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Abstract 
 
The Common Vector (CV) method is a successful method 
which has been originally proposed for isolated word 
recognition problems in the case where the number of 
samples for each class is less than or equal to the 
dimensionality of the sample space. This method suggests 
elimination of all the features that are in the direction of the 
eigenvectors corresponding to the nonzero eigenvalues of 
the covariance matrix for each class. The feature vectors 
obtained after this operation are unique for each class and 
called common vectors. Recently, a similar method called 
the Discriminative Common Vector (DCV) method has 
been proposed for face recognition problems. Instead of 
using a given class’ own covariance matrix, this method 
uses the within-class scatter matrix of all classes to obtain 
the common vectors. Then, PCA is applied to the common 
vectors to obtain the final projection vectors.  In this paper 
we apply the CV method to the face recognition problem 
and compare the CV and the DCV methods in terms of 
recognition accuracy, training time efficiency, storage 
requirements, and real-time performance. 
 
Keywords: common vectors, discriminative common 
vectors, face recognition, feature extraction, subspace 
methods. 
 

1.  Introduction 
 
The face is an important source of information for the 
identification of people in communities. Face recognition is 
usually defined as the identification of individuals from 
images of their faces by using a stored database of faces 
labeled with people’s identities. However, there are many 
factors that degrade the performance of face recognition 
techniques, such as bad illumination conditions, different 
facial expressions, hair styles, make up, and so on. In 
addition to these factors, lighting, background, and scale 
changes make the face recognition task even more 
challenging. Additional problematic conditions include 
noise, occlusion, and many other possible factors [1].  

Identification of individuals from their faces is gradually 
becoming essential for today’s world’s demands. It has 
applications in areas related to the public and private 
security issues, electronic identity controls, law 

enforcement applications, access control, and so on. 
Numerous methods have been developed for face 
recognition. Among these methods appearance-based 
approaches directly operate on two-dimensional face 
images of size w by h, which are represented by vectors in 
a wxh dimensional space. The dimensionality of this space 
is typically large compared to the number of samples in the 
training sets. This causes situations known as the small 
sample size problem [2].  

The DCV method is a successful linear method that has 
been proposed for the face recognition tasks with the small 
sample size problems [3]. It employs the projection vectors 
that come from the null space of the within-class scatter 
matrix of the training set samples for feature extraction. 
This method tries to maximize a novel criterion which is 
given in the next section. 

The CV method has been originally proposed for 
isolated word recognition problems [4]. It tries to extract 
the features that are common for the samples of a same 
class. It employs the covariance matrices of classes to 
accomplish its goal. Although this method is applicable to 
the face recognition tasks with the small sample size 
problem, no study has been reported in literature. 

In this paper we apply the CV method to face 
recognition and compare it to the DCV method. The 
remainder of the paper is organized as follows. In Section 
2, the CV and the DCV methods are reviewed. In Section 3, 
we describe the data sets and experimental results. In 
section 4, two methods are compared. Finally, our 
conclusions are formulated in Section 5. 
 

2.  Methods 
 
In this section we will review the CV and the DCV 
methods. 

 
2.1 Common Vector Method 
 
The CV method has been originally proposed for isolated 
word recognition problems, where the number of samples 
in each class is smaller than or equal to the dimensionality 
of the sample space (i.e., the covariance matrix of each 
class is singular). This method extracts the features that are 
common for all samples in each class. In order to 
accomplish its goal, the method eliminates all features that 



are in the direction of the eigenvectors corresponding to the 
nonzero eigenvalues of the covariance matrices of classes. 
Thus, the method suggests doing the opposite of the well-
known so-called subspace methods [5].  

Two algorithms have been proposed for this method. 
One algorithm uses the covariance matrices of the classes, 
whereas the other employs the subspace methods and the 
Gram-Schmidt orthogonalization procedure. In this paper 
we review the first algorithm from [4]. 

Let the training set be composed of C classes, where the 
i-th class contains iN  samples, and let i

mx  be a d-
dimensional column vector which denotes the m-th sample 
from the i-th class. There will be a total of ∑=
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samples in the training set. Suppose that iNd >  for 
Ci ,...,1= . In this case, the covariance matrices of classes 

are defined as 
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where iµ  is the mean of the samples in the i-th class and 
idxN

i RA ∈  is given by 
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Each sample in the training set is represented as, 
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where i
comx  is a unique vector representing the i-th class, 

and i
mε  is the error vector term. The CV method tries to 

minimize the criterion given below for each class, 
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where ||.||  denotes the Euclidean norm. It was shown that 
if the common vector i

comx  is chosen as 
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then F is minimized such that 0min =F , where i
difmx ,  

represents the projection of i
mx  onto the range space of the 

covariance matrix of the i-th class [4]. The projection can 
be computed by 
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where iP  is the orthogonal projection operator of the range 
space of  iΣ . As can be seen in equations (5) and (6), i

comx  

is unique for each class and it does not depend on the 
choice of the sample (i.e., i

comx  is independent of the 
sample index m) [4]. 

To recognize a test sample testx , the test sample is 
projected onto the null space of the covariance matrix of 
each class separately and the projected vectors are 
compared to the common vector of each class by using the 
Euclidean distance. Then, the test sample is assigned to the 
class which gives the minimum distance. 

The method described above can be summarized as 
follows: 
Step 1: Compute the nonzero eigenvalues and the 
corresponding eigenvectors of the covariance matrix iΣ  of 

each class by using the matrix ixNiN
i

T
i RAA ∈ , where 

dxdT
iii RAA ∈=Σ  and iA  is given by (2). Let i

kλ and i
kv be 

the k-th nonzero eigenvalue and the corresponding 
eigenvector of i

T
i AA , where 1−≤ iNk . Then i

ki
i
k vAu =  

will be the eigenvector that corresponds to the k-th nonzero 
eigenvalue of iΣ . Normalize the computed eigenvectors 

and set ]...[ 1
i

ir
i

i uuU = , where ir  is the rank of iΣ . 
Step 2: Project any sample from each class onto the null 
space of iΣ  and compute the common vector of each class 
by, 
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   (7) 
Note that, common vectors i

comx  are unique for each class 
and independent of the sample index m. 
Step 3: Project a test sample onto the null spaces of iΣ  to 
obtain the feature vectors by 
 

testitest
i
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Compute the Euclidean distances between the test sample 
feature vector and the common vectors of each class by, 
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Assign the test sample to the class which produces the 
minimum distance. 

There might be situations where the dimensionality of 
the null space of iΣ is smaller than the dimensionality of 
the range space of iΣ . In these situations common vectors 
can be computed directly by the following formula 
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where ⊥
iP  is the orthogonal projection operator onto the 

null space of iΣ  and IPP ii =+ ⊥ . 
 
 



 
2.2 Discriminative Common Vector Method 
 
The DCV method is a supervised method that has been 
recently proposed for face recognition problems with the 
small sample size problem. It tries to find the projection 
directions that, on one hand maximize the Euclidean 
distances between the samples of different classes and, on 
the other, minimize the distance between the samples of the 
same class. In order to do it, this method employs the 
within-class scatter matrix of the samples to obtain the 
feature vectors. The within-class scatter, the between-class 
scatter, and the total scatter matrices of the training samples 
are defined as 
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where µ  is the mean of all samples. The matrices 
dxM

W RA ∈ , dxC
B RA ∈ , and dxM

T RA ∈  are defined as 
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The modified FLDA criterion, 
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1, in the special case where 0=wSw W
T  and 0≠wSw B

T , 
for all }0{\dRw ∈ . However, a projection vector w, 
satisfying the above conditions, does not necessarily 
maximize the between-class scatter. In this case, a better 
criterion will be 
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Therefore, to find the orthonormal optimal projection 
vectors w in the null space of WS , we project the training 
set samples onto the null space )( WSN  of WS  and then 
apply PCA to the projected samples. 
 The DCV method can be summarized as follows: 
Step 1: Projection of the training set samples onto )( WSN : 

i) Compute the nonzero eigenvalues and corresponding 
eigenvectors kα  of WS  by using the matrix MxM

W
T

W RAA ∈ , 

where dxdT
WWW RAAS ∈=  and WA  is given by (14). Set 

][ 1 rα...αQ = , where r is the rank of WS . 
ii) Project the training set samples onto )( WSN  by 
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In this way, it turns out, we obtain the same unique vector 
that represents each class for all the samples in that class, 
i.e., the vector on the right-hand side of (18) is independent 
of the sample index m [3]. These vectors are also called the 
common vectors. 
Step 2: Obtaining the optimal projection vectors kw : 
The optimal projection vectors are those that maximize the 
total scatter across all common vectors. Therefore, the 
optimal projection vectors can be obtained by computing 
the nonzero eigenvalues and the corresponding 
eigenvectors of the matrix 
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where comµ  is the mean of all common vectors. The matrix 
dxC

com RA ∈  is defined as 
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The nonzero eigenvalues and the corresponding 
eigenvectors kw  can be computed easily by using the 

matrix CxC
com

T
com RAA ∈  instead of dxd

com RS ∈ . Then, use 
these eigenvectors to form the projection vector matrix 

]...[ 1 Cr
wwW = , which will be used to obtain the 

feature vectors of the samples. Here, 1−≤ CrC  is the rank 
of comS . 

Since the optimal projection vectors kw  come from 
)( WSN , it follows that when the training set samples i

mx  of 
the i-th class are projected onto the linear span of the 
projection vectors kw , the feature vector 
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coefficients >< k
i
m ,wx  will also be independent of the 

sample index m. Thus, for each class we have i
m

T
i xWΩ = . 

The fact that the vectors iΩ  ( Ci ,...,1= ) do not depend on 
the index m guarantees 100% accuracy in the recognition of 
the samples in the training set. The vectors iΩ  are called 
the discriminative common vectors. Note that after the 
projection, the distances between the training set samples 
of the same classes decreased to zero, which is the 
minimum distance that can be achieved. 



To recognize a test sample, testx , the feature vector of 
the test sample is found by the equation 
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and testΩ  is compared with the discriminative common 
vector iΩ  of each class using the Euclidean distance. The 
discriminative common vector that is found to be the 
closest to testΩ  is used to identify the test sample.  
 

3.  Experimental Results 
 
In our experiments we used the ORL (Olivetti-Oracle 
Research Lab) face database [7]. The ORL face database 
contains C=40 individuals with 10 images per person. The 
images are taken at different time instances with different 
lighting conditions (slightly), facial expressions, and facial 
details. All individuals are in upright, frontal position (with 
tolerance for some side movement). The size of the each 
image is 92x112. Some individuals from the ORL face 
database are shown in Fig. 1.  

We first randomized the samples in the database and 
then selected 9,7,5,3=k  from each class for training and 
the rest )10( k−  samples of each class were used for 
testing. We have not applied any preprocessing to the 
images. Then recognition rates were computed. Euclidean 
distance is used to compute the distances between the 
sample feature vectors of test set and the common vectors 
for the CV method and similarly the same metric is used to 
compute the distances between the feature vectors of test 
samples and the discriminative common vectors. This 
process was repeated seven times and the recognition rates 
were found by averaging the recognition rates in each run. 
The results for the test sets are given in Table 1. We did not 
give the training set results since it is 100% for both 
methods. 

Some of the common vectors computed for the CV and 
the DCV methods are plotted in Fig. 1. Fig. 1 displays the 
absolute values of the common vectors obtained by the CV 
method in image form. On the other hand, to display the 
common vectors obtained by the DCV method we took the 
logarithm of the values after taking the absolute values 
since common vectors displayed by only taking the 
absolute values were mostly dark. In Fig. 2, we plotted 
some of the projection vectors kw  obtained from the 
common vectors in the DCV method. 

 
4. Discussion 

 
Recognition accuracy, training cost, storage requirements, 
and the real-time performance are some factors that may be 
used to evaluate a method. We discuss here the differences 
of these factors between the CV and the DCV methods. 
 

 
Fig.1. Common vectors obtained by the CV and the DCV 
methods. The first row shows some individuals from the ORL 
face database and the second and the third rows show the 
corresponding common vectors obtained by the CV and the DCV 
methods, respectively. 
 
 

 
Fig. 2. Some of the projection vectors obtained from the common 
vectors for the DCV method. 
 

TABLE I. 
Recognition Rates (%) of the ORL face database  

Methods Number of training 
samples in each class CV DCV 

3=k  88.82 
73.3=σ  

91.02 
89.1=σ  

5=k  95.78 
41.1=σ  

96.92 
30.1=σ  

7=k  97.97 
16.1=σ  

98.21 
39.1=σ  

9=k  99.28 
21.1=σ  

99.28 
21.1=σ  

 
 



As can be seen in Table I, the DCV method tends to 
yield better results compared to the CV method. The results 
reveal the important fact that there is a relationship between 
the number of training samples k in each class and the 
difference between the recognition rates of the CV and the 
DCV methods. As the number of training set samples is 
increased, the difference between the recognition rates 
decreases and finally becomes zero in this example. These 
observations somewhat support the hypothesis that the 
variations among the face samples of each class are similar. 
Therefore, we can assume that the scatter matrices of each 
face class are identical and we can replace it with the 
within-class scatter matrix. A similar assumption is made in 
the Fisher’s Linear Discriminant Analysis approach.  That 
is why we obtained better results for the DCV method in 
the case of having only a few training vectors in each class. 
As explained before, the CV method first models the 
variations in each class and removes them from the samples 
in order to obtain the common vectors. If this variation is 
modeled correctly, we will classify all the samples 
correctly. The low recognition rates of the CV method for 
small numbers of training set samples show that the number 
of training samples in each class is not enough to obtain a 
good model of the variations. On the other hand, the DCV 
method does a better job with the small number of training 
set samples since it makes use of all of the vectors from all 
of the classes and does not perform a separate analysis on 
each class by itself.  Some of the variations that come from 
the test samples of one class may be captured by the 
variations between the training set samples of one or more 
other classes. 

Training cost is the amount of computations required to 
find the projection vectors and the sample feature vectors 
of the training set samples. We compare the training cost of 
the methods based on their computational complexities 
(number of flops). The CV method yields higher efficiency 
in terms of computation complexity since the DCV method 
includes an additional step of applying PCA to the common 
vectors. 

The DCV method requires less storage space than the 
CV method. If we assume that all the training set sample 
vectors are linearly independent then the CV method 
requires us to store (M-C) d-dimensional projection vectors 
and C d-dimensional common vectors. However, we need 
to store only (C-1) d-dimensional projection vectors and C 
(C-1)-dimensional discriminative common vectors for the 
DCV method. Therefore if we assume that each class has N 
samples, the storage space of the CV method is 
approximately N times of the storage space of the DCV 
method. 

The real-time performance of a method is determined by 
the time that is required to classify a new test image. To do 
this, we need to compute the feature vector of the test 
sample and compare it to the feature vectors of training set. 
We compare testing times based on computational 

complexities here. The DCV method is more efficient than 
the CV method in terms of testing time. For the CV 
method, we need to project our test sample onto (M-C) d-
dimensional vectors to obtain feature vectors and compute 
the distances between the d-dimensional common vector 
and the feature vectors. On the other hand we need to 
project our test sample onto only (C-1) d-dimensional 
vectors to obtain the feature vector of the test sample and 
compare it to the C (C-1)-dimensional vectors. Assuming 
d>>(C-1), the difference between the testing times of the 
methods is determined by the number of computations that 
is required to project a test sample onto (M-2C+1) d-
dimensional vectors.  
 

5.  Conclusion and Future Work 
 

After comparing the CV and the DCV methods, we arrive 
at the following conclusions: 

i) The DCV method is more efficient than the CV 
method in terms of recognition accuracy, storage 
requirements, and real-time performance for face 
recognition tasks. However, the training cost of 
the CV method is less than the DCV method. 

ii) The CV method is expected to perform well if the 
variations among the test samples of a class are 
similar to the variations among the training 
samples of that class. 

iii) The DCV method performs well if the variations 
among the samples of classes are similar. This 
enables us to classify the test samples more 
accurately even if they are not similar to the ones 
used for training. 

 In the near future, we plan to apply the CV and the DCV 
methods to recognition tasks, other than face recognition 
with the small sample size problem. 
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