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ABSTRACT 
 
In this paper we propose a new method called the Kernel 
Discriminative Common Vector (Kernel DCV) method. Firstly 
the original input space is mapped nonlinearly to a higher-
dimensional feature space through a kernel mapping. Then, the 
linear Discriminative Common Vector (DCV) method is applied 
in the transformed space. The proposed method employs the 
projection vectors from the null space of the within-class scatter 
matrix of the transformed samples for feature extraction. The 
same discriminative common vector for all samples in each 
class is obtained after feature extraction. Therefore, a 100% 
recognition rate is always guaranteed for the training set 
samples. The experiments on the test sets also show that the 
generalization ability of the proposed method compares 
favorably with the other kernel approaches. Also the fact that 
the test sample feature vectors are compared to only the 
discriminative common vectors, as opposed to all training set 
sample feature vectors, makes the proposed method ideal for 
real-time applications. 
 
Keywords: Common vectors, discriminative common vectors, 
face recognition, feature extraction, kernel functions. 
 

1. INTRODUCTION 
 

Feature extraction has been one of the most fundamental issues 
of pattern recognition. In feature extraction problems, the aim is 
to select the variables that contain the most discriminatory 
information. Most of the feature extraction methods, such as 
Principal Component Analysis (PCA), the Fisher’s Linear 
Discriminant Analysis (FLDA) [1], the Direct-LDA method [2], 
the PCA+Null Space method [3], and the DCV method [4], 
have centered on finding linear transformations that map the 
original high-dimensional sample space into a lower-
dimensional space, which hopefully contains all the necessary 
discriminatory information. The principal motivation behind 
dimensionality reduction is that it may reduce the worst effects 
of the curse of dimensionality. Also linear feature extraction 
techniques are often used as pre-processors before more 
complex nonlinear classifiers. However, sometimes linear 
methods may not provide sufficient nonlinear discriminant 
power for classification of nonlinearly distributed classes. Thus, 
the kernel approaches, such as the Kernel PCA [5], the Kernel 
Fisher’s Discriminant Analysis (Kernel FDA) [6], and the 
Kernel Generalized Discriminant Analysis (Kernel GDA) [7], 
have been proposed to overcome this limitation. In these 
methods, the main idea is to transform the input data into a 
higher-dimensional space by a nonlinear kernel mapping and 
then apply the linear discriminant techniques in this space. The 
motivation behind this is to transform the linearly non-separable 

data into a higher-dimensional space where the data are linearly 
separable. Therefore, it turns out that a nonlinear discriminant 
method is applied in the original sample space.  

In this paper we propose a new method called the Kernel 
DCV method, which applies the linear DCV method in the 
nonlinearly transformed higher-dimensional space. The Kernel 
DCV is based on a novel variation of the FLDA criterion 
described in the next section. The proposed method extracts 
optimal features for discrimination in the nonlinearly 
transformed higher-dimensional space since the modified FLDA 
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maximum. Here BS  represents the between-class scatter matrix 

of the training set samples and TS  represents the total scatter 
matrix of the samples. 

The remainder of the paper is organized as follows. In Section 
2, the DCV and the PCA+Null Space methods are reviewed. In 
Section 3, the Kernel DCV method is introduced. In Section 4, 
we describe the data sets and experimental results. Finally, our 
conclusions are formulated in Section 5. 
 

2. OPTIMAL PROJECTION VECTORS FOR 
FEATURE ETRACTION 

 
The modified FLDA criterion, 
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}0{\dRw∈ , where WS  is the within-class scatter matrix. 
However, a projection vector w, satisfying the above conditions, 
does not necessarily maximize the between-class scatter. In this 
case, a better criterion is given in [1], namely 
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Therefore, the optimal projection vectors come from the null 
space of the within-class scatter matrix, WS . To find the 
orthonormal optimal projection vectors w in the null space of 

WS , we project the training set samples onto the null space of 

WS  and then obtain the projection vectors by performing PCA. 
After this operation we obtain a set of orthonormal vectors, 
which is a basis for a space, which we called the optimal 
discriminant subspace. This subspace is the intersection of the 
null space of the within-class scatter matrix WS  and the range 



space of the total scatter matrix TS . The criterion given in (1) 
attains its maximum for any orthonormal vector set that spans 
the optimal discriminant subspace. There are numerous 
algorithms to find this optimal subspace and an orthonormal 
basis for it. Some efficient algorithms are given in [4]. In this 
section the optimal discriminant subspace is explained in detail 
first and then the DCV and the PCA+Null Space methods are 
reviewed. 
 
2.1 Optimal Discriminant Subspace Concept 
 
Let the training set be composed of C classes, where the i-th 
class contains iN  samples, and let i

mx  be a d-dimensional 
column vector which denotes the m-th sample from the i-th 

class. There will be a total of ∑=
=

C

i
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1
 samples in the 

training set. Suppose that d>M-C. In this case, the within-class 
scatter matrix WS , the between-class scatter matrix BS , and the 

total scatter matrix TS  are defined as 
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where µ  is the mean of all samples, and iµ  is the mean of 

samples in the i-th class. The matrices dxM
W RA ∈ , dxC

B RA ∈ , 

and dxM
T RA ∈  are defined as 
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If the dimensionality d of the sample space is larger than M-1, 
all scatter matrices will be rank deficient. Thus, if we apply 
eigen-decomposition to the scatter matrices, we will obtain 
some eigenvectors corresponding to the zero eigenvalues, which 
form orthonormal bases for the null spaces of the corresponding 
scatter matrices. As explained previously, if the projection 
directions are chosen from the null space of WS , the modified 
FLDA criterion attains its maximum, 1. Therefore, optimal 
projection vectors can be obtained by applying PCA to the 
samples which are projected onto the null space of WS . The fact 
that the final optimal projection vectors span the optimal 
discriminant subspace follows from the following lemma.  

Lemma 1: Suppose U  is a matrix whose column vectors 

ku ( drk T ,...,1+= , where Tr  is the rank of TS ) are 

orthonormal vectors that span the null space )( TSN  of TS . If 

all samples in the training set are projected onto )( TSN , they 
produce a unique common vector such that 
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where x is independent of indices i and m. 
Proof: See [8]. 
This lemma shows that the null space of TS  does not contain 
any discriminative information which can be used in the course 
of obtaining the optimal projection vectors. Therefore this null 
space can be removed. Then, the remaining subspace for 
extracting the features for discrimination will be the intersection 
of the null space of WS  and the range space of TS . 

There are basically two approaches to find the optimal 
projection vectors that span the optimal discriminant subspace. 
This is a result of the fact that the projection matrices (also 
called orthogonal projection operators) of )( WSN  and )( TSR  
commute, as shown in Theorem 1 below, namely 

)1()2()2()1( PPPP = , where )1(P  and )2(P  represent the 
projection matrices of )( WSN  and )( TSR  respectively. In this 

case, the projection matrix of the intersection )()( TW SRSN ∩  
is found by the equation 

 
                    )1()2()2()1( PPPPPopt == ,                      (9) 
 
where optP  is the projection matrix of the optimal discriminant 
subspace. 
Theorem 1: Let )()( TW SRSNH ∩=  represents the 

intersection of the null space )( WSN  of the within-class scatter 

matrix and the range space )( TSR  of the total scatter matrix. 

Then, the projection matrices )1(P  and )2(P  of the subspaces 
)( WSN  and )( TSR  commute and the projection matrix optP  

of the intersection H can be found by the following formula: 
 

)1()2()2()1( PPPPPopt == . 
 

Proof: See [8]. 
A consequence of Theorem 1 is that to obtain the optimal 

projection vectors we can first project the training set samples 
onto )( WSN  and then apply PCA or, alternatively, we can first 

project the training set samples onto )( TSR  through PCA, and 
then find the null space in the transformed space. The DCV 
method uses the first approach, whereas the PCA+Null Space 
method uses the second approach.  
 
2.2 The Discriminative Common Vector Method 
 
The DCV method is a computationally efficient and stable 
method for finding the optimal projection vectors. In this 



method we first project the training set samples onto )( WSN  

and then we perform PCA in the transformed space. There are 
two different algorithms that accomplish this task. We now 
recall the first algorithm which uses the range space of WS  [4]. 

This algorithm can be summarized as follows: 
Step 1: Projection of the training set samples onto )( WSN : 
i) Compute the nonzero eigenvalues and corresponding 
eigenvectors kα  of WS  by using the matrix MxM

W
T

W RAA ∈ , 

where dxdT
WWW RAAS ∈=  and WA  is given by (5) [4]. Set 

][ 1 rα...αQ = , where r is the rank of WS . 

ii) Project the training set samples onto )( WSN  by 
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In this way, it turns out, we obtain the same unique vector that 
represents each class for all the samples in that class, i.e., the 
vector on the right-hand side of (10) is independent of the 
sample index m [4]. These vectors are called the common 
vectors. 
Step 2: Obtaining the optimal projection vectors kw : 
The optimal projection vectors are those that maximize the total 
scatter across all common vectors. Therefore, the optimal 
projection vectors can be obtained by computing the nonzero 
eigenvalues and the corresponding eigenvectors of the matrix 
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where comµ  is the mean of all common vectors. The matrix 

dxC
com RA ∈  is defined as 

 
            ]...[ 1

com
C
comcomcomcom xxA µµ −−= .                (12) 

 
The nonzero eigenvalues and the corresponding eigenvectors 

kw  can be computed easily by using the matrix 
CxC

com
T

com RAA ∈  instead of dxd
com RS ∈ . Then, use these 

eigenvectors to form the projection vector matrix 
]...[ 1 cr

wwW = , which will be used to obtain the 

feature vectors of the samples. Here, 1−≤ CrC  is the rank of 

comS . 

Since the optimal projection vectors kw  come from 

)( WSN , it follows that when the training set samples i
mx  of the 

i-th class are projected onto the linear span of the projection 
vectors kw , the feature vector 

T
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mi ,wx,wxΩ ]...[ 1 ><><=  of the projection 

coefficients >< k
i
m ,wx  will also be independent of the sample 

index m. Thus, for each class we have i
m

T
i xWΩ = . The fact 

that the vectors iΩ  ( Ci ,...,1= ) do not depend on the index m 
guarantees 100% accuracy in the recognition of the samples in 

the training set. The vectors iΩ  are called the discriminative 
common vectors. 

To recognize a test sample, testx , the feature vector of the 
test sample is found by the equation 
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and testΩ  is compared with the discriminative common vector 

iΩ  of each class using the Euclidean distance. The 

discriminative common vector found to be the closest to testΩ  is 
used to identify the test sample.  
 
2.3 The PCA+Null Space Method 
 
In this method, in order to obtain optimal projection vectors, the 
training set samples are first projected onto the range space of 

TS  through PCA, and then the vectors that span the null space 
of the new within-class scatter matrix in the tansformed space 
are computed. The algorithm can be summarized as follows: 
Step 1: Compute the nonzero eigenvalues and corresponding 
eigenvectors ku  of TS  by using the matrix MxM

T
T

T RAA ∈ , 

where dxdT
TTT RAAS ∈=  and TA  is given by (7). Set 

]...[ 1 Tr
uuU = , where Tr  is the rank of TS . Then 

transform the training set samples as i
m

T xU . Compute the new 
within-class scatter matrix in the transformed space by 
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Step 2: Find the orthonormal vector set that spans the null space 
of WS~ . This can be done through an eigen-decomposition of 

WS~ . The eigenvectors corresponding to the zero eigenvalues of 

WS~  span the null space of WS~ . Let V be the matrix whose 

columns are the computed eigenvectors such that 0~
=VSV W

T . 

Then, the final transformation matrix will be UVW =
~

 . 

The optimal projection vector matrix W~  obtained by the 
PCA+Null Space method and the optimal projection vector 
matrix W obtained by the DCV method span the same optimal 
discriminant subspace and hence the matrices obey the equation 

TT WWWW ~~
= . 

 
3. THE KERNEL DISCRIMINATIVE COMMON 

VECTOR METHOD 
 
In the Kernel approaches we transform the training set samples 
into an implicit higher-dimensional space ℑ  through nonlinear 
kernel mapping.  
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the transformed samples in ℑ . The within-class scatter matrix 
Φ
WS , the between-class scatter matrix Φ

BS , and the total scatter 

matrix Φ
TS  in ℑ  are given by 
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where Φµ  is the mean of all samples, Φ

iµ  is the mean of 
samples in the i-th class, and Φ  is the matrix whose columns 
are the transformed training set samples in ℑ . Here 

MxM
C RGGdiagG ∈= ],...,[ 1  is a block-diagonal matrix and 

each ixNiN
i RG ∈  is a matrix with all elements equal to iN/1 ; 

MxC
C RuudiagU ∈= ],...,[ 1  is a block-diagonal matrix and 

each 1xiN
i Ru ∈  is a vector with all elements equal to iN/1 ; 

MxC
C RllL ∈= ],...,[ 1  is a matrix where each 1Mx

i Rl ∈  is a 

vector with entries MNi / ; MxM
M R∈1  is a matrix with 

entries M/1 .  
In the transformed space, Φ

WS  is typically singular. Thus the 
optimal projection vectors that maximize the modified FLDA 
criterion are in the intersection of the null space N( Φ

WS ) of Φ
WS  

and the range space )( Φ
TSR  of Φ

TS . Similar to the linear case, 
there are mainly two approaches to compute these optimal 
projection vectors. We can either first project the training set 
samples onto N( Φ

WS ) and then apply PCA, or we can first apply 

PCA to project the training set samples onto )( Φ
TSR  and then 

find an orthonormal basis for the new null space of the within-
class scatter matrix of the transformed samples. However, the 
first approach is not feasible since the algorithms that 
accomplish this task work in a higher-dimensional space. 
Therefore, it is better to follow the second approach. The 
training set samples can be easily projected onto R( Φ

TS ) through 
the Kernel PCA. Then we can find the vectors that span the new 
null space of the within-class scatter matrix of the transformed 
samples. After this operation, we obtain the discriminative 
common vectors that represent each class. The algorithm can be 
summarized as follows: 
Step 1: Project the training set samples onto )( Φ

TSR  through 
the Kernel PCA. Let  
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The matrix that transforms the training set samples onto R( Φ
TS ) 

is 2/1)1( −ΛΦ−Φ PM . Then the new total and the within-scatter 
matrices in the reduced space will be 
 

      
Λ=ΛΛΛΛ=

ΛΦ−ΦΛΦ−Φ=
−−

−Φ−Φ

2/12/1

2/12/1

      
)1())1((~

PPPPPP
PSPS

TTT

MT
T

MT       (20) 

 
and 
 

    
,~~      

)1())1((~

2/12/1

2/12/1

−−

−Φ−Φ

ΛΛ=

ΛΦ−ΦΛΦ−Φ=

PKKP

PSPS
T

WW
T

MW
T

MW   (21) 

 
where ))(1(11~ GIKKKGKKGKK MMMW −−=+−−= . 

Step 2: Find vectors that span the null space of Φ
WS~ . This can 

be performed by an eigen-decomposition. The normalized 
eigenvectors corresponding to the zero eigenvalues of Φ

WS~  form 

an orthonormal basis for the null space of Φ
WS~ . Let V be a 

matrix whose columns are the computed eigenvectors 
corresponding to the zero eigenvalues such that, 
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Step 3 (optional) : Remove the null space of VSV B
T Φ~

, if it 
exists and rotate the projection directions so that the new total 
and between scatter matrices are diagonal (i.e., the scatter 
matrices of the feature vectors of the training set samples are 
uncorrelated). That is, 
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Then the final projection matrix W will be 
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There are at most C-1 projection vectors. After performing 

the feature extraction, all the training set samples in each class 
produce the discriminative common vector of that class. 
Therefore, similar to the linear DCV case a 100% recognition 
accuracy is also guaranteed for this method. 
 

4. EXPERIMENTAL RESULTS 
 
In our experiments we used the ORL (Olivetti-Oracle Research 
Lab) face database [9] to test the proposed method. The ORL 
face database contains C=40 individuals with 10 images per 
person. The images are taken at different time instances with 



different lighting conditions (slightly), facial expressions, and 
facial details. All individuals are in up-right, frontal position 
(with tolerance for some side movement). The size of the each 
image is 92x112. Some individuals from the ORL face database 
are shown in Fig. 1.  

An appropriate selection of kernel functions for special tasks 
is still an open problem [10]. We have used polynomial kernels 

kyxyxk ),(),( ><= , with degrees 32,k = , and the Gaussian 

kernel )/||||exp(),( 2 γyxyxk −−=  in our experiments. The 
parameter γ  was chosen as 1.06e8 based on empirical 
observations. For the linear PCA and the Kernel PCA methods 
the most significant eigenvectors were chosen such that 
corresponding eigenvalues contain 95 % of the total energy. A 
nearest-neighbor algorithm was employed using the Euclidean 
distance for classification except for the methods that produce 
the discriminative common vectors in which case the feature 
vector of the test sample is only compared to the discriminative 
common vectors by using the Euclidean distance for those 
methods. The discriminative common vector found to be the 
closest to the feature vector of the test sample, was used to 
identify the test sample. 

We selected randomly five samples from each class for 
training and the rest were used for testing. Thus, a training set of 
M=200 images and a test set of 200 images were created. We 
have not applied any preprocessing to the images. Then 
recognition rates were computed. This process was repeated six 
times and the recognition rates were found by averaging the 
recognition rates in each run. The computed recognition rates 
for the linear methods and the Kernel methods are shown in 
Table I. The best recognition result was obtained by the DCV 
method among the linear methods and similarly the best 
recognition results for all polynomial kernels with different 
degrees were obtained by the Kernel DCV method among the 
kernel methods. There is not a significant difference between 
recognition rates of the DCV and the Kernel DCV methods for 
this database. However, the recognition rates of the Kernel 
DCV method may be improved for different kernels that fulfill 
Mercer’s theorem [11]. But, we did not attempt to find better 
kernels since our aim here was to compare the accuracy of the 
Kernel DCV method with other kernel techniques. The best 
recognition rates were obtained for the Gaussian kernel for all 
the Kernel methods. The supervised methods (all methods 
except PCA and the Kernel PCA methods) typically 
outperformed the unsupervised methods (PCA and the Kernel 
PCA methods) for this database. An interesting observation is 
that as the degree of the polynomial kernel is increased, the 
recognition rates of the test set decreased, which shows that the 
second-order data correlation is usually enough for a good 
recognition performance. 

 

 
Fig.1. Three individuals from the ORL face database. 

 

We also performed some experiments to see if the 
recognition performance of the Kernel DCV method can be 
increased by incorporating some projection directions from 
outside the optimal discriminant subspace into the Kernel DCV 
framework. In these experiments we used the Gaussian kernels, 
with the parameters as given in the tables, since these yielded 
the highest recognition rates. We employed the variation of 
PCA+Null Space method from [12], to add the projection 
directions coming from outside the optimal discriminant 
subspace. We split the new within-class scatter matrix, Φ

WS~  (the 
within-class scatter matrix of the samples obtained after the 
Kernel PCA process), into its null space 

},...,{)~( 1 trW spanSN ξξ +
Φ =  and orthogonal complement (i.e., 

range space) },...,{)~( 1 rW spanSR ξξ=Φ  (where r is the rank of 
Φ

WS , and )( Φ= TSrankt  is the dimension of the reduced space 
after Kernel PCA step). Subsequently, all the projection vectors 
maximizing the between-class scatter in the null space are 
chosen. These are the projection vectors from the optimal 
discriminant subspace and there are 39 of them. Then, 
beginning with these optimal projection vectors, we gradually 
added new projection vectors from the range space until we 
reached to the number of 199=t  projection vectors, and we 
computed the corresponding recognition rates. The results for 
the training and test sets are illustrated in Fig. 2. As can be seen 
from the figure, adding new projection directions from outside 
the optimal discriminant subspace does not increase the 
performance; in fact the performance can be seen to degrade. 
Adding projection directions from the outside the optimal 
discriminant subspace also degrades the real-time performance 
since the added projections no longer produce a unique 
discriminative common vector for each class. As a result, the 
comparisons must be made over all feature vectors of the 
training set, rather than just over a much smaller number of 
discriminative common vectors, leading to an increase in the 
computational cost. 

 
TABLE I 

Recognition Rates of the ORL Face Database 
Linear 

Methods 
Recognition Rates (%) 
& Standard Deviations 

PCA 93.66, 01.2=σ  
FLDA 93.33, 62.2=σ  
Direct-LDA 96.58, 39.1=σ  
DCV 97, 41.1=σ  

Recognition Rates (%) 
& Standard Deviations Kernel 

Methods 
k = 2 k = 3 k = 4 

Kernel PCA 
93.33, 

21.1=σ  
92.75, 

40.1=σ  
93.75,

25.1=σ  

Kernel FDA 
96.33, 

57.1=σ  
95.41, 

59.1=σ  
96.50, 

18.1=σ  

Kernel GDA 
94.16, 

98.0=σ  
93.58, 

20.1=σ  
96.66, 

93.0=σ  

Kernel DCV 
97, 

67.1=σ  
95.91, 

88.1=σ  
97.50, 

94.0=σ  
 



 
Fig. 2. Recognition rates (%) as a function of projection vectors that are used for feature extraction 

 
5. CONCLUSION 

 
In this paper we proposed a new method that uses the kernel 
functions for recognition. We first showed that the optimal 
projection vectors come from the intersection space of the null 
space of the within-class scatter matrix WS  and the total scatter 

matrix TS . Then we proposed an algorithm to find these 
projection vectors in the nonlinearly mapped higher-dimensional 
space. When the training set samples are projected onto the 
computed projection vectors, all training set samples in each 
class produce a unique vector called the discriminative common 
vector. Thus a 100% recognition rate is guaranteed for the 
training set samples. Test results show that the generalization 
ability of the proposed method compares favorably with the 
other kernel approaches. Also the fact that the test sample 
feature vectors are compared to only the discriminative common 
vectors, instead of all training set sample feature vectors, makes 
the proposed method ideal for real-time applications. 
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