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Abstract 
 

In face recognition tasks, the dimension of the sample 
space is typically larger than the number of the samples 
in the training set. As a consequence, the within-class 
scatter matrix is singular and the Linear Discriminant 
Analysis (LDA) method cannot be applied directly. This 
problem is also known as the “small sample size” 
problem. In this paper, we propose a new face 
recognition method based on the discriminative common 
vectors for the small sample size case. The discriminative 
common vectors representing the people in the face 
database were found by using the null space of the within-
class scatter matrix. Then, these vectors were used for 
classification of new faces. Test results show that the 
proposed method is superior to other methods in terms of 
accuracy, efficiency, and numerical stability. 
 
 
1.  Introduction 
 

Recently, due to military, commercial, and law 
enforcement applications, face recognition has received 
significant attention in several disciplines such as image 
processing, pattern recognition, computer vision and 
neural networks. Its applications include static matching 
of controlled format images such as passports, credit 
cards, photo ID’s, driver’s licenses, and mug shots. A 
more challenging application includes real-time detection 
and recognition of faces in surveillance video images [1]. 

Face recognition can be defined as the identification of 
individuals using a stored database of faces labeled with 
people’s identities. It requires detection of faces, 
localization of them followed by extraction of features 
from the face regions, and finally recognition and 
verification [2]. It is a difficult problem as there are 
numerous factors such as 3-D pose, facial expression, hair 
style, make up, lighting, noise, occlusion, scale changes 
and so on which affect the appearance of an individual’s 
facial features.  

Many methods have been proposed for face 
recognition within the last decades [1]. These methods 
can be divided into three categories: 3-D model-based, 
feature based and appearance-based methods. Among 
these methods, appearance-based approaches operate 
directly on images or appearances of face objects, and 
process the images as two-dimensional (2-D) holistic 

patterns [3]. When using appearance-based approaches, a 
two-dimensional image of size w by h pixels is 
represented by a vector in a wh-dimensional space. This 
space is called the sample space or the image space, and 
its dimension is typically very high. However, since the 
image vectors are correlated, any image in the sample 
space can be represented in a lower-dimensional subspace 
without losing a significant amount of information. The 
Eigenface method [4], the Fisherface method [5], the 
Direct-LDA method [6], and the Null Space method [7] 
have been proposed for finding such a lower-dimensional 
subspace. The method we proposed in this paper is based 
on the Null Space method. 
 
2.  The Null Space Method 
 

This method tries to maximize the modified Fisher’s 
Linear Discriminant (FLD) criterion, 
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class scatter matrix, TS  is the total scatter matrix, and W  
is the matrix whose columns are the optimal projection 
vectors. The only difference between the FLD and the 
modified FLD criteria is that the latter uses TS  instead of 
the within-class scatter matrix WS  in denominator. In [8], 
it has been shown that the FLD criterion can be replaced 
by the modified FLD criterion in the course of solving the 
optimal projection vectors. It is not hard to see that when 
the projection directions satisfy the condition of 
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criterion attains its maximum, 1. However, a projection 
vector that satisfies the above condition does not 
necessarily maximize the between-class scatter. In this 
case, a better criterion will be, 
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All image samples in the training set are first projected 

onto the null space of WS  to find the optimal projection 
vectors. As a result, the new within-class scatter matrix of 
the projected samples will be a zero matrix. Then, PCA is 
applied to the projected samples to obtain the optimal 
projection vectors. To project samples onto the null space 
of WS , we have to find the orthonormal vector set that 
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spans the null space of WS . But this is almost impossible 
for the large values of sample space (e.g. an image of size 
256x256 creates a 65536 dimensional sample space.) To 
overcome this problem, authors used a pixel grouping 
method to extract geometric features and reduce the 
dimension of the sample space in [7]. Then they applied 
the Null Space method in this new reduced space. 
However, we showed that the performance of the Null 
Space method depends on the dimension of the null space 
of WS  in the sense that larger dimension provides better 
performance. Thus, any kind of pre-processing that 
reduces the original sample space such as, a pixel 
grouping method, is likely to reduce achievable 
performance and therefore should be avoided [9]. The 
method proposed below solves this problem and allows us 
to work in the original sample space. 
 
3.  The Discriminative Common Vector 
Method 
 

Let the training set be composed of C classes, where 
each class contains N samples, and let i

mx  be a d-
dimensional column vector which denotes the m-th 
sample from the i-th class. There will be a total of M=NC 
samples in the training set. Let us assume d>M-C. In this 
case, WS , BS , and TS  can be found by the following 
equations: 
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where µ  is the mean of all samples, and iµ  is the mean of 
the samples in the i-th class. A  is a dxM matrix as given 
below: 
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To find the optimal projection vectors in the null space 
of WS , we need to find the orthonormal vector set that 
spans the null space of WS . However, this task is 
computationally intractable because the dimension of the 
null space of WS  can be very large. Since we can easily 
find the orthonormal vector set that spans the complement 
of the null space (i.e. the range space) of WS  by using the 
smaller matrix (MxM) AA T , we can use this vector set to 
find the projections of the samples in the training set onto 
the null space of WS [9]. 

Let dR  be the original sample space, V be the range 
space of WS , and ⊥V   be the null space  of WS . 
Equivalently,  
 

},,...,1,|{ dRrkspanV ∈=≠= kkWk α0αSα ,    (6) 
 
and 
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where dr <  is the rank of WS , },....,{ 1 dαα  is an 
orthonormal set, and },....,{ r1 αα  is the set of orthonormal 
vectors that span the range of WS . 

Consider the matrices ]...[ r1 ααQ =  and 
]....[ d1r ααQ += . Let TQQP =  and TQQP = . Since 

⊥⊕= VVR d , 
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In this way, it turns out we obtain the same unique 

vector for all the samples of the same class, i.e., the vector 
on the right-hand side of (8) is independent of the sample 
index m [9]. We called these vectors as the common 
vectors. 
 The optimal projection vectors are the vectors that 
maximize the total scatter of the common vectors. In other 
words, 
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where W  is a matrix whose columns are the orthonormal 
optimal projection vectors kw , and comS  is the scatter 
matrix of the common vectors. comS  can be found by the 
following equation, 
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where comµ  is the mean of all common vectors. In this 
case the optimal projection vectors kw  can be found by 
an eigen-analysis of comS . In particular, all eigenvectors 
corresponding to the nonzero eigenvalues of comS  will be 
the optimal projection vectors and they can be easily 
found by using the smaller, CxC matrix com

T
com AA . 

Since the optimal projection vectors kw  come from 
the null space of WS , it follows that when the image 
samples i

mx  of the i-th class are projected onto the linear 
span of the projection vectors kw , the feature vector 
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i
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i
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coefficients >< k
i
m wx ,  will also be independent of the 

sample index m. Thus, we have, i
m

T
i xWΩ = for each 

class. The fact that iΩ  does not depend on the index m 
guarantees 100% accuracy in the recognition of the 
samples in the training set. We called these vectors as the 
discriminative common vectors. 

To recognize a test image testx , the feature vector of 
the test image is found by, 
 

test
T

test xWΩ =                         (11) 
 
and testΩ  is compared with the discriminative common 
vector iΩ  of each class using the Euclidean distance. The 
discriminative common vector found to be the closest to 

testΩ  is used to identify the test image.  
The above method can be summarized as follows: 

Step 1: Compute the nonzero eigenvalues and 
corresponding eigenvectors kα  of WS  by using the 
matrix AA T , where T

W AAS =  and A is given by (5). Set 
]...[ rααQ 1= , where r is the rank of WS . 

Step 2: Choose any sample from each class and project it 
onto the null space of WS  to obtain the common vectors. 
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Step 3: Form the matrix T

comcomcom AAS =  by using the 
common vectors and compute the eigenvectors kw  of 

comS  that correspond to the nonzero eigenvalues by using 
the matrix com

T
com AA . Use these eigenvectors to form the 

projection matrix ]...[ K1 wwW = . Here, K≤C-1 
refers to the rank of comS . 
 
4.  Obtaining the Common Vectors by Using 
Subspace Methods 
 

We used the MxM matrix AAT  to find the orthonormal 
vector set that spans the range of WS  in the course of 
obtaining the common vector of each class. However, the 
computations may become numerically unstable for large 
values of M. To overcome this problem, we can use the 
subspace methods and the Gram-Schmidt 
orthogonalization procedure to obtain the common 
vectors. 

Firstly, we choose any one of the image vectors from 
the i-th class as the subtrahend vector and then obtain the 
difference vectors i

kb  of the difference subspace of the i-
th class. Thus, assuming that the first sample of each class 
is taken as the subtrahend vector, the difference vectors 
are i

1
i

1k
i
k xxb −= + , .1,...,1 −= Nk  The difference subspace 

iB  of the i-th class is defined as }{ i
1N

i
1 bb −= ,....,spanBi . 

These subspaces can be summed up to form the complete 
difference subspace 
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The complement of B will be called the indifference 

subspace ⊥B . The number of linearly independent 
difference vectors that span the complete difference 
subspace B of the training set samples is equal to the rank 
of WS . The linearly independent difference vectors can be 
orthonormalized by using the Gram-Schmidt 
orthogonalization procedure to obtain the orthonormal 
basis vector set, },...,{ r1 ββ . We can form the matrix 

]...[ r1 ββQ = , and then any sample from each class 
can now be projected onto the indifference subspace ⊥B  
to obtain the corresponding common vectors of the 
classes by using (12). The common vectors do not depend 
on the choice of the subtrahend vectors and are identical 
to the common vectors obtained by using the null space of 

WS  [9]. After calculating the common vectors, the 
optimal projection vectors can be found by performing 
PCA. However, the optimal projection vectors can also be 
found by computing the basis of the difference subspace 

comB  of the common vectors. 
 
5.  Experimental Results 
 

We used the AR-face database [10] to test our method. 
The AR-face database includes 26 frontal images with 
different facial expressions, illumination conditions, and 
occlusions for 126 subjects. Images were recorded in two 
different sessions 14 days apart. Thirteen images were 
recorded under controlled circumstances in each session.  

We randomly selected C=50 individuals (30 males and 
20 females) for the experiment. Only nonoccluded images 
((1)-(7) and (14)-(20) as in Fig. 1) were chosen for every 
subject. Thus, our face database size was 700 with 14 
images per subject. After, these images were converted to 
grayscale, we pre-processed them by aligning and scaling 
so that the distances between the eyes were the same for 
all images. Then, we cropped the resulting images 
ensuring that the eyes occurred in the same coordinates of 
the images. The final size of the images was 222x299. 
The training set consisted of N=7 images randomly 
selected from each subject, and the rest of the images 
were used for the test set. Thus, a training set of M=350 
images and a test set of 350 images were created. A 
nearest-neighbor algorithm [11] was employed using 
Euclidean distance for classification. This process was 
repeated 4 times and the recognition rates were found by 
averaging the error rates of each run. The results are 
shown in Table I. 
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Figure 1. Images of one subject in the AR-face 
database. Only nonoccluded images (1)-(7) and (14)-(20) 
were used in our experiments. 
 

Table I. Recognition rates for the AR-face database 
Method Recognition Rate 
Eigenface 79.14 
Fisherface 98.85 
Direct-LDA 98.64 
Discriminative Common 
Vector 

99.35 

 
 
6.  Conclusion 
 

In this paper we proposed new algorithms for 
obtaining the optimal projection vectors efficiently in the 
null space of the within-class scatter matrix of the training 
set samples. We showed that every sample in a particular 
class produces the same unique common vector when 
they are projected onto the null space of WS . Using the 
common vectors leads to an increased computational 
efficiency in face recognition tasks. The optimal 
projection vectors are found by using the common 
vectors, and the discriminative common vectors are 
determined by projecting any sample from each class onto 
the span of the optimal projection vectors. There is no 
loss of information content in our method, in the sense 
that the method has 100% recognition rate for the training 
set data. Experimental results also show that our method 
classifies the test set data better than other methods. Using 
subspace methods overcomes the numerical stability 
problem encountered frequently when working with high 
dimensional matrices. Since feature vector of the test 
image is only compared to a single vector for each class 
during classification, the recognition is very efficient for 
real-time face recognition tasks. In the Eigenface, the 
Fisherface, and the Direct-LDA methods, the test sample 
feature vector is usually compared to all feature vectors of 
samples in the training set, making these methods 
impractical for real-time applications for large training 
sets. 
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