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Abstract 
 

The Common Vector (CV) method is a linear method, which 
allows to discriminate between classes of data sets, such as 
those arising in image and word recognition. In this paper a 
variation of this method is introduced for finding the 
projection vectors of each class as elements of the intersection 
of the null space of that class’ covariance matrix and the 
range space of the covariance matrix of the pooled data. 
Then, a novel approach is proposed to apply the method in a 
nonlinearly mapped higher-dimensional feature space. In this 
approach, all samples are mapped to a higher-dimensional 
feature space using a kernel mapping, and then the modified 
CV method is applied in the transformed space. As a result, 
each class gives rise to a unique common vector. This 
approach guarantees a 100% recognition rate for the samples 
of the training set. Moreover, experiments with several test 
cases also show that the generalization ability of the proposed 
method is superior to the kernel-based nonlinear subspace 
method. 
 

1. Introduction 
 

The subspace classifier is a pattern recognition method, which 
uses a linear subspace for each class [1]. The motivation 
behind the subspace classifiers is the optimal reconstruction 
of multi-dimensional data with linear principal components. 
In this approach, it is assumed that the vector distribution in 
each class lies in a lower-dimensional subspace of the original 
feature space. The subspaces representing classes are defined 
in terms of basis vectors that are linear combinations of the 
sample vectors of each class. Therefore, basis vectors 
spanning those subspaces must first be computed. Then, a test 
sample vector is classified based on the lengths of the 
projections of that sample onto each of the subspaces or, 
alternatively, on the distances of the test vector from these 
subspaces. 

Watanabe et al. proposed the first subspace method, the 
Class-Featuring Information Compression (CLAFIC), for 
pattern classification [2]. This method employs the Principal 
Component Analysis (PCA) to compute the basis vectors 
spanning the subspaces of each class. However, the subspaces 
found by the CLAFIC method may sometimes have a large 
subspace in common, which causes poor classification of 
pattern samples. Therefore, the Method of Orthogonal 
Subspaces (MOSS) was proposed, which removes the 
common subspace of the classes and makes the subspaces 

mutually orthogonal [3]. Fukunaga and Koontz proposed a 
new method, which enabled to select the basis vectors in such 
a way that the projections onto the so-called rival subspaces 
are minimized [4]. Lastly, learning subspace methods, 
capable of learning in a decision-directed fashion, have been 
proposed in [5], [6].  

Subspace classifiers are linear methods in nature and 
therefore may not extract nonlinear features of classes. The 
kernel-based nonlinear subspace method was developed to as 
to overcome this limitation [7], [8]. In this approach all data 
samples are mapped to a higher-dimensional feature space. 
The kernel trick is then used to compute the kernel PCA 
components in this transformed space for each class 
separately. It has been reported that the performance of 
nonlinear subspace methods is superior to linear ones [8]. 

All linear subspace methods discussed here are optimal 
from a reconstruction point of view and employ eigenvectors 
corresponding to nonzero eigenvalues of the correlation 
matrix of each class to compute the required basis vectors. 
The basis vectors are then used to construct the subspaces that 
represent classes in the database. However, these subspaces 
might not be optimal for discrimination of class samples. 
Therefore, Gulmezoglu et al. [9] proposed a new method for 
the case of a small sample size problem. For feature 
extraction, the method employs eigenvectors corresponding to 
zero eigenvalues of the covariance matrices of classes. It was 
proved that such basis vectors are optimal from the 
classification point of view and that all training set samples 
can be classified correctly when using these projection 
vectors for feature extraction. 

In this paper we introduce a variation of the CV method 
and extend it to the nonlinear case. The new method, which 
will be referred to as the Kernel CV method, consists in 
applying the modified CV method in the setting of a 
nonlinearly mapped higher-dimensional feature space. The 
remainder of the paper is organized as follows: In Section 2, 
we introduce the modified CV method, Section 3 describes 
the Kernel CV method, and in Section 4, we discuss our 
experimental results. 
 

2. A Variation of Common Vector Method 
 

The CV method was originally proposed for isolated word 
recognition problems, where the number of samples in each 
class is smaller than or equal to the dimensionality of the 
sample space (i.e., the covariance matrix of each class is 
singular). This method extracts the features that are common 



to all samples in each class. In order to accomplish its goal, 
the method eliminates all features that are in the direction of 
eigenvectors corresponding to nonzero eigenvalues of the 
covariance matrices of the classes. Therefore, each class is 
represented by the null space of its own class covariance 
matrix. 

We showed recently that the null space of the covariance 
matrix (or scatter matrix) of the pooled data does not contain 
any discriminative information for classification of data 
samples [10], [11]. Therefore, this subspace can be discarded 
from our consideration. Then, the new subspace representing 
each class will be defined as the intersection of the null space 
of that class’ covariance matrix and the range space of the 
covariance matrix of the pooled data. 

In particular, let the training set be composed of C classes, 
where the i-th class contains iN  samples, and let i

mx  be a d-
dimensional column vector, which denotes the m-th sample 
from the i-th class. There will be a total of ∑=
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samples in the training set. Suppose that iNd > , for 
Ci ,...,1= . In this case, the covariance matrix of each class is 

defined as 
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where iµ  is the mean of the samples in the i-th class. The 
covariance matrix of the pooled data is defined as 
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where µ  is the mean of all samples and dxMRA∈  is given by 
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The projection matrix (also called the orthogonal projection 
operator) of the null space )( iN Σ  of the covariance matrix of 
the i-th class and the projection matrix of the range space 

)(ΣR  of the covariance matrix of the pooled data, commute 
in the sense that 
 

)()( ii PPPP = ,            (4) 
 

where )(iP  is the projection matrix of )( iN Σ  and P  is the 
projection matrix of )(ΣR . Therefore, the projection matrix 

iPint  of the intersection )()( Σ∩Σ RN i  for each class can be 
found as 
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The basis vectors spanning each mentioned intersection space 
can be found by using an eigen-decomposition. More 
precisely, the eigenvectors corresponding to the eigenvalues 1 

of iPint  span the intersection subspaces representing the 
classes of interest. However, this approach is not always 
practical since the size of the projection matrices can be very 
large (e.g., images of size 256 by 256 yield projection 
matrices of size 65,536 by 65,536). On the other hand, since 
the projection matrices commute, we can first project the 
samples onto )(ΣR  and then find the null spaces of the 
classes in the transformed space, so as to compute basis 
vectors of the intersection subspaces. The algorithm carrying 
out this idea can be summarized as follows: 
Step 1: Project the training set samples onto )(ΣR : 
i) Compute the nonzero eigenvalues and corresponding 
eigenvectors kα  of Σ  using the matrix MxMT RAA ∈ , where 

dxdT RAA ∈=Σ  and A  is given by (3) [10]. Set 
][ 1 rα...αU = , where r is the rank of Σ . 

ii) Project the training set samples onto )(ΣR  by 
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Step 2: Find the null spaces of classes in the transformed 
space: In the transformed space, the new covariance matrices 
of the classes will be 
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Apply eigen-decomposition to each covariance matrix, 
rxr

i R∈Σ
~ . Let )(i

kq  be the eigenvectors corresponding to the 

nonzero eigenvalues of iΣ
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where in  is the dimensionality of ).~( iN Σ  
Step 3: Compute the final basis vectors of the intersection 
space )()( Σ∩Σ RN i : The final basis vectors spanning the 
intersection subspaces will be 
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Note that the basis vectors span the intersection subspace 
)()( Σ∩Σ RN i  and therefore the following holds: 
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When the samples of each class are projected onto their 
corresponding intersection subspace, the feature vector 
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the same for all samples in that class. These feature vectors 
are called the common vectors. To recognize a test sample, 
we compute the Euclidean distances between the test sample 
feature vector and the common vectors of each class, using 
the Euclidean distance 
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Then we assign the test sample to the class that minimizes 
this distance. 
 



3. The Kernel Common Vector Method 
 

This method consists in mapping the given training set 
samples to an implicit higher-dimensional space ℑ  using a 
nonlinear kernel mapping and applying the above-described 
version of the linear CV method in the transformed space. 

Let )(),...,(),(),...,(),( 2
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CNN xxxxx ΦΦΦΦΦ  represent the 

transformed samples in ℑ . The covariance matrix ΦΣ  of the 
pooled data in ℑ  is given by 
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where Φµ  is the mean of all samples, and Φ  is the matrix 
whose columns are the mapped training set samples in ℑ . 
Here MxM

M R∈1  is a matrix with entries M/1 .  
Our aim is to find a basis vectors for the intersection 

subspaces )()( ΦΦ Σ∩Σ RN i , for each class. Here, ΦΣ i  
represents the covariance matrix of the i-th class in ℑ . To 
find these basis vectors, we follow the steps given in the 
previous section; we first project all training samples onto 

)( ΦΣR  and then find the null spaces of the classes in the 
transformed space. The projection of training set samples 
onto )( ΦΣR  can be done easily by employing the Kernel 
PCA method. The algorithm can be summarized as follows: 
Step 1: Project the training set samples onto )( ΦΣR  using the 
Kernel PCA. Let  
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where the diagonal elements of Λ  are nonzero and MxMRK ∈  
is given by 
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The matrix that transforms the training set samples onto 
R( ΦΣ ) is 2/1)1( −ΛΦ−Φ PM . The new covariance matrix 

rxr
i R∈ΣΦ~  (r is the rank of R( ΦΣ ) and cannot be larger than 

M-1) of each class in the reduced space becomes 
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Here, the matrix iMxNi RK ∈)(~  is given by 
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where ixNiNi RG ∈)(  is a matrix whose elements are all 1/ iN  
and the matrix iMxNi RK ∈)(  is given by 

iMxN
Cj

jiiTi RKK ∈=ΦΦ= = ,...,1
)()()( )( , where )(iΦ  is the 

matrix whose columns are the mapped samples of the i-th 
class in ℑ , and where each matrix ixNjNji RK ∈)(  is defined as  
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Step 2: For each class, find a basis of the null space of ΦΣ i

~ . 
This can be done by an eigen-decomposition. The normalized 
eigenvectors corresponding to the zero eigenvalues of ΦΣ i

~  

form an orthonormal basis for the null space of ΦΣ i

~ . Let )(iQ  
be a matrix whose columns are the computed eigenvectors 
corresponding to the zero eigenvalues, such that 
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Step 3: The basis vector matrix )(iW  whose columns span the 
intersection subspace of the i-th class, is 
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The number of basis vectors spanning the intersection 
subspaces is determined for each class by the dimensionality 
of )~( ΦΣ iN . After performing feature extraction, all training 
set samples in each class generate the common vector of that 
class. Therefore, similarly to the linear CV case, a 100% 
recognition accuracy is also guaranteed for this method. 
Moreover, to recognize a given test sample, we compare the 
Euclidean distances between the common vectors and the 
feature vector of the test sample for each class, using (10), 
and we assign the test sample to the class that minimizes the 
distance. 

 
4. Experimental Results 

 

In our experiments we used the ORL (Olivetti-Oracle 
Research Lab) face database [12] to test the proposed method. 
The ORL face database contains C=40 individuals, with 10 
images per person. The images are taken at different time 
instances with different lighting conditions (slightly), facial 
expressions, and facial details. The size of each image is 
92x112. Some individuals from the ORL face database are 
shown in Fig. 1.  

We have experimented with the polynomial kernel 
2),(),( ><= yxyxk  of degree 2 and the Gaussian kernel 

)/||||exp(),( 2 γyxyxk −−= , for all data sets. The parameter 
γ  was chosen as 1.06e8, based on empirical observations. 
Beside the methods proposed here, we also tested the linear 
CLAFIC method and the kernel-based nonlinear subspace 
method (Kernel CLAFIC). Class correlation matrices were 
used for finding the basis vectors spanning the subspaces of 
classes for the CLAFIC and the kernel-based nonlinear 



subspace method. For both the CLAFIC and the kernel-based 
subspace methods the dimension of each subspace was 
determined by the rank of the corresponding correlation 
matrix since there are only a few training samples in each 
class. In particular, the dimension of each subspace was 5. 

We selected randomly five samples from each class for 
training and the remaining samples were used for testing. We 
did not apply any preprocessing to the images. Then, 
recognition rates were computed and this process was 
repeated five times. The recognition rates were found by 
averaging the recognition rates in each run. The computed 
recognition rates are shown in Table I.  

 

 
Fig.1. Three individuals from the ORL face database. 

 
TABLE I 

Recognition Rates of the ORL Face Database 

Linear Methods Recognition Rates(%) & Standard 
Deviations 

CLAFIC 95.3, 68.1=σ  
Variation of CV 96, 58.1=σ  
Nonlinear Methods Polynomial Kernel Gaussian Kernel 
Kernel CLAFIC 95.3, 85.1=σ  95.9, 67.1=σ  
Kernel CV 96, 83.1=σ  95.8, 68.1=σ  

 
As can be seen from the results, although there is not a 
significant difference between the results, the modified CV 
method outperforms the CLAFIC method and similarly, the 
Kernel CV method outperforms the Kernel CLAFIC method. 
These results show that the basis vectors, which span the 
intersection of the null space of a class’ covariance matrix 
and the range space of the covariance matrix of pooled data 
give an optimal set of projection directions for feature 
extraction. 
 

5. Conclusion 
 

In this paper we proposed a new method, which uses kernel 
functions for recognition. The method employs the 
intersection subspace of the null space of a class’ covariance 
matrix and the range space of the covariance matrix of pooled 
data, to represent each class. When the training set samples 
are projected onto these intersection subspaces, all training set 
samples in each class give rise to a unique vector, called a 
common vector. Thus, a 100% recognition rate is guaranteed 
for the training set samples. Our test results show that the 
generalization ability of the proposed method compares 
favorably with the kernel-based nonlinear subspace method. 
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