] € RMXM is a block-diagonal matrix
and each G; € RN *Ni is a matrix with all its elements equal to
1/N;; U = diag[uy, - - ., uc] € RM*C is a block-diagonal ma-

trix and each u; € R™:*1 is a vector with all its elements equal
to 1/v/Ni3 L = [l1,...,lc] € RM*C is a matrix where each
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l; € RMX1 is a vector with entries \/N;/M; 15, € RM*M jg
a matrix with entries 1/M.

In the transformed space, Sg- is typically singular due to the
high dimensionality of the mapped space. Thus the optimal pro-
jection vectors that maximize the null space based FLDA cri-
terion are in the intersection of the null space N(Sg,) of S
and the range R(SZ) of S%. Similar to the linear case, there
are mainly two approaches for computing these optimal projec-
tion vectors. We can either first project the training set samples
onto N (Si%.) and then apply PCA, or we can first apply PCA to
project the training set samples onto R(S% ) and then find an or-
thonormal basis for the new null space of the within-class scatter
matrix of the transformed samples. However, the first approach
is not feasible since the algorithms that follow this approach
use the mapping function ¢ explicitly. Therefore, the second
approach is more appropriate. The training set samples can be
projected onto R(S%) through the kernel PCA. Then we can
find the vectors that span the new null space of the within-class
scatter matrix of the transformed samples. Consequently, we
obtain the discriminative common vectors that represent each
class. This algorithm can be summarized as follows.

Step 1: Project the training set samples onto R(S7) through
the kernel PCA. Let

K=K-1yK—Kly+1yKly
_ UAUT c %AIXM (23)
where A is the diagonal matrix of nonzero eigenvalues and U

is the matrix of normalized eigenvectors associated to A. Here
the kernel matrix K € RM*M js given by K = ®7¢ =

(24)

where k(-) represents the kernel function. The matrix
that transforms the training set samples onto R(S%) is
(® — ®1p)UA~Y? [14]. Then the new total and the
within-scatter matrices in the reduced space can be shown
to be

52 =((® — 1) UA V) TS2(D — D10)UA /2

= ATV2UTUAUTUAUTUAY? = A (25)
Sp = (& — @1y )UA™V2)TSE (@ — &1, ) UAT/?

= A"V2UT Ky KL UAY? (26)

where Kyy = K — KG — 1K + 1y KG = (K — 1y K)(I —
G).

Step 2: Find vectors that span the null space of 53},. This can
be done by eigendecomposition. The normalized eigenvectors
corresponding to zero eigenvalues of 5‘% form an orthonormal
basis for the null space of S3,. Let V be a matrix whose columns
are the computed eigenvectors, corresponding to zero eigen-
values, such that

VTSEv =o. (27)
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Step 3 (Optional): Remove the null space of VT STV if it ex-
ists and rotate the projection directions so that the new total and
between-scatter matrices are diagonal (i.e., the scatter matrices
of the feature vectors of the training set samples are uncorre-
lated). That is

VISV =vTSeV = VTAV = LALT. (28)
The final projection matrix W will then be
W = (®— &1, ) UAV2VL. (29)

There are at most C' — 1 projection vectors. The feature vector
Qtest Of a test sample is obtained as

Qtest = WT(QS(:EtESt) - ’u}@)

where W is the matrix whose columns are the projection vectors
wj,j = 1,...,C — 1. Then each entry of the feature vector of
the test sample can be obtained by

(30)

<wj7 ¢<xtest) - Mq)>
= <wj/ d)(xtest) - (I)lj\,[>
= (UA V2V (Kiess — K1)y
- 1IWKtest + 11\/[K1;\,[)

§RIW><1

(3D

where 1/M € is a vector with all terms equal
to 1/M and Kise € RM*! is a vector with entries

< ¢(x;n), ¢(xtest) > n;flw-wi; .

All mathematical pr(;péfﬁés of the linear DCV carry over
to the kernel DCV method with the modifications that they
now apply to the mapped samples, ¢(z%,),i = 1,...,C,m =
1,...,N;, in Q. After performing the feature extraction, all
training set samples in each class typically give rise to distinct
discriminative common vectors. Therefore, as in the linear
DCV case, a 100% recognition accuracy with respect to the
training data is also guaranteed for this method. In practice, if
we cannot easily find kernel functions which guarantee that the
discriminative common vectors in < are distinct, we can add
new projection vectors from outside the optimal discriminant
subspace, as described in Section II. However, in our experi-
ence, it was very rare that any of the kernels ever exhibited this
problem and, in particular, the Gaussian kernels were never
observed to have this problem.

As stated previously, the KPCA + LDA method is equiva-
lent to applying the kernel PCA method, followed by linear dis-
criminant analysis [16]. Following these operations, we also ob-
tain projection vectors that give rise to discriminative common
vectors for each class. Therefore, this method also guarantees a
100% recognition accuracy if the discriminative common vec-
tors are distinct in the mapped space. It should be noted that the
discriminative common vectors obtained by the KPCA + LDA
are different from those obtained by the proposed method since
the projection vectors of the proposed method are orthonormal,
ie., wl'w; = §;. Additionally, the projection vectors are or-
thogonal with respect to S and S5 if the optional Step 3 in the
kernel DCV algorithm is carried out. More formally

WTSEW = WTSEW = A (32)
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where A is the diagonal matrix given in (28). On the other
hand, the projection vectors of KPCA 4 LDA are conjugate
with respect to ST, ie., wl SEw; = &;;. These projection
directions will be orthonormal if the total scatter of the mapped
samples is isotropic in the transformed space . Keen readers
can refer to [27] for a comparison of orthonormal and conjugate
projection vectors in linear discriminant analysis. The property
of the existence of such discriminative common vectors for
KPCA + LDA does not seem to have been noticed in the
literature. Thus, the feature vector of a test sample must only
be compared to the discriminative common vector of each class
during classification, which makes the kernel DCV and the
KPCA + LDA methods practical for real-time applications.
Note that these methods do not offer any advantages over other
competing methods during the computation of the feature vec-
tors of a test sample. Thus, if one uses a single representative
prototype feature vector (e.g., mean of the feature vectors)
for each class during classification of a kernel method, the
real-time performance of this method will be similar to the
kernel DCV and the KPCA + LDA methods.

A. Comparison of the Linear DCV and the Kernel DCV
Methods

Mapping samples to a higher dimensional space via nonlinear
mapping function ¢ has some advantages over the linear DCV
method. The differences between the two methods can be sum-
marized as follows.

i) The DCV method extracts linear features from the orig-
inal sample space, whereas the kernel DCV method
extracts features from an implicit higher dimensional
space. It is possible to extract nonlinear features using the
kernel DCV method since the mapped space is nonlin-
early related to the original sample space. Additionally,
we have the flexibility of creating different nonlinear
decision boundaries by simply changing the kernel func-
tions. However, these improvements are achieved at the
expense of more intense computations.

ii) The DCV method can be applied only in the small sample
size case, and the dimensionality of the null space of the
within-class scatter matrix must be large in comparison
with the training set size for good recognition rates. How-
ever, these limitations do not apply to the proposed kernel
method. We can apply the kernel DCV method to the data
sets, in which the number of the samples is larger than the
dimensionality of the sample space, using kernel func-
tions ensuring high dimensionality of the mapped space.

IV. EXPERIMENTAL RESULTS

All supervised linear and kernel feature extraction methods
discussed in this paper can be classified into two groups. The
methods in the first group (FLDA, direct-LDA, and kernel FDA)
use projection directions from R(Sy ) or R(Sf) for feature
extraction, i.e., the projection vectors satisty W7 Sy W # 0
for linear methods and satisfy W2 SE W # 0 for nonlinear
methods. On the other hand, projection vectors of the methods
in the second group (DCV, PCA + null space, kernel DCV,
and KPCA + LDA) come from N(Sy) or N(S5) and they
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satisfy WISy W = 0 or WTSEW = 0. As explained be-
fore, projection directions of the methods of the second cate-
gory span the optimal discriminant subspace, and all training
set samples can be classified correctly by using these projec-
tion directions for feature extraction. However, the goal of a
recognition method is not only to classify all training data but
also to classify well the test data samples that are not used for
training. In other words, we want the recognition method to
produce a correct input—output mapping. This is known as the
generalization ability of a method [28]. In our experiments, we
first tested the generalization abilities of those methods coming
from the two different general categories separately, and then
we investigated whether the performance of the methods from
the second category can be improved by adding some projec-
tion directions from R(Sw ) or R(Sg.). In addition to the su-
pervised feature extraction methods, we also tested the sup-
port vector machine (SVM) classifier to give a better assess-
ment of the recognition accuracy of the proposed method. The
nearest neighbor (NN) and the nearest mean (NM) algorithms
[29] were employed using the Euclidean distance during clas-
sification of data samples in feature extraction methods, except
for the methods that employ the discriminative common vec-
tors (DCV, kernel DCV, and KPCA 4+ LDA), in which case
the feature vector of the test sample was compared only to the
discriminative common vectors by using the Euclidean distance
for those methods.

The dimensionality of the sample space and the size of
the training set are two important factors that affect recog-
nition rates of methods [30]. Therefore, experiments were
performed on data sets from two different populations with
different training set sizes and dimensionalities. We selected
two databases from the first population and one database from
the second population. The size of the training set is larger
than the dimensionality of the sample space for the databases
from the first population, unlike in the case of the second
population. Therefore, Sy is nonsingular for the data sets
from the first population and is singular for the data set of
the second population. In the first group of experiments, since
Sy is nonsingular, we cannot apply the linear DCV method.
However, it is possible to apply the kernel DCV method since,
as we noted, the training set samples are first transformed into
some higher dimensional space, for which S is singular. For
the second group of experiments, the FLDA method cannot be
applied directly. Therefore, we applied the approach suggested
by Swets and Weng in which the training set samples were first
projected onto an M — C dimensional space through PCA, for
which Sy is nonsingular [3]. Then, the FLDA method was
applied to the projected samples. We adopted the “one against
one” procedure to extend classic two-class SVM problem to
the multiclass recognition problem since this procedure was
reported to be more suitable for practical uses [24]. The “one
against one” procedure constructs C'(C'—1)/2 classifiers where
each classifier is trained on data samples from two classes.
Then, the so-called “max wins” voting approach was utilized
during the testing phase [24].

An appropriate selection of kernel functions for special tasks
is still an open problem since different kernel functions give
rise to different constructions of the implicit feature space [31].
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We used polynomial kernels k(z,y) = ((z,y))", with degrees
n = 2,3 and the Gaussian kernel k(z, y) = exp(—||z —y||*/q)
for all data sets. We employed a small set of randomly created
training and test sets to compute the best Gaussian parameters ¢
for each database. These data sets were only used for parameter
selection and were not employed for testing the generalization
performances of the methods. We first computed the minimum
and the maximum values of Gaussian parameters that produce
acceptable recognition rates by globally searching over a wide
range of the parameter space. Then, we linearly divided the in-
terval determined by the minimum and the maximum values of
parameters into some subintervals and computed the recognition
rates. Finally, we carried out a local search in the neighborhood
of the Gaussian parameter that yielded the best recognition rate
and computed the final best Gaussian parameter. This process
was repeated for every method. For the SVM case, this search
was carried out in a two-dimensional parameter space since it
was also necessary to tune the regularization parameter -y, which
is a positive constant used as an upper bound needed in relaxing
constraints [17].

A. Experiments on the Scenarios Without Small Sample Size
Problem

In this group of experiments we tested the proposed algo-
rithm with two databases. The first database is the well-known
Fisher’s Iris database [1], and the second database is the digit
data set consisting of handwritten numerals (0-9) extracted
from a collection of utility maps [32]. The number of samples
is larger than the dimensionality of the sample space for both
databases.

1) Experiments on the Fisher’s Iris Database: The Iris
flower database contains four measurements on 50 Iris speci-
mens for each of three species: Iris setosa, Iris versicolor, and
Iris virginica for a total of 150 samples in the database. It was
reported that the first class is linearly separable from the other
two classes and that the latter two are not linearly separable
from each other.

We first conducted experiments to visualize the extracted fea-
tures. We applied the proposed method and the other feature ex-
traction methods discussed in the paper to the Iris database and
plotted the extracted features. The data samples were centered
before the feature extraction. We used the Gaussian kernel with
q = 0.7 for all kernel methods. The feature vectors obtained by
the feature extraction algorithms are illustrated in Fig. 2. As can
be seen in the figure, all samples are separable for the kernel
methods, whereas they are not separable for the linear methods.

In the second set of experiments, we tested the generaliza-
tion performances of the methods by adopting the leave-one-out
strategy [2]. We also tested the SVM classifier beside the feature
extraction methods. The recognition rates and the Gaussian pa-
rameters, which were found by the search procedure described
previously, are given in Table I. The regularization parameter
v of SVM classifier was chosen as five. Note that we used the
Gaussian kernel only since the small sample size does not occur
in the mapped space for the polynomial kernel functions. In this
case, the kernel DCV and the KPCA + LDA methods cannot
be used for recognition.
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In terms of classification performance, the linear FLDA
method followed by the NM classifier and the SVM classifier
achieved the best recognition rates for the Iris database. The
proposed method outperformed both the kernel FDA and the
KPCA + LDA methods among the kernel methods. The kernel
feature extraction methods did not show any improvement over
the linear FLDA method on this database. These recognition
rates can be compared to those reported in [16] and [33].
Although our proposed method was outperformed by the SVM
classifier, the application of the multiclass SVM classifier is
much more complicated than the kernel DCV method. It is
because one must adjust some parameters for each binary
classifier of SVM as opposed to the kernel DCV method in
which the solution can be found in a closed form.

2) Experiments on the Digit Dataset of Handwritten Nu-
merals: This database includes C' = 10 classes, each having
200 patterns. Sample patterns are available in the form of binary
images. These characters are represented in terms of different
feature sets forming distinct databases. In our experiments, we
used two separate data sets consisting of 76 Fourier coefficients
and 240 pixel averages.

We randomly chose 100 samples from each class for training
and used the remaining samples for testing. Thus, a training set
of M = 1000 samples and a test set of 1000 samples were cre-
ated for each database. This process was repeated 45 times, and
45 different training and test sets were created. The first five data
sets were used for parameter selection, and the rest were used
for performance evaluation. Thus, the final recognition rates
for the experiment were found by averaging these 40 rates ob-
tained in each trial. The regularization parameter of SVM clas-
sifier was set to five for polynomial kernels and three for the
Gaussian kernel for the 76 Fourier coefficients data set and it
was chosen to be ten for the polynomial kernels and five for the
Gaussian kernel for the 240 pixel averages data set. The means
and the standard deviations of computed recognition rates on
these databases are given in Tables II and III.

As can be seen from Table II, the best recognition rate among
the linear methods was obtained by the direct-LDA method fol-
lowed by the NN classifier for the Fourier coefficients data-
base. The SVM classifier using the Gaussian kernel achieved the
highest recognition rate over all methods. The proposed method
achieved either competitive or the best recognition rates among
the kernel feature extraction methods for this database. Both the
kernel FDA and the KPCA + LDA methods outperformed the
FLDA for all kernel functions used here.

We also performed statistical significance tests to evaluate
the differences between the recognition rates of the proposed
method and the other competing methods from Table II. This
test is a null hypothesis statistical test [34]. If the resulting sig-
nificance is below the desired significance level, the null hy-
pothesis is rejected and the performance difference between two
methods is considered to be statistically significant. The details
of the test can be found in the Appendix. The results of testing
for significance (with significance level of 0.05) in the observed
recognition rates are given in Table IV for the Fourier coeffi-
cients database. We compared the proposed method only to the
other kernel methods and to the linear method that achieved the
best recognition rate between the linear methods. In terms of
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Fig. 2. Feature vectors obtained by the linear and kernel methods: (a) FLDA, (b) direct-LDA (c) kernel FDA, (d) KPCA + LDA, and (e) kernel DCV. The lines
represent the decision boundaries of nonseparable classes obtained by the nearest mean classifier.

recognition performance, the term “0” implies the two methods  than the compared method in the table. The recognition rates ob-
are statistically equivalent; “1” implies the proposed method tained by using the Gaussian kernels were generally observed to
performs better; and “—1” implies the proposed method is worse  be the best overall. With regard to the Gaussian kernels, the pro-
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TABLE 1
RECOGNITION RATES OF METHODS ON THE FISHER’S IRIS DATABASE

Methods & Gaussian Recognition Rates (%)

Kernel Parameters NN NM
FLDA 96.67 98
Direct-LDA 92.67 94
Kernel FDA, ¢ =0.7 95.33 95.33
KPCA+LDA, ¢=0.2 94.67
Kermnel DCV, ¢ =0.1 96
SVM, ¢=3 98

posed method was found to be significantly better than the di-
rect-LDA, FLDA, and kernel FDA methods with a significance
level 0.05.

Similarly to the previous case, the best recognition rate
among the linear methods was obtained by the direct-LDA
method followed by the NN classifier for the pixel averages
database as can be seen in Table III. The proposed method
achieved the highest recognition rates in all cases. As in the
previous case, both the kernel FDA and the KPCA + LDA
methods outperformed the FLDA. Additionally, we performed
statistical significance tests to evaluate the differences between
the recognition rates of the proposed method and the other
competing methods on the pixel averages database. The results
of the significance test are given in Table V. The results show
that the proposed method significantly outperforms the SVM
classifier, the direct-LDA method, and the FLDA method in all
cases with a significance level of 0.05 on the pixel averages
database. The proposed method also significantly outperformed
the KPCA + LDA method when the polynomial kernel with
degree of two was used.

In general, the test results show that the proposed method gen-
eralizes well compared to other kernel approaches for data sets
with large number of samples studied here since for both data
sets, the proposed method achieves either competitive or the
best recognition results. We also conducted some experiments to
see if the recognition performance of the Kernel DCV method
can be increased by incorporating some projection directions
from outside the optimal discriminant subspace into the kernel
DCYV framework. Only one randomly created training and test
set were used for both data sets in these experiments. We used
the Gaussian kernels, with the parameters as given in the tables,
since these yielded the highest recognition rates. The variation
of the PCA + null space method from [10] was employed to add
new projection directions coming from outside the optimal dis-
criminant subspace to the set of projection vectors spanning the
optimal discriminant subspace. We split the new within-class
scatter matrix Si%. (the within-class scatter matrix of the sam-
ples obtained after the kernel PCA process) into its null space
N(SE) = span {£41,.. ., &} and orthogonal complement of
the null space (i.e., range space) R(S‘{,I{,) = span {&1,...,&}
(where 7 is the rank of S, and ¢ = rank(S2) is the dimension
of the reduced space after the kernel PCA step). Subsequently,
all the projection vectors maximizing the between-class scatter
in the null space are chosen. These are the projection vectors
spanning the optimal discriminant subspace and there are nine
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of them. Then, beginning with these optimal projection vectors,
we gradually added new projection vectors from the range space
until we reached to the number of ¢ = 998 projection vectors,
and we computed the corresponding recognition rates. The re-
sults for the training and test sets are illustrated in Fig. 3. As can
be seen from the figure, adding new projection directions from
outside the optimal discriminant subspace does not increase the
performance; in fact, the performance can be seen to degrade.
Adding projection directions from outside the optimal discrimi-
nant subspace also degrades the real-time performance since the
data samples do not give rise to unique discriminative common
vectors after feature extraction. As a result, if one does not uti-
lize a single representative prototype feature vector for each
class during classification, the comparisons must be made over
all feature vectors of the training set, rather than just over a much
smaller number of discriminative common vectors, leading to an
increase in the computational cost.

B. Experiments on the Scenarios With Small Sample Size
Problem

In this group of experiments, we used the Olivetti-Oracle Re-
search Lab (ORL) face database [35]. The ORL face database
contains C' = 40 individuals with ten images per person. The
images are taken at different times with varying lighting condi-
tions, facial expressions, and facial details. All individuals are in
an upright, frontal position (with tolerance for some side move-
ment). The size of the each image is 92 x 112 pixels. Some in-
dividuals from the ORL face database are shown in Fig. 4.

We randomly selected N = 3,5,7 samples from each class
for training, and the remaining (10 —N) samples of each class
were used for testing. This process was repeated 45 times, and
45 different training and test sets were created. The first five data
sets were used for parameter selection, and the rest were used
for performance evaluation. We did not apply any preprocessing
to the images. The recognition rates for the experiment were
found by averaging the recognition rates of each trial. We set the
SVM regularization parameter to v = 10 for polynomial ker-
nels and to v = 5 for the Gaussian kernel in all cases. The com-
puted recognition rates and standard deviations for the linear and
kernel methods are given in Tables VI and VII, respectively. The
best recognition was obtained by the DCV method among the
linear methods in all cases. The recognition performance of the
DCYV method is especially superior to the other linear methods
when N = 3 samples are used for training. As the number of
training samples is increased, the difference between the recog-
nition rates of the DCV method and other linear methods de-
creases. Similarly, the best recognition results among the kernel
methods were obtained by the kernel DCV method for all cases.

Similar to the large sample size case, we also performed sta-
tistical significance tests to evaluate the differences between the
recognition rates of the proposed method and the other com-
peting methods for the ORL face database. The results are given
in Table VIII. Our proposed method either matches or signifi-
cantly outperforms the other kernel methods, and it also shows
an improvement over the linear DCV when N = 7 samples were
used for training. However, it statistically performs worse than
the linear DCV method for the polynomial kernel with degree of
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TABLE II
RECOGNITION RATES OF METHODS ON THE 76 FOURIER COEFFICIENTS DATABASE
Recognition Rates (%) and Standard Deviations
Linear Methods
NN NM
FLDA 80.03, 0=0.99 80.22, 0=0.81
Direct-LDA 81.11, 0=0.94 79.32, 6=0.83
Recognition Rates (%) and Standard Deviations
lﬁ::::i:ietll(l:: ef‘ Polynomial kernel functions with different degrees Gaussian kernel
Parameters — — function
n=2 n=3
NN NM NN NM NN NM
_ 82.59, 82.85, 83.60, 83.91, 84.72, 84.90,
Kemel FDA, ¢ =0.46 =107 =079 | =086 =084 =084 =071
80.85 82.04 84.90
+ =0. > s s
KPCA+LDA, ¢=0.38 6=1.03 =098 =078
_ 82.62, 83.42, 85.12,
Kemel DCV, ¢ =0.46 =083 =092 =064
_ 84.93, 84.86, 85.18,
SVM, ¢=038 =082 =076 6=0.80
TABLE III
RECOGNITION RATES OF METHODS ON THE 240 PIXEL AVERAGES DATABASE
Recognition Rates (%) and Standard Deviations
Linear Methods
NN NM
FLDA 94.08, 0 =0.65 94.70, 0 =0.65
Direct-LDA 95.94, 0=0.55 93.24, 0=0.57
Recognition Rates (%) and Standard Deviations
Kernel Methods & Polynomial kernel functions with different degrees
Gaussian Kernel Gaussian kernel function
Parameters n=2 n=3
NN NM NN NM NN NM
97.85 97.85 98.07 98.07 98.18 98.14
= 2 E] ’ H] E] t] £
Kemel FDA, ¢ =1200 =038 =038 =036 | 0=036 =034 =033
97.69 98.06 98.18
+ = bl £ L]
KPCA+LDA, ¢=1200 =041 =032 =032
97.97 98.14. 98.20
Kernel DCV, g =1200 ? > :
emet AV ¢ =033 =035 =032
_ 97.64, 97.78, 97.94,
SVM, ¢=30 0=0.46 =039 =035
TABLE 1V
STATISTICAL SIGNIFICANCE COMPARISON OF RECOGNITION PERFORMANCES ON THE FOURIER COEFFICIENTS DATABASE
KDCV/KFDA
Kernel Functions KDCV/KPCA+LDA KDCV/SVM KDCV/Direct-LDA
NN NM
n=2 0 0 1 -1 1
n=3 0 -1 1 -1 1
GK 1 0 0 0 1

three for N = 3. This can be attributed to the nature of the face
images in the database. The images of individuals are mostly in
frontal position, and the lighting conditions are similar. There-
fore the face images in the database are linearly separable. In
such cases, using higher order correlations via kernels may de-

grade the performance as in our case since the problem is close
to linearly separable. These results on the ORL face database
can be compared to those reported in [36] and [37].

Finally, we carried out some experiments in order to judge
whether the performance of the DCV and the kernel DCV
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TABLE V
STATISTICAL SIGNIFICANCE COMPARISON OF RECOGNITION PERFORMANCES ON THE PIXEL AVERAGES DATABASE
KDCV/KFDA
Kernel Functions KDCV/KPCA+LDA KDCV/SVM KDCV/Direct-LDA
NN NM
n=2 0 0 1 1 1
n=3 0 0 0 1 1
GK 0 0 0 1 1

Recognition Rates (%) for Training Set
100

96
92
88
84

80
9 109 209 309 408 509 609 709 809 909 998

Number of Projection Vectors

@

—e— Fourier Coefficients Database

Recognition Rates (%) for Test Set

9 109 209 309 409 509 609 703 809 909 998
Number of Projection Directions

(®)

—a— Pixel Averages Database

Fig. 3. Recognition rates as a function of projection vectors that are used for feature extraction: (a) training set results and (b) test set results.

Fig. 4. Three sample sets from the ORL face database.

methods can be increased by adding projection directions from
outside the optimal discriminant subspace. The same procedure
was followed as in the previous subsection. These experiments
were performed on the data set using N 5 samples for
training. The Gaussian kernel with parameter ¢ 1.06e8
was used for the kernel DCV method. For both methods,
starting with 39 optimal projection vectors, we gradually added
new projection vectors from outside the optimal discriminant
subspace until we reached the number ¢ = 199 of projection
vectors. The results are given in Fig. 5. As can be seen, adding
new projection vectors degraded the performance of the method
similar to the large sample size case.

In general, these results show that the proposed method leads
to a reliable input—output mapping for the data sets with a high-
dimensional space by using only a few training set samples.

C. Discussion

We have seen in the described experiments that when the
dimension of the sample space was smaller than the size of the

training set, kernel methods typically produced better results
than linear methods. Although the supervised kernel feature
extraction methods did not show any improvement over the
linear FLDA method for the Iris database, they outperformed
the FLDA significantly for the digit data sets. In many cases the
proposed method outperformed other kernel methods. It should
be noted that the number of training samples is large compared
to the dimensionality of the sample space for the Iris database.
Therefore, it is better to estimate distribution functions of
classes for these situations. Then, more sophisticated classifiers
can be constructed by using the estimated density functions.
However, the estimation of density functions may not be reli-
able in cases where the dimensionality of the sample space and
the number of samples per class are comparable in size, as was
the case with the digit data sets. It has been reported that the
number of samples in each class must be at least ten times the
dimensionality of the sample space for a reliable density esti-
mation [33]. Thus, our proposed kernel method will be suitable
for these cases as demonstrated in experimental studies. Unlike
the results obtained for the data sets from the first population,
in general there is not a significant difference between the
recognition rates of the linear and the kernel methods for the
face database since the face samples are linearly separable.
The DCV method outperformed all other linear methods in
all cases for the face database. Similarly, the kernel DCV
method outperformed all other kernel methods in all cases. The
proposed method, kernel DCV, offered an improvement over its
linear counterpart only in one case. However, the kernel DCV
method might improve the recognition results of the linear
DCYV method on different face databases having nonlinear and
complex distributions.
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TABLE VI
RECOGNITION RATES OF LINEAR METHODS ON THE ORL FACE DATABASE
. o .
Number of training Recognition Rates (%) & Standard Deviations
samples in each FLDA Direct-LDA
class DCV
NN NM NN NM
N=3 86.35,06=3.17 | 86.10,0=3.37 | 8531,0=3.16 | 84.84,0=2.81 | 90.70, o =2.49
N=5 92.13,0=2.47 | 92.50,0=2.27 | 95.40,0=1.64 | 94.85,0=2.04 | 96.11, 0 =1.73
N=7 94.54, 0 =231 | 9497, 0=2.18 | 97.75,6=1.33 | 9743,0=154 | 97.77, 6 =1.33
TABLE VII
RECOGNITION RATES OF KERNEL METHODS ON THE ORL FACE DATABASE
5z | =& Q
% 5 3 g Recognition Rates (%) & Standard Deviations
& | 5
g - E
g2 | E
é 2 Kernel FDA KPCA+LDA Kernel DCV SVM
g E g;=g5=3.18¢7, g; =796e7, g5 = g; =1.06¢8, g3=3500,
q- =796e7 g5 =g, =3.18¢7 g,=1.06e8 g5 =q-=4000
ne3 NN 8939, 0-280 87.16, 90.54, 88.75,
NM 89.39, c=2.80 o=3.14 c=2172 =294
ve3 | ne3 NN | 8733, 0325 85.13, 89.09, 87.68,
NM 87.33, 0=3.25 6=3.62 c=293 c=3.11
Gk NN | 9040, 0=255 91.42, 91.50, $9.35,
NM 8991, c=273 =257 c=2.56 c=281
oo LN | 36 9=LD 93.58, 96.32, 95.22,
NM 9541, 0 =177 oc=19 o =168 c=2.01
ves | nes NN 0446, ¢ =1.71 0201, 05.45, 04.81,
‘ M 0446, o =1.71 =22 =183 =197
& L | %64k o= 96.46, 96.71, 95.46,
NM 96.02, o =1.50 o =139 o =153 o=186
- NN | 9729, 0 =1.95 96.10, 97.85, 97.34,
NM 97.29, o =1.95 c=1098 o =146 o =131
ver | nos [ | 907 omt4 95.56, 97.67, 97.06,
= NM 96.73, o =1.41 c=1.92 o =152 o =149
NN 08.08, ¢ =1.39 ,
6K 97.89, 98.40, 97.56,
NM 97.60, o =1.40 o=125 o=1.18 o=125

The recognition rates of the kernel methods might be im-
proved for different kernels that fulfill Mercer’s theorem [38].
However, we did not attempt to find better kernels since our aim
here was to compare the accuracy of the kernel DCV method
with other kernel techniques. The test results show that the pro-
jection vectors coming from the optimal discriminant subspace
are the best suited set of projection directions for feature ex-
traction. Another advantage of the kernel DCV method is its
real-time performance. The proposed method and the KPCA +
LDA method have the highest real-time efficiency among the
kernel methods. In these methods, after a test image is projected
onto the (C-1) optimal projection vectors, the feature vector of
the test sample is compared to C' discriminative common vec-
tors only, in sharp contrast to all other methods, where it must
be compared to all training set feature vectors if the nearest
neighbor algorithm is used.

V. CONCLUSION

In this paper, we proposed a new method that uses kernel
functions for recognition. The proposed method combines
kernel-based methodologies with the optimal discriminant
subspace concept. We first showed that the optimal projection
vectors come from the optimal discriminant subspace, which
is the intersection of the null space of the within-class scatter
matrix Sy and the range of the total scatter matrix S7. We then
proposed an algorithm for finding these projection vectors in a
nonlinearly mapped higher dimensional space. Under certain
conditions, when the training set samples are projected onto the
computed projection vectors, all training set samples in each
class produce adistinct vector, called the discriminative common
vector, representing the classes. Thus a 100% recognition rate
is guaranteed for the training set samples even though they are
not linearly separable in the original sample space. To assess
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TABLE VIII
STATISTICAL SIGNIFICANCE COMPARISON OF RECOGNITION PERFORMANCES ON THE ORL FACE DATABASE
Number of Kernel KDCV/KFDA
training . KDCV/PCA+LDA KDCV/SVM KDCV/DCV
samples functions
NN NM
n=2 0 0 1 1 0
N=3 n=3 1 1 1 1 -1
GK 0 1 0 1 0
n=2 1 1 1 1 0
N=5 n=3 1 1 1 0 0
GK 0 1 0 1 0
n=2 0 0 1 0 0
N=7 n=3 1 1 1 0 0
GK 0 1 0 1 1
Recognition Rates (%) of Training Sets Recognition Rates (%) of Test Sets
100 - 98
\ . 3‘
o7 —e—DCV
—e—DCV 96 | |
—=— Kernel DCV \\ —&— Kernel DCV
94 95
91 94 A-%ﬁm
93
88
92
85 r T T T T T T T 91 r T T y v r v T

39 59 79 99 119 138 189 179 189
Number o f Projection Directions

(@

39 59 79 99 119 139 159 179 199
Number of Projection Directions

(®)

Fig. 5. Recognition rates as a function of projection vectors that are used for feature extraction: (a) training set results and (b) test set results.

the performance of the proposed method, we performed several
tests. First, we compared the proposed method with methods that
use projection directions from outside the optimal discriminant
subspace. The proposed method outperformed other kernel fea-
ture extraction methods in most of the cases. Then, we generated
anew set of projection vectors by adding new projection vectors
from outside the optimal discriminant subspace to the optimal
projection vectors spanning the optimal discriminant subspace.
‘We then used these new vectors for feature extraction. However,
this process degraded the performance of the proposed method.
The experimental test results also show that the generalization
ability of the proposed method is comparable to all tested kernel
approaches. Finally, the fact that the test sample feature vectors
are compared only to the discriminative common vectors, as
opposed to all training set sample feature vectors, makes the
proposed method ideal for real-time applications.

APPENDIX 1

Proof of Lemma 1: By definition, a vector v € R¢ is in
N(S7) if S7u = 0. Let 14 be the mean vector of the samples in

the training set, 15, € RM*M be the matrix with all elements
equal to M1, and X € R™M be the matrix whose columns
are the training set samples. Thus, by multiplying both sides of
identity S7u = 0 by uT, we get

c N
0=" "> ul(ah, — p)(wh, — ) u
=1 m=1
=ul X(I = 1p)(I = 1p) " XTu = ||(I = 1) X T |?
(33)
where || - || denotes the Euclidean norm. Thus, (33) holds if

(I —127)XTuy, = 0 or XTuy = 137 X Tuy. From this relation
it can be seen that

i=1,...,C, m=1,... N,
]C:’I‘T-I-l,...,d.

(@) "k = p " ug,
(34)
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Thus the projection of any z?, onto N(St),

d d
r = Z <«’Ufn7’uk)uk = Z <M,Uk>’uk,
k=rr+1 k=rr+1
1=1,...,C, m=1,...,N; (35)
is independent of m and %, which proves the lemma. O

Statistical Significance Test Involving Differences of Means
and Proportions: Consider that two classes X; and X5 come
from two populations with means X7, X and standard devia-
tions o1, 09 obtained by /Ny and Ny trials, respectively. Then,
we have to decide between two hypotheses

Ho : p1 = p2
Hy oy # pa.

Under hypothesis Hy, both classes come from the same pop-
ulation. The mean and standard deviation of the difference in
means are given by

tx, x, =0andog, 5, = \/02 /N1 + o2 /N>.

Then
z = (Xl — XQ)/O'leXQ.

For a two-tailed test, the results are significantly different at a
0.05 level if z lies outside the range —1.96 to 1.96. Hence we
conclude that the difference in performance of the two methods
is significantly different if z lies outside the range —1.96 to 1.96
with a significance level of 0.05.
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