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Abstract—In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the

training set. As a consequence, the within-class scatter matrix is singular and the Linear Discriminant Analysis (LDA) method cannot

be applied directly. This problem is known as the “small sample size” problem. In this paper, we propose a new face recognition

method called the Discriminative Common Vector method based on a variation of Fisher’s Linear Discriminant Analysis for the small

sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the

training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other

uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then,

the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for

maximizing the modified Fisher’s Linear Discriminant criterion given in the paper. Our test results show that the Discriminative

Common Vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.

Index Terms—Common vectors, discriminative common vectors, face recognition, Fisher’s linear discriminant analysis, principal

component analysis, small sample size, subspace methods.
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1 INTRODUCTION

RECENTLY, due to military, commercial, and law enforce-
ment applications, there has been much interest in

automatically recognizing faces in still and video images.
This research spans several disciplines such as image
processing, pattern recognition, computer vision, and
neural networks. The data come from a wide variety of
sources. One group of sources is the relatively controlled
format images such as passports, credit cards, photo IDs,
drivers’ licenses, and mug shots. A more challenging class
of application imagery includes real-time detection and
recognition of faces in surveillance video images, which
present additional constraints in terms of speed and
processing requirements [1].

Face recognition can be defined as the identification of

individuals from images of their faces by using a stored

database of faces labeled with people’s identities. This task

is complex and can be decomposed into the smaller steps of

detection of faces in a cluttered background, localization of

these faces followed by extraction of features from the face

regions, and, finally, recognition and verification [2]. It is a

difficult problem as there are numerous factors such as

3D pose, facial expression, hair style, make up, etc., which
affect the appearance of an individual’s facial features. In
addition to these varying factors, lighting, background, and
scale changes make this task even more challenging.
Additional problematic conditions include noise, occlusion,
and many other possible factors.

Many methods have been proposed for face recognition
within the last two decades [1], [3]. Among these methods,
appearance-based approaches operate directly on images or
appearances of face objects, and process the images as
two-dimensional holistic patterns. In these approaches, a
two-dimensional image of size w by h pixels is represented
by a vector in a wh-dimensional space. Therefore, each facial
image corresponds to a point in this space. This space is
called the sample space or the image space, and its
dimension typically is very high [4]. However, since face
images have similar structure, the image vectors are
correlated, and any image in the sample space can be
represented in a lower-dimensional subspace without
losing a significant amount of information. The Eigenface
method has been proposed for finding such a lower-
dimensional subspace [5]. The key idea behind the Eigen-
face method, which uses Principal Component Analysis
(PCA), is to find the best set of projection directions in the
sample space that will maximize the total scatter across all
images such that

JPCAðWoptÞ ¼ argmax
W

jWTSTW j

is maximized. Here, ST is the total scatter matrix of the
training set samples, and W is the matrix whose columns
are the orthonormal projection vectors. The projection
directions are also called the eigenfaces. Any face image
in the sample space can be approximated by a linear
combination of the significant eigenfaces. The sum of the
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eigenvalues that correspond to the eigenfaces not used in
reconstruction gives the mean square error of reconstruc-
tion. This method is an unsupervised technique since it
does not consider the classes within the training set data. In
choosing a criterion that maximizes the total scatter, this
approach tends to model unwanted within-class variations
such as those resulting from the differences in lighting,
facial expression, and other factors [6], [7]. Additionally,
since the criterion does not attempt to minimize the within-
class variation, the resulting classes may tend to have more
overlap than other approaches. Thus, the projection vectors
chosen for optimal reconstruction may obscure the ex-
istence of the separate classes.

The Linear Discriminant Analysis (LDA) method is
proposed in [6] and [7]. This method overcomes the
limitations of the Eigenface method by applying the Fisher’s
Linear Discriminant criterion. This criterion tries to max-
imize the ratio

JFLDðWoptÞ ¼ argmax
W

jWTSBW j
jWTSWW j ;

where SB is the between-class scatter matrix, and SW is the
within-class scatter matrix. Thus, by applying this method,
we find the projection directions that on one hand
maximize the Euclidean distance between the face images
of different classes and on the other minimize the distance
between the face images of the same class. This ratio is
maximized when the column vectors of the projection
matrix W are the eigenvectors of S�1

W SB. In face recognition
tasks, this method cannot be applied directly since the
dimension of the sample space is typically larger than the
number of samples in the training set. As a consequence,
SW is singular in this case. This problem is also known as
the “small sample size problem” [8].

In the last decade numerous methods have been
proposed to solve this problem, Tian et al. [9] used the
Pseudoinverse method by replacing S�1

W with its pseudoin-
verse. The Perturbation method is used in [2] and [10],
where a small perturbation matrix � is added to SW in
order to make it nonsingular. Cheng et al. [11] proposed the
Rank Decomposition method based on successive eigen-
decompositions of the total scatter matrix ST and the
between-class scatter matrix SB. However, the above
methods are typically computationally expensive since the
scatter matrices are very large (e.g., images of size 256 by
256 yield scatter matrices of size 65,536 by 65,536). Swets
and Weng [7] proposed a two stage PCA+LDA method,
also known as the Fisherface method, in which PCA is first
used for dimension reduction so as to make SW nonsingular
before the application of LDA. However, in order to make
SW nonsingular, some directions corresponding to the small
eigenvalues of ST are thrown away in the PCA step. Thus,
applying PCA for dimensionality reduction has the poten-
tial to remove dimensions that contain discriminative
information [12], [13], [14], [15], [16]. Chen et al. [17]
proposed the Null Space method based on the modified
Fisher’s Linear Discriminant criterion

JMFLDðWoptÞ ¼ argmax
W

jWTSBW j
jWTSTW j :

This method has been proposed to be used when the
dimension of the sample space is larger than the rank of the
within-class scatter matrix SW . It has been shown that the
original Fisher’s Linear Discriminant criterion can be
replaced by the modified Fisher’s Linear Discriminant
criterion in the course of solving the discriminant vectors
of the optimal set in [18]. In this method, all image samples
are first projected onto the null space of SW , resulting in a
new within-class scatter that is a zero matrix. Then, PCA is
applied to the projected samples to obtain the optimal
projection vectors. Chen et al. also proved that by applying
this method, the modified Fisher’s Linear Discriminant
criterion attains its maximum. However, they did not
propose an efficient algorithm for applying this method in
the original sample space. Instead, a pixel grouping method
is applied to extract geometric features and reduce the
dimension of the sample space. Then, they applied the Null
Space method in this new reduced space. In our experi-
ments, we observed that the performance of the Null Space
method depends on the dimension of the null space of SW

in the sense that larger dimension provides better perfor-
mance. Thus, any kind of preprocessing that reduces the
original sample space should be avoided.

Another novel method, the PCA+Null Spacemethod, was
proposed by Huang et al. in [15] for dealing with the small
sample size problem. In this method, at first, PCA is applied
to remove the null space of ST , which contains the
intersection of the null spaces of SB and SW . Then, the
optimal projection vectors are found in the remaining lower-
dimensional space by using the Null Space method. The
difference between the Fisherfacemethod and the PCA+Null
Space method is that for the latter, the within-class scatter
matrix in the reduced space is typically singular. This occurs
because all eigenvectors corresponding to the nonzero
eigenvalues of ST are used for dimension reduction. Yang
et al. applied a variation of this method in [16]. After
dimension reduction, they split the new within-class scatter
matrix, ~SSW ¼ PT

PCASWPPCA (where PPCA is the matrix whose
columns are the orthonormal eigenvectors corresponding to
the nonzero eigenvalues of ST ), into its null space Nð ~SSW Þ ¼
spanf�rþ1; . . . ; �tg and orthogonal complement (i.e., range
space) Rð ~SSW Þ ¼ spanf�1; . . . ; �rg (where r is the rank of SW ,
and t ¼ rankðST Þ is the dimension of the reduced space).
Then, all the projection vectors that maximize the between-
class scatter in the null space are chosen. If, according to some
criterion, more projection vectors are needed, the remaining
projection vectors are obtained from the range space.
Although, the PCA+Null Space method and the variation
proposed by Yang et al., use the original sample space,
applying PCA and using all eigenvectors corresponding to
the nonzero eigenvalues make these methods impractical for
face recognition applications when the training set size is
large. This is due to the fact that the computational expense of
training becomes very large.

Last, the Direct-LDA method is proposed in [12]. This
method uses the simultaneous diagonalization method [8].
First, the null space of SB is removed and, then, the
projection vectors that minimize the within-class scatter in
the transformed space are selected from the range space of
SB. However, removing the null space of SB by dimension-
ality reduction will also remove part of the null space of SW
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and may result in the loss of important discriminative
information [13], [15], [16]. Furthermore, SB is whitened as a
part of this method. This whitening process can be shown to
be redundant and, therefore, should be skipped.

In this paper, a new method is proposed which
addresses the limitations of other methods that use the null
space of SW to find the optimal projection vectors. Thus, the
proposed method can be only used when the dimension of
the sample space is larger than the rank of SW . The
remainder of the paper is organized as follows: In Section 2,
the Discriminative Common Vector approach is introduced.
In Section 3, we describe the data sets and experimental
results. Finally, we formulate our conclusions in Section 4.

2 DISCRIMINATIVE COMMON VECTOR APPROACH

The idea of common vectors was originally introduced for
isolated word recognition problems in the case where the
number of samples in each class was less than or equal to
the dimensionality of the sample space [19], [20]. These
approaches extract the common properties of classes in the
training set by eliminating the differences of the samples in
each class. A common vector for each individual class is
obtained by removing all the features that are in the
direction of the eigenvectors corresponding to the nonzero
eigenvalues of the scatter matrix of its own class. The
common vectors are then used for recognition. In our case,
instead of using a given class’s own scatter matrix, we use
the within-class scatter matrix of all classes to obtain the
common vectors. We also give an alternative algorithm
based on the subspace methods and the Gram-Schmidt
orthogonalization procedure to obtain the common vectors.
Then, a new set of vectors, called the discriminative
common vectors, which will be used for classification are
obtained from the common vectors. We introduce algo-
rithms for obtaining the common vectors and the discrimi-
native common vectors below.

2.1 Obtaining the Discriminative Common Vectors
by Using the Range Space of SW

Let the training set be composed of C classes, where each
class contains N samples, and let xim be a d-dimensional
column vector which denotes the mth sample from the ith
class. There will be a total of M ¼ NC samples in the
training set. Suppose that d > M � C. In this case, SW , SB,
and ST are defined as,

SW ¼
XC
i¼1

XN
m¼1

ðxi
m � �iÞðxi

m � �iÞT ; ð1Þ

SB ¼
XC
i¼1

Nð�i � �Þð�i � �ÞT ; ð2Þ

and

ST ¼
XC
i¼1

XN
m¼1

ðxi
m � �Þðxim � �ÞT ¼ SW þ SB; ð3Þ

where � is the mean of all samples, and �i is the mean of
samples in the ith class.

In the special case where wTSWw ¼ 0 and wTSBw 6¼ 0, for

all w 2 Rdnf0g, the modified Fisher’s Linear Discriminant

criterion attains a maximum. However, a projection vector

w, satisfying the above conditions, does not necessarily

maximize the between-class scatter. In this case, a better

criterion is given in [6] and [13], namely,

JðWoptÞ ¼ argmax
jWTSWW j¼0

jWTSBW j ¼ argmax
jWTSWW j¼0

jWTSTW j: ð4Þ

To find the optimal projection vectors w in the null space

of SW , we project the face samples onto the null space of SW

and then obtain the projection vectors by performing PCA.

To do so, vectors that span the null space of SW must first be

computed. However, this task is computationally intract-

able since the dimension of this null space can be very large.

A more efficient way to accomplish this task is by using the

orthogonal complement of the null space of SW , which

typically is a significantly lower-dimensional space.
Let Rd be the original sample space, V be the range space

of SW , and V ? be the null space of SW . Equivalently,

V ¼ spanf�k j SW�k 6¼ 0 ; k ¼ 1; . . . ; rg ð5Þ

and

V ? ¼ spanf�k j SW�k ¼ 0; k ¼ rþ 1; . . . ; dg; ð6Þ

where r < d is the rank of SW , f�1; . . . ; �dg is an orthonormal

set, and f�1; . . . ; �rg is the set of orthonormal eigenvectors

corresponding to the nonzero eigenvalues of SW .
Consider the matrices Q ¼ ½�1 . . . �r� and �QQ ¼ ½�rþ1

. . . �d�. SinceRd ¼ V � V ?, every face image xi
m 2 Rd has

a unique decomposition of the form

xi
m ¼ yim þ zim; ð7Þ

where yim ¼ Pxi
m ¼ QQTxi

m 2 V , zim ¼ �PPx
i
m ¼ �QQ �QQTxi

m 2 V ?,

and P and �PP are the orthogonal projection operators onto V

and V ?, respectively. Our goal is to compute

zim ¼ xi
m � yim ¼ xi

m � Pxi
m: ð8Þ

To do this, we need to find a basis for V , which can be

accomplished by an eigenanalysis of SW . In particular, the

normalized eigenvectors �k corresponding to the nonzero

eigenvalues of SW will be an orthonormal basis for V . The

eigenvectors can be obtained by calculating the eigenvectors

of the smaller M by M matrix, ATA, defined such that

SW ¼ AAT , where A is a d by M matrix of the form

A ¼ ½x1
1 � �1 . . . x1N � �1 x2

1 � �2 . . . xC
N � �C �: ð9Þ

Let �k and vk be the kth nonzero eigenvalue and the

corresponding eigenvector of ATA, where k � M � C.

Then, �k ¼ Avk will be the eigenvector that corresponds to

the kth nonzero eigenvalue of SW . The sought-for projection

onto V ? is achieved by using (8). In this way, it turns out

that we obtain the same unique vector for all samples of the

same class,

xi
com ¼ xi

m �QQTxim ¼ �QQ �QQTxi
m;

m ¼ 1; . . . ; N; i ¼ 1; . . . ; C;
ð10Þ
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i.e., the vector on the right-hand side of (10) is independent
of the sample index m. We refer to the vectors xi

com as the
common vectors. The above fact is proven in the following
theorem.

Theorem 1. Suppose �QQ is a matrix whose column vectors are the
orthonormal vectors that span the null space V ? of SW . Then,
the projections of the samples xim of the class i onto V ? produce
a unique common vector xi

com such that

xi
com ¼ �QQ �QQ

T
xi
m; m ¼ 1; . . . ; N; i ¼ 1; . . . ; C: ð11Þ

Proof. By definition, a vector � 2 Rd is in V ? if SW� ¼ 0. Let
�i be the mean vector of the ith class, G be the N by
N matrix whose entries are all N�1, and Xi be the d by
N matrix whose mth column is the sample xi

m. Thus,
multiplying both sides of identity SW� ¼ 0 by �T and
writing

SW ¼
XC
i¼1

Si ð12Þ

with

Si¼
XN
m¼1

ðxi
m��iÞðxi

m� �iÞT ¼ ðXi �XiGÞðXi �XiGÞT ð13Þ

immediately leads to

0¼
XC
i¼1

�TXiðI �GÞðI �GÞT ðXiÞT�¼
XC
I¼1

jjðI �GÞðXiÞT�jj2;

ð14Þ

where jj:jj denotes the Euclidean norm. Thus, (14) holds
if ðI �GÞðXiÞT�k ¼ 0, or ðXiÞT�k ¼ GðXiÞT�k. From this
relation, we can see that

ðxi
mÞ

T�k ¼ ð�iÞT�k;

m ¼ 1; . . . ; N; i ¼ 1; . . . ; C; k ¼ rþ 1; . . . ; d:
ð15Þ

Thus, the projection of xi
m onto V ?,

xicom ¼
Xd
k¼rþ1

hxi
m; �ki�k ¼

Xd
k¼rþ1

h�i; �ki�k ð16Þ

is independent of m, which proves the theorem. tu
The theorem states that it is enough to project a single

sample from each class. This will greatly reduce the
computational burden of the calculations. This computa-
tional saving has not been previously reported in the
literature.

After obtaining the common vectors xi
com, optimal

projection vectors will be those that maximize the total
scatter of the common vectors,

JðWoptÞ ¼ argmax
jWTSWW j¼0

jWTSBW j ¼ argmax
jWTSWW j¼0

jWTSTW j

¼ argmax
W

jWTScomW j;
ð17Þ

where W is a matrix whose columns are the orthonormal
optimal projection vectors wk, and Scom is the scatter matrix
of the common vectors,

Scom ¼
XC
i¼1

ðxi
com � �comÞðxi

com � �comÞT ; i ¼ 1; . . . ; C;

ð18Þ

where �com is the mean of all common vectors,

�com ¼ 1

C

XC
i¼1

xi
com:

In this case, optimal projection vectors wk can be found

by an eigenanalysis of Scom. In particular, all eigenvectors

corresponding to the nonzero eigenvalues of Scom will be

the optimal projection vectors. Scom is typically a large d by

dmatrix and, thus, we can use the smaller matrix, AT
comAcom,

of size C by C, to find nonzero eigenvalues and the

corresponding eigenvectors of Scom ¼ AcomA
T
com, where Acom

is the d by C matrix of the form

Acom ¼ ½x1
com � �com . . . xC

com � �com�: ð19Þ

There will be C � 1 optimal projection vectors since the

rank of Scom is C � 1 if all common vectors are linearly

independent. If two common vectors are identical, then the

two classes, which are represented by this vector, cannot be

distinguished. Since the optimal projection vectors wk

belong to the null space of SW , it follows that when the

image samples xi
m of the ith class are projected onto the

linear span of the projection vectors wk, the feature vector

�i ¼ ½< xi
m; w1 > . . . < xi

m; wC�1 >�T of the projection

coefficients < xi
m; wk > will also be independent of the

sample index m. Thus, we have

�i ¼ WTxi
m; m ¼ 1; . . . ; N; i ¼ 1; . . . ; C: ð20Þ

We call the feature vectors �i discriminative common

vectors, and they will be used for classification of face

images. The fact that �i does not depend on the index m in

(20) guarantees 100 percent accuracy in the recognition of

the samples in the training set. This guarantee has not been

reported in connection with other methods [15], [17].
To recognize a test image xtest, the feature vector of this

test image is found by

�test ¼ WTxtest; ð21Þ

which is then compared with the discriminative common

vector �i of each class using the Euclidean distance. The

discriminative common vector found to be the closest to

�test is used to identify the test image.
Since �test is only compared to a single vector for each

class, the recognition is very efficient for real-time face

recognition tasks. In the Eigenface, the Fisherface, and the

Direct-LDA methods, the test sample feature vector �test is

typically compared to all feature vectors of samples in the

training set, making these methods impractical for real-time

applications for large training sets.
The above method can be summarized as follows:

. Step 1: Compute the nonzero eigenvalues and
corresponding eigenvectors of SW by using the
matrix ATA, where SW ¼ AAT and A is given by
(9). Set Q ¼ ½�1 . . . �r�, where r is the rank of SW .
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. Step 2: Choose any sample from each class and
project it onto the null space of SW to obtain the
common vectors

xi
com ¼ xi

m �QQTxi
m; m ¼ 1; . . . ; N; i ¼ 1; . . . ; C:

ð22Þ

. Step 3: Compute the eigenvectors wk of Scom,
corresponding to the nonzero eigenvalues, by using
thematrixAT

comAcom,whereScom ¼ AcomA
T
com andAcom

is given in (19). There are at most C � 1 eigenvectors
that correspond to the nonzero eigenvalues. Use these
eigenvectors to form the projection matrix
W ¼ ½w1 . . . wC�1�, which will be used to obtain
feature vectors in (20) and (21).

2.2 Obtaining the Discriminative Common Vectors
by Using Difference Subspaces and the
Gram-Schmidt Orthogonalization Procedure

To find an orthonormal basis for the range of SW , the
algorithmdescribed above uses the eigenvectors correspond-
ing to the nonzero eigenvalues of the M by M matrix ATA,
where SW ¼ AAT . Assuming that rankðSW Þ ¼ M � C, then

l
4M3

3
þ 2M3 �M2

� �
þ 2dMðM � CÞ þ dC

floating point operations (flops) are required to obtain an
orthonormal basis set spanning the range of SW by using
this approach. Here, l represents the number of iterations
required for convergence of the eigendecomposition algo-
rithm. However, the computations may become expensive
and numerically unstable for large values of M. Since we
do not need to find the eigenvalues (i.e., an explicit
symmetric Schur decomposition) of SW , the following
algorithm can be used for finding the common vectors
efficiently. It requires only ð2dðM � CÞ2 þ dðM � CÞÞ flops
to find an orthonormal basis for the range of SW and is
based on the subspace methods and the Gram-Schmidt
orthogonalization procedure.

Suppose that d > M � C. In this case, the subspace
methods can be applied to obtain the common vectors xi

com

for each class i. To do this, we choose any one of the image
vectors from the ith class as the subtrahend vector and then
obtain the difference vectors bik of the so-called difference
subspace of the ith class [20]. Thus, assuming that the first
sample of each class is taken as the subtrahend vector, we
have bik ¼ xikþ1 � xi

1, k ¼ 1; . . . ; N � 1.
The difference subspace Bi of the ith class is defined as

Bi ¼ spanfbi1; . . . ; biN�1g. These subspaces can be summed
up to form the complete difference subspace as defined
below:

B ¼ B1 þ . . .þBC ¼ spanfb11; . . . ; b1N�1; b
2
1; . . . ; b

C
N�1g: ð23Þ

The number of independent difference vectors bik will be
equal to the rank of SW . For simplicity, suppose there are
M � C independent difference vectors. Since by Theorem 3,
B and the range space V of SW , are the same spaces, the
projection matrix onto B is the same as the matrix P
(projection matrix onto the range space of SW ) defined
previously in Section 2.1. This matrix can be computed as

P ¼ DðDTDÞ�1DT ; ð24Þ

where D ¼ ½b11 . . . b1N�1 b21 . . . bCN�1� is a d by M � C matrix

[21]. This involves finding the inverse of anM � C byM � C

nonsingular, positive definite symmetric matrix DTD. A

computationally efficient method of applying the projection

uses an orthonormal basis for B. In particular, the difference

vectors bik can be orthonormalized by using the Gram-

Schmidt orthogonalization procedure to obtain orthonormal

basis vectors �1; . . . ; �M�C . The complement of B is the

indifference subspace B? such that

U ¼ ½�1 . . . �M�C �; P ¼ UUT ; ð25Þ

�UU ¼ ½�M�Cþ1 . . . �d�; �PP ¼ �UU �UUT ; ð26Þ

where P and �PP are the orthogonal projection operators onto
B and B?, respectively. Thus, matrices P and �PP are
symmetric and idempotent, and satisfy P þ �PP ¼ I. Any
sample from each class can now be projected onto the
indifference subspace B? to obtain the corresponding
common vectors of the classes,

xi
com ¼ �PPx

i
m ¼ xi

m � Pxi
m

¼ �UU �UU
T
xi
m ¼ xi

m � UUTxim; m ¼ 1; . . . ; N; i ¼ 1; . . . ; C:

ð27Þ

The common vectors do not depend on the choice of the
subtrahend vectors and they are identical to the common
vectors obtained by using the null space of SW . This follows
from Theorem 3 below, which uses the results of Lemma 1
and Theorem 2.

Theorem 2. Let V ?
i be the null space of the scatter matrix Si,

and B?
i be the orthogonal complement of the difference

subspace Bi. Then, V
?
i ¼ B?

i and Vi ¼ Bi.

Proof. See [20]. tu
Lemma 1. Suppose that S1; . . . ; SC are positive semidefinite

scatter matrices. Then,

NðS1 þ . . .þ SCÞ ¼
\C
i¼1

NðSiÞ; ð28Þ

where Nð Þ denotes the null space.
Proof. The null space on the left-hand side of the above

identity contains elements � such that

ðS1 þ . . .þ SCÞ� ¼ 0; ð29Þ

or

�T ðS1 þ . . .þ SCÞ� ¼ �TS1�þ . . .þ �TSC� ¼ 0 ð30Þ

by the positive semidefiniteness of S1 þ . . .þ SC . Thus,

again by the positive semidefiniteness, � 2 NðS1 þ . . .þ
SCÞ if and only if

�TSi� ¼ 0; i ¼ 1; . . . ; C; ð31Þ

or, equivalently, � 2
TC

i¼1 NðSiÞ. tu
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Theorem 3. Let S1; . . . ; SC be positive semidefinite matrices.
Then,

B ¼ RðSW Þ ¼ RðS1 þ . . .þ SCÞ
¼ RðS1Þ þ . . .þRðSCÞ ¼ B1 þ . . .þBC;

ð32Þ

where R denotes the range.

Proof. Since it is well known that the null space and the
range space of a matrix are complementary spaces, using
the previous Lemma 1, we have

RðS1 þ . . .þ SCÞ ¼ ðNðS1 þ . . .þ SCÞÞ? ¼
\C
i¼1

NðSiÞ
 !?

¼ ðNðS1ÞÞ? þ . . .þ ðNðSCÞÞ?

¼ RðS1Þ þ . . .þRðSCÞ ¼ B1 þ . . .þBC;

ð33Þ

where the last equality is a consequence of Theorem 2.
After calculating the common vectors, the optimal

projection vectors can be found by performing PCA as
described previously in Section 2.1. The eigenvectors
corresponding to the nonzero eigenvalues of Scom will be
the optimal projection vectors. However, optimal projec-
tion vectors can also be obtained more efficiently by
computing the basis of the difference subspace Bcom of
the common vectors, since we are only interested in
finding an orthonormal basis for the range of Scom.

The algorithm based on the Gram-Schmidt orthogo-
nalization can be summarized as follows:

. Step 1: Find the linearly independent vectors bik
that span the difference subspace B and set
B ¼ spanfb11; . . . ; b1N�1; b

2
1; . . . ; b

C
N�1g. There are to-

tally r linearly independent vectors, where r is at
most M � C.

. Step 2: Apply the Gram-Schmidt orthogonaliza-
tion procedure to obtain an orthonormal basis
�1; . . . ; �r for B and set U ¼ ½�1 . . . �r�.

. Step 3: Choose any sample from each class and
project it onto B to obtain common vectors by
using (27).

. Step 4: Find the difference vectors that span
Bcom as

bkcom ¼ xkþ1
com � x1

com; k ¼ 1; . . . ; C � 1; ð34Þ

and apply the Gram-Schmidt orthogonalization to
obtain an orthonormal basis ~ww1; . . . ; ~wwC�1 for Bcom.
These vectors will be the optimal projection
vectors to be used to form the projection matrix
~WW ¼ ½ ~ww1 . . . ~wwC�1�, which will in turn be used
to obtain feature vectors in (20) and (21). Note that
columns of ~WW and columns of the projection
matrix W (described in Section 2.1) span the same
space and, hence, the matrices obey the equation
WWT ¼ ~WW ~WWT . tu

3 EXPERIMENTAL RESULTS

The Yale [7] and AR [22] face databases were used to test
the proposed method.

3.1 Experiments with the Yale Face Database

The Yale face database consists of images from C ¼ 15
different people, using 11 images from each person, for a
total of 165 images. The images contain variations with the
following facial expressions or configurations: center-light,
with glasses, happy, left-light, without glasses, normal,
right-light, sad, sleepy, surprised, and wink. For subjects
numbered 2, 3, 6, 7, 8, 9, 12, and 14, the normal facial
expression and the without glasses (or with glasses if subject
normally wears glasses) images were copies of each other.
Thus, we removed the image without glasses (or with
glasses if subject normally wears glasses) from every subject
in order to make all classes have an equal number of
samples and have all sample images distinct. Thus, we had
10 samples per subject yielding a face database size of 150.
We preprocessed these images by aligning and scaling them
so that the distances between the eyes were the same for all
images and also ensuring that the eyes occurred in the same
coordinates of the image. The resulting image was then
cropped. The final image size was 126 x 152. In addition to
our proposed method, we also tested the Eigenface method,
the Fisherface method, and the Direct-LDA method. We did
not test the PCA+Null Space method since it has the same
recognition accuracy as our method. For the Eigenface
method, the images were normalized to have zero mean and
unit variance, as this improved the performance of this
method by reducing the within-class scatter. The recognition
rates were computed by the “leave-one-out” strategy [8]
since the training set size is relatively small. The nearest-
neighbor algorithm was employed using Euclidean distance
for classification. For the Eigenface method the most
significant eigenvectors were chosen such that correspond-
ing eigenvalues contain 95 percent of the total energy [7]. For
the Fisherface method, all images were first projected onto a
ðM � C ¼ 134Þ-dimensional space, where SW was nonsin-
gular. The results for the Yale Database are given in Table 1.

3.2 Experiments with the AR-Face Database

The AR-face database includes 26 frontal images with
different facial expressions, illumination conditions, and
occlusions for 126 subjects. Images were recorded in two
different sessions 14 days apart. Thirteen images were
recorded under controlled circumstances in each session.
The size of the images in the database is 768 x 576 pixels,
and each pixel is represented by 24 bits of RGB color values.
We randomly selected C ¼ 50 individuals (30 males and
20 females) for the experiment. Only nonoccluded images
(Figs. 1a, 1b, 1c, 1d, 1e, 1f, and 1g, and 1n, 1o, 1p, 1q, 1r, 1s,
and 1t) were chosen for every subject. Thus, our face
database size was 700 with 14 images per subject. Next,
these images were converted to grayscale, aligned, scaled,
localized, and cropped using the same procedure described
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The Recognition Rates for the Yale Face Database



previously for the Yale face database experiment. The final
size of the images was 222 x 299. The training set consisted
of N ¼ 7 images randomly selected from each subject, and
the rest of the images were used for the test set. Thus, a
training set of M ¼ 350 images and a test set of 350 images
were created. A nearest-neighbor algorithm was employed
using the Euclidean distance for classification. This process
was repeated four times and the recognition rates were
found by averaging the error rates of each run. The results
are shown in Table 2.

The success of the proposed method depends on the size
of the null space of the within-class scatter matrix SW . When
the size of the null space is small, recognition rates are
expected to be poor, since there will not be sufficient space
for obtaining the optimal projection vectors. This is also
mentioned in [17]. To verify this effect, we performed
experiments using the preprocessed AR-face database
images. We randomly selected seven images from each
class for training and used the rest for testing. Thus, a
training set of 350 images and a test set of 350 images were
created. To observe the decrease in performance due to a
small null space, we would have to have a huge number of
classes for a training set with sample space size 222 x 299.

Unfortunately, we had a very limited number of classes in
the training set. Thus, we had to take the approach of
decreasing the dimensionality of the sample space by
subsampling the images. Based on empirical observations,
a new sample space size was chosen by down-sampling the
images to 24 x 18. Then, we gradually decreased the
number of classes from 50 down to 5. This procedure was
repeated eight times using randomly chosen subsets of the
50 classes, and recognition rates were found by averaging
the rates of each run. The results are shown in Fig. 2. As can
be seen, the performance decreases as the dimension of the
null space decreases. This suggests that the initial sample
space reduction step given in [17] is likely to reduce the
achievable performance.

3.3 Discussion

Accuracy, training cost, execution speed, and storage
requirements are some factors that may be used to judge
a face recognition method. We discuss here the differences
of these factors between the methods considered in this
work. We also give a visual presentation of the eigenfaces
and common vectors at the end of this discussion.

Experimental results show that the proposed method (as
well as the PCA+Null Space method) yielded the highest
performance in terms of accuracy. The Eigenface method
yielded the lowest recognition rate. In particular, its
recognition rate for the Yale face database was notably
poor. The misclassified images for the Eigenface method
were typically images that were not taken under the
standard ambient light conditions used for most of the
data (i.e., illumination was center-light, left-light, or right-
light). Given that projection directions found by the Eigen-
face method are chosen for optimal reconstruction, this

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005

Fig. 1. Images of one subject in the AR-face database. First 13 images (a)-(m) were taken in one session and the others (n)-(z) in another session.
Only nonoccluded images (a)-(g) and (n)-(t) were used in our experiments.

TABLE 2
The Recognition Rates for the AR-Face Database



method is expected to work well when the testing samples
of a subject are similar to the samples of the subject used for
training. Since the leave-one-out method was used for
testing and there was only one sample for these nonambient
light illumination conditions per class, these unusual
illumination images behaved as data outliers (i.e., these
images were far from the samples used for training). We
would expect better results if there were more than one
example with these illumination conditions. The other
tested methods produced better results since projection
directions minimizing the total within-class scatter were
used. A significant part of the total within-class scatter was
produced by the nonambient lighting cases in all of the
classes. This variation due to lighting conditions appears to
produce similar deviations from class mean across all
classes. Thus, we believe the resulting projection reduces
variation due to lighting in all classes, even classes in which
such variation did not appear in the training set.

The proposed method and the PCA+Null Space method
require the same storage space, which is the smallest of all
the methods studied. We need to store at most ðC � 1Þ
d-dimensional projection vectors and C ðC � 1Þ-dimensional
discriminative common vectors for comparison (In the
PCA+Null Space method, it is not necessary to save all the
training sample feature vectors, only the smaller set of
discriminative common vectors, although this has not been
reported in the literature.) Second, the Direct-LDA and the
Fisherface methods have the same storage requirements,
which are higher than those of the proposed method and
the PCA+Null Space method. For these methods, we have
to save at most ðC � 1Þ d-dimensional projection vectors and
M ðC � 1Þ-dimensional sample feature vectors of the
training set for comparison. Hence, the only difference
among storage requirements of the four methods is the
number of feature vectors saved for comparison (The
difference is the need to store additional ðM � CÞ ðC �
1Þ-dimensional vectors for the Direct-LDA and the Fisher-
face methods.) If M is small and d is large, this difference is
negligible. However, if M is increased, this difference will
also increase and become significant. Finally, for n > C � 1,
the Eigenface method has the largest storage space
requirements. Here, n is the number of the chosen
significant eigenvectors and has been chosen such that the
corresponding eigenvectors contain 95 percent of the total
energy in our experiments. It was found to be a minimum of
65 for the Yale face database and 108 for the AR-face
database.

Training cost is the amount of computations required to
find the optimal projection vectors and the sample feature
vectors of the training set for comparison. We compare the
training cost of the methods based on their computational
complexities (number of flops). The Direct-LDA method
yields the highest efficiency in terms of computation
complexity. The next efficient method is the proposed
method, followed by the Eigenface method, the Fisherface
method, and the PCA+Null Space method. The computa-
tional comparison that is most interesting to us is between
the PCA+Null Space method and the proposed method
since these two methods yield the same accuracy and this
accuracy is higher than the other methods. We estimated
the computational complexities of these two algorithms and
found PCA+Null Space to require approximately

4dM2 þ 2l
4M3

3
þ 2M3 �M2

� �� �

flops and the proposed method required approximately
ð2dðM � CÞ2 þ 4dMCÞ flops. Here, l represents the number
of iterations required for convergence of the eigendecom-
position algorithm. As d (the sample space size) and M (the
number of training samples) get large, the proposed
method requires less than half of the computations as the
PCA+Null Space method.

Execution speed or testing time is the time that is required
to classify a new test image. To do this, a test image must be
projected onto the linear span of the projection vectors and
compared to the sample feature vectors of the training set.
Testing time determines the real-time efficiency of a method.
We also compare testing times based on computational
complexities here. Our proposed method and the PCA+Null
Space method yield the highest efficiency in terms of
computation. In these methods a test image is projected
onto ðC � 1Þ d-dimensional vectors and compared to the C
ðC � 1Þ-dimensional vector set. The Direct-LDA and Fisher-
face methods follow them in cost. In these methods, a test
image is projected onto ðC � 1Þ d-dimensional vectors and
compared to M ðC � 1Þ-dimensional vectors. As a result, the
only difference between the testing times of these four
methods is the time that is spent on comparison. In the
Direct-LDA and the Fisherface methods, a projected test
image must be compared to all sample feature vectors of the
training set instead of being compared to only one
representative for each class. Thus, as with the storage
requirements, when the number of samples M is increased,
the difference between testing times of these methods will
also increase and become significant. Finally, the Eigenface
method yields the maximum test time in the case n > C � 1.

In summary, the proposed method becomes progres-
sively more efficient, compared to the other methods, as the
size of the sample space M is increased. In Table 3, we
present the overall results of our comparisons. The top row
of the table lists the four criteria on which the methods were
compared. The left column of the table is a qualitative
ranking of how each method performed, and the cells in the
table contain methods with comparable performance.

The eigenfaces and common vectors obtained from the

Yale and AR face databases are shown in Fig. 3 and Fig. 4,

respectively. Fig. 3 displays the absolute values of the
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Fig. 2. The recognition rates as functions of the number of classes for
subsampled images.



elements of the eigenfaces in an image form. If the common

vectors are displayed in the same manner, the resulting

image is mostly very dark and obscures the interesting

details in the darker areas. Thus, the common vectors in

Fig. 4 were displayed after taking the absolute value

followed by the logarithm. Eigenfaces characterize the

variations resulting from differences in lighting conditions,

facial expression, etc. between face images. Thus, using the

most significant eigenfaces (i.e., the ones corresponding to

the largest eigenvalues) may not be the best choice from a

discrimination point of view. In contrast common vectors

represent the invariant regions of faces. Thus, the eyes,

nose, part of the forehead above the eyebrows, and cheeks

are dominant in common vectors.

4 CONCLUSION

In this paper, we proposed a new method for addressing
computational difficulties encountered in obtaining the
optimal projection vectors in the null space of the within-
class scatter. We showed that every sample in a given class
produces the same unique common vector when they are
projected onto the null space of SW . We also proposed an
alternative algorithm for obtaining common vectors based
on the subspace methods and the Gram-Schmidt orthogo-
nalization procedure, which avoids handling large matrices
and improves the stability of the computation. Using
common vectors also leads to an increased computational
efficiency in face recognition tasks. The optimal projection
vectors are found by using the common vectors and the
discriminative common vectors are determined by project-
ing any sample from each class onto the span of optimal

projection vectors. There is no loss of information content in

our method, in the sense that the method has 100 percent

recognition rate for the training set data. Experimental

results show that our method is superior to other methods

in terms of accuracy, real-time performance, storage

requirements, and numerical stability.
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TABLE 3
The Comparisons of Performance across Methods for n > C � 1

Fig. 3. Most 10 significant eigenfaces obtained from the Yale and AR face databases. The first row shows 10 significant eigenfaces obtained from

one of the training set of the AR-face database and the second row shows 10 significant eigenfaces obtained from one of the training set of the Yale

face database.

Fig. 4. Some of the common vectors obtained from the Yale and AR face

databases. The first and second rows show some individuals and

corresponding common vectors from the AR-face database and the third

and fourth rows show some individuals and corresponding common

vectors for the Yale face database.



ACKNOWLEDGMENTS

The authors would like to thank Dr. John Michael
Fitzpatrick and Dr. David Noelle for their contributions to
this work.

REFERENCES

[1] R. Chellappa, C.L. Wilson, and S. Sirohey, “Human and Machine
Recognition of Faces: A Survey,” Proc. IEEE, vol. 83, pp. 705-740,
May 1995.

[2] W. Zhao, R. Chellappa, and A Krishnaswamy, “Discriminant
Analysis of Principal Components for Face Recognition,” Proc.
Third IEEE Int’l Conf. Automatic Face and Gesture Recognition,
pp. 336-341, Apr. 1998.

[3] W. Zhao, R. Chellappa, A. Rosenfeld, and P.J. Phillips, “Face
Recognition: A Literature Survey,” Technical Report CAR-TR-948,
Univ. of Maryland, College Park, 2000.

[4] M. Turk, “A Random Walk Through Eigenspace,” IEICE Trans.
Information & Systems, vol. E84-D, no. 12, pp. 1586-1695, Dec. 2001.

[5] M. Turk and A.P. Pentland, “Eigenfaces for Recognition,”
J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[6] P.N Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces
vs. Fisherfaces: Recognition Using Class Specific Linear Projec-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 711-720, July 1997.

[7] D.L. Swets and J. Weng, “Using Discriminant Eigenfeatures for
Image Retrieval,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 8, pp. 831-836, Aug. 1996.

[8] K. Fukunaga, Introduction to Statistical Pattern Recognition, second
ed. New York: Academic Press, pp. 31-34, 39-40, 220-221, 1990.

[9] Q. Tian, M. Barbero, Z.H. Gu, and S.H. Lee, “Image Classification
by the Foley-Sammon Transform,” Optical Eng., vol. 25, no. 7,
pp. 834-840, 1986.

[10] Z.-Q. Hong and J.-Y. Yang, “Optimal Discriminant Plane for a
Small Number of Samples and Design Method of Classifier on the
Plane,” Pattern Recognition, vol. 24, pp. 317-324, 1991.

[11] Y.Q. Cheng, Y.M. Zhuang, and J.Y. Yang, “Optimal Fisher
Discriminate Analysis Using the Rank Decomposition,” Pattern
Recognition, vol. 25, pp. 101-111, 1992.

[12] H. Yu and J. Yang, “A Direct LDA Algorithm for High-
Dimensional Data with Application to Face Recognition,” Pattern
Recognition, vol. 34, pp. 2067-2070, 2001.

[13] Y. Bing, J. Lianfu, and C. Ping, “A New LDA-Based Method for
Face Recognition,” Proc. 16th Int’l Conf. Pattern Recognition, vol. 1,
pp. 168-171, Aug. 2002.

[14] D.-Q. Dai and P.C. Yuen, “Regularized Discriminant Analysis and
Its Application to Face Recognition,” Pattern Recognition, vol. 36,
pp. 845-847, 2003.

[15] R. Huang, Q. Liu, H. Lu, and S. Ma, “Solving the Small Size
Problem of LDA,” Proc. 16th Int’l Conf. Pattern Recognition, vol. 3,
pp. 29-32, Aug. 2002.

[16] J. Yang, D. Zhang, and J.-Y. Yang, “A Generalised K-L Expansion
Method Which Can Deal with Small Sample Size and High-
Dimensional Problems,” Pattern Analysis & Applications, vol. 6,
pp. 47-54, Apr. 2003.

[17] L.-F. Chen, H.-Y.M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, “A New
LDA-Based Face Recognition System Which Can Solve the Small
Sample Size Problem,” Pattern Recognition, vol. 33, pp. 1713-1726,
2000.

[18] K. Liu, Y.-Q. Cheng, and J.-Y. Yang, “A Generalized Optimal Set
of Discriminant Vectors,” Pattern Recognition, vol. 25, no. 7, pp. 731-
739, 1992.

[19] M.B. Gulmezoglu, V. Dzhafarov, M. Keskin, and A. Barkana, “A
Novel Approach to Isolated Word Recognition,” IEEE Trans.
Speech and Audio Processing, vol. 7, no. 6, Nov. 1999.

[20] M.B. Gulmezoglu, V. Dzhafarov, and A. Barkana, “The Common
Vector Approach and Its Relation to Principal Component Analy-
sis,” IEEE Trans. Speech and Audio Processing, vol. 9, no. 6, Sept. 2001.

[21] E. Oja, Subspace Methods of Pattern Recognition. Letchworth, U.K.:
Research Studies Press, pp. 13-14, 1983.

[22] A.M. Martinez and R. Benavente, “The AR Face Database,” CVC
Technical Report #24, Computer Vision Center (CVC), Barcelona,
Spain, 1998.

[23] J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, “Face
Recognition Using LDA-Based Algorithms,” IEEE Trans. Neural
Networks, vol. 14, pp. 195-200, Jan. 2003.

[24] A. Webb, Statistical Pattern Recognition. New York: Oxford Univ.
Press, 1999.

[25] Y. Adini, Y. Moses, and S. Ullman, “Face Recognition: The
Problem of Compensating for Changes in Illumination Direction,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 721-732, July 1997.

[26] A.M. Martinez and A.C. Kak, “PCA versus LDA,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233,
Feb. 2001.

Hakan Cevikalp received the BS and the MS
degrees from the Electrical and Electronics
Engineering Department of Osmangazi Univer-
sity, Eskisehir, Turkey, in 1999 and 2001,
respectively. He is currently pursuing a PhD
degree in the Department of Electrical Engin-
neering and Computer Science at Vanderbilt
University. He is on the academic staff of the
Electrical and Electronics Engineering Depart-
ment at Osmangazi University as a research

assistant. His research interests include pattern recognition, neural
networks, image and signal processing, and computer vision. He is a
student member of the IEEE.

Marian Neamtu received the MS degree in
mechanical engineering from the Slovak Tech-
nical University in 1988, and the PhD degree in
mathematics from the University of Twente, The
Netherlands, in 1991. Currently, he is an
associate professor of mathematics at Vander-
bilt University. His main research interests are in
numerical analysis approximation theory, com-
puter-aided geometric design, and related areas
of applied mathematics.

Mitch Wilkes received the BSEE degree from
Florida Atlantic University and the MSEE and
PhD degrees in electrical engineering from
Georgia Tech in 1984 and 1987, respectively.
He is an associate professor of electrical
engineering and computer science at the Van-
derbilt University School of Engineering. He is
also an assistant director of the Center for
Intelligent Systems and the assistant director of
the Intelligent Robotics Laboratory. Dr. Wilkes

has more than 90 publications. His research interests include intelligent
robotics and control, signal processing, and image processing. He is a
member of the IEEE.

Atalay Barkana received the BS degree in
electrical engineering from Robert College, Is-
tanbul, Turkey, in 1969, and the MS and PhD
degrees in electrical engineering from the Uni-
versity of Virginia, Charlottesville, in 1971 and
1974, respectively. From 1974 to 1986, he
worked on linear and nonlinear theory. His current
interests include speech recognition, pattern
analysis, neural networks, and statistical signal
processing. Since 1993, he has been with the

Electrical and Electronics Engineering Department, Osmangazi Univer-
sity, Eskisehir, Turkey, where he is presently a professor. Dr. Barkana is a
member of the IEEE Signal Processing Society and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CEVIKALP ET AL.: DISCRIMINATIVE COMMON VECTORS FOR FACE RECOGNITION 13


