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ABSTRACT 
 
Fiducial markers are often employed in image-guided surgical procedures to provide positional information based 
on pre-operative images. In the standard technique, centroids of three or more markers are localized in both image 
space and physical space. The localized positions are used in a closed-form algorithm to determine the three-
dimensional rigid-body transformation that will register the two spaces in the least-squares sense. In this work we 
present (1) a method for determining the orientation of the axis of symmetry of a cylindrical marker in a 
tomographic image and (2) an extension to the standard approach to rigid-body registration that utilizes the 
orientation of marker axes as an adjunct to the positions of their centroids. The extension is a closed-form, least-
squares solution. Unlike the standard approach, the extension is capable of three-dimensional registration with only 
two markers. We evaluate the accuracy of the former method by means of CT and MR images of markers attached 
to a phantom and the accuracy of the latter method by means of computer simulations. 
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1. INTRODUCTION 
 
Rigid-body, point-based registration is a standard means for registering two three-dimensional views of a common 
object when three points are localized in each view. Accurate input points may be obtained by adding fiducial 
markers to the object and localizing their centroids. Closed-form algorithms for registering point sets have been 
available since the 1960’s and are reviewed in [1]. Unless the markers are spherically symmetric, their orientations, 
as well as their centroids, can be estimated from their images. Marker orientations can then be used as an adjunct to 
marker centroids to achieve rigid-body registration.  
 
In this paper we present both a method for determining the orientation of a cylindrical marker and a method for 
incorporating marker orientation into point-based registration. The latter method is based on an idea published in 
1998 Yan et. al., in which the standard point-based method was modified to allow it be applied to the problem of 
registering images of an object on which was mounted a stereotactic frame [2]. Our method permits three-
dimensional registration to be accomplished with two markers and may be the only registration method available 
when only two markers are available. We test the method for determining marker orientation using CT and MR 
images. We employ a simulation to estimate the accuracy of the registration method. 
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2. MATERIALS AND METHODS 

 
We acquired MR and CT images of cylindrical markers. Examples are shown in Figure 1. The markers, which are 
shown photographically in Figure 2, and are designed for use in image-guided surgery1, are hollow-plastic, sealed 
containers whose inner volume is in the shape of a cylinder of height 5mm and diameter 7mm. The inner volume is 
filled with a fluid that is imagable in both CT and MR [3]. Because the plastic is invisible in MR and is relatively 
dim in CT in comparison to the fluid, the shape of the marker interior can be segmented and modeled as a cylinder. 
 

2.1. Calculation Of marker centroid and orientation 
We calculate the orientation of the axis of symmetry of a marker by comparing the marker image with a model of 
the marker with the following process: 
 

1. Make an initial estimate of the marker’s pose: 
a. Find the centroid of a marker image using intensity weighting [4].  
b. Perform principal-axis decomposition of the marker image and identify the axis with the largest 

moment of inertia as the axis of symmetry. 
2. Refine the initial estimate by registering the model with the marker image using optical flow [5]. 

 
Step 1.b. takes advantage of the fact that the moment of inertia of this marker about its axis of symmetry is 
significantly different from the moments about its other two principal axes. Optic flow determines an incremental 
local motion at each point in one image, in this case the model, that will reduce the intensity difference at that point 
relative to a second image, in this case the actual image. It requires a good starting point, which is provided by 
initializing the model at the position and orientation determined in the previous steps. Because optic flow is 
underdetermined [5], it also requires a constraint on the motion, which is easily provided here by imposing rigidity. 
With rigidity, the solution is over determined, so a rigid motion is chosen that minimizes the total squared difference 
in intensity over the entire marker. The resulting incremental motion is applied to the model, and the process is 
repeated until the motion is small. The final direction of the model’s axis of symmetry is the calculated marker 
orientation. 
 
Suppose we have an initial estimate of the marker’s localization and orientation. To refine the result, we find the 
displacement, or the “movement” between the initial estimate and the marker in the given image. Then move the 
marker from the initial guess by the estimated motion. The object motion can be estimated from image intensity 
changes in sequential images with optical flow method. Optical flow is based on the assumption that the intensity of 
the object does not change during the motion. 
After we get an initial guess of the marker position and orientation, a simulated marker at this position and 
orientation is generated based on known marker shape model. Then the simulated marker is compared with the real 
marker in the given image. If the two images are different, the motion between the two images is calculated using 
optical flow method. The orientation and position of the marker are then updated. These steps are iterated until the 
motion is sufficiently small. 
 

2.1.1. Initial estimates 
After the marker is segmented from the real image, the centroid can be estimated with an intensity weighting method 
[4]. The marker centroid is calculated as follows: 
 
                                                           
1 JMF is a consultant for, and has an interest in, Z-Kat, Inc., Hollywood, FL, which markets this marker design 
under the trademark AcustarTM. 
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where iI  is the intensity of the voxel centered at ( , , )i x y z=v v v v , and 0I  is the intensity of an empty voxel. 
  
The marker orientation is estimated by calculating its principal axes. One of the three principal axes of a cylinder is 
the axis of symmetry, which we identify by the unit vector â ; the other two axes are perpendicular to the principal 
axis and to each other. After calculating the three principal axes of the marker, we need to identify the axis of 
symmetry. It is easy to show that, for a cylinder, the second moment about the symmetry axis is 2 /8d , and the 
moments about the other two axes are each equal to 2 2/12 /16h d+ , where d  is the diameter, and h  is the height of 
the cylinder. For the markers used in this study, the principal moment is equal to 6.125 2mm , which is 19% larger 
than that of the other two, which equal 5.146 2mm . So, we select the axis with the largest second moment as the 
estimated axis of symmetry. Experiments show that such a selection nearly always selects correctly among the three 
axes. 
 
An alternative way to make the choice is for each possible orientation to generate a simulated marker located on the 
estimated centroid and to compare the difference between the simulated marker and the real marker. The axis with 
which the simulated marker is the most similar to the real marker is considered as the marker orientation. 
 

2.1.2.  Marker simulation 
After the initial estimates of the orientation and location of the marker have been obtained, a marker image can be 
simulated at that orientation and location and compared to the actual marker image. By adjusting the orientation and 
location to find the best fit of the model image to the actual image, we can refine both orientation and location. We 
simulate the marker as follows: First the voxels that are completely inside the marker are set as the maximum 
intensity value of marker voxel values in a real image, and voxels completely outside the marker are set to zero. 
Then, each voxel near the edge of the marker is set to an intermediate intensity I, where  

 max
inVI I

V
=  (2) 

 
where inV  is the volume of the voxel that lies intersects the marker, V is the volume of the entire voxel, and maxI  the 
voxel intensity of the voxel completely inside the marker. 
 
A problem is how to calculate inV . Because of the complex shape of the intersection of cylinder and voxel, it is 
difficult to calculate the exact volume of the intersection. So we approximate it with a simpler numerical technique. 
We divide each voxel into m n p× × subvoxels. We then designate each subvoxel as being inside the cylinder if its 
centroid is inside the cylinder and outside otherwise. By accumulating the number of subvoxels whose centers are 
inside the marker divided by the total number mnp  of subvoxels per voxel, we can get a numerical approximation 
of /inV V  in Eq. (2). The computation time of this method is proportional to the number of subvoxels. So, for 
example, if m n p= = , the computation time is of order 3O( )n . We find that 5m n p= = =  produces an acceptable 
compromise between efficiency and accuracy. Alternatively we may select m, n and p so as to make the side of 
subvoxel equal to a fixed length, for example, 0.25mm.  
  

2.1 3. Optical flow registration 
Our method is a rigid-body 3D image registration. Given an initial guess of marker location and orientation, we try 
to register the simulated image with the real marker using optical flow method. The marker orientation and position 
can be estimated with subvoxel accuracy. Our approach is based on the 3D version of the optical flow equation. Let 

( , , , )f x y z t  represent the image intensity at pixel position ( , , )x y z  and time t , the 3D optical flow constraint 
equation is:  
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where ( , , )t t tx y z=u is the velocity, or the transformation between ( , , , )f x y z t and ( , , , )f x y z t t+ ∆ . As we only 
consider rigid-body motion, the motion can be decomposed into a translation and a rotation. When the rotation 
angles are small, the motion can be approximately rewritten as: 
 
 R= + ≈ × +u r t θ r t  (4) 
 
where ( , , )x y zt t t=t  is the translation vector, ( , , )x y zθ θ θ=θ  is the vector of rotation angles around x, y and z axis 
respectively, and 0( , , )x y zr r r= = −r x x is the image position relative some origin 0x  lying on the axis of rotation. 
For the ith voxel ( , , )i i ix y z , Eq. (3) combined with Eq. (4) can be rewritten numerically as: 
 
 ( ) ( ) ( )

i i i i i i i i i i i i i i ix x y y z z z y y z x x z z x y y y y x z if t f t f t f r f r f r f r f r f r fθ θ θ+ + + − + − + − = −∆  (5) 
 
For all the N  voxels, we can write Eq. (5)  in the matrix form of: 
 
 Ax b=  (6) 
 
where A is an N by 6 matrix, ( , , , , , )x y z x y zx t t t θ θ θ=  is the column vector of the rigid-body motion parameters, and b 
is a N  by 1 column vector. The ith row of A is: 
 
 [ , , , , , ]

i i i i i i i i i i i i i i ix y z z y y z x z z x y y y xf f f f r f r f r f r f r f r− − −  (7) 
  
and the ith element of b is the difference between the intensity of the real marker and the simulated marker at the ith 
voxel. 
  
To solve equation (6), we use singular value decomposition (SVD) to get the optimal x in the least square sense. 
After the transformation is estimated, we update the orientation and axis of symmetry of the marker as follows: 
 

 new old

new old

,
ˆ ˆ .

R
R

= +
=

c c t
a a

 (8) 

 
The above steps are executed iteratively until the registration parameters are small. 
 
 

2.2. Incorporating marker orientation into registration. 
Standard point-based, rigid registration determines the rotation matrix and translation vector that provide the 
transformation that minimizes the sum of squares of the distances between corresponding points in two spaces. 
Several closed-form solutions exist and have been carefully studied [1]. In this application, we have available to us, 
in addition to the set of corresponding points derived from marker centroids, a set of corresponding orientations 
given by the axis of symmetry of each marker. To incorporate this information into the determination of the 
transformation, we extend the standard method to accommodate both point pairs and axis pairs by treating each pair 
of corresponding axes roughly as an additional point pair for the purposes of calculating the rotation.  Thus, for pN  
points and aN axes the inputs are the 2( )p aN N+ vectors, 
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p p a a

q q b b
 (9) 

 
where ip  and iq  represent points and the unit vectors ˆ ia  and ˆ

ib represent axes in the respective spaces. The outputs 
are one rotation matrix R  and one translation vector t . The transformation then has the form: 
 

 ,i i

i i

′ = +
′ =

p Rp t
a Ra

 (10) 

 
for 1,..., pi N= . The standard method requires that at least three noncollinear points be present in each point set. The 
extended method allows collinear sets and as few as two points as long as at least one of the axes in each space is 
nonparallel to the line on which the points in that space lie. The situation with two markers is illustrated in Fig. 3. A 
solution can be obtained with both points plus one or both of the axes. 
 
While any of the closed-form solutions may be employed, we choose the SVD method [1]. As in the standard 
method the translation is given by the displacement between the weighted means of the two point sets: 
 
 ,= −t q p  (11) 
where 
 ( ) ( ) ( ) ( ),  .p p p p

i i i i i iw w w w= =∑ ∑ ∑ ∑p p q q  (12) 
 
Then, a cross-covariance matrix is formed, 

 ( ) ( )

1 1

ˆˆ
p aN N

t tp a
i i i i i i

i i
w w

= =

= +∑ ∑H p q a b% %  (13) 

 where 
 ,   .i i i i i ip = p - p q = q - q% %  (14) 
 
The ( )p

iw  and ( )a
iw  are weights which may be adjusted according to the certainty of the measurements. (Weights in 

this work are all set to 1.) Singular value decomposition of H is effected: t =UΛV H . Finally, 
diag , , dettR = U (1 1 (UV))V , where “diag” is a diagonal matrix with the indicated elements on the diagonal; “det” 

means “determinant of”. 
 
It should be noticed that the association of a given axis with a given marker has no effect on the resulting 
transformation. Thus, the interchange of orientations of, say, markers A and B, while their centroids remain the 
same, affects neither R  nor t . In fact, the positions of the axes (as opposed to their orientations) have no effect on 
the transformation. 
 

3. RESULTS 
 
Results are presented both for the determination of the orientation of a single marker and for registration based on 
both points and orientation axes. In the first case, both computer simulations and phantom imaging were employed. 
In the second case, only computer simulations were employed. In both cases, the accuracy of the respective method 
is measured. All computer programs were written using Matlab, Version 6 (The Mathworks, Inc.). 
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3.1. Orientation accuracy 
We present results from a computer simulation and from phantom imaging. In each case, we consider orientations 
that are given by a single axis. Axis orientations were measured using the method described in Section 2.1. 
Convergence was achieved in 20 iterations. To determine the accuracy of the method, we compare the measured 
axis Mâ with the true axis Tâ . The error that we present is the angle between these two axes. Because the axis is 
determined from the image of a fiducial marker, we call this error the Fiducial Angular Error (FAE). Thus, 

1
M Tˆ ˆFAE cos ( )−= ⋅a a . In keeping with the standard statistics for fiducial measurement errors, we tabulate the root-

mean-square (RMS) value of FAE. In all experiments, 20 iterations were sufficient to reach convergence. 
 
In our first experiment, we applied our method to simulated marker images, produced as described in Section 2.1.2, 
to which we added noise. As described in that section, the marker had a diameter of 7 mm and a height of 5 mm. We 
first generated a simulated marker with given marker location and orientation using a value of 255 for maxI . Then, 
zero-mean Gaussian noise was added to the simulated image. Several levels of noise were employed with the 
method being applied 100 times on the same image with independent noise patterns to determine an RMS value for 
FAE. Many noise levels, pixel sizes, and orientations were tried. The method described in Section 2.1 was applied. 
Table 1 lists representative results.  

Table 1. RMS for FAE for simulated marker. Pixel size is 1 1 2× ×  mm.  

Signal to Noise Ratio 255/4 255/6 255/8 
RMS FAE (degrees) 0.927764 1.91489 2.311613 

 
 
In our second experiment, we applied the method to markers attached to a multi-tiered plastic phantom with markers 
attached to each tier. (The phantom is described in [3].) The phantom design permits us to estimate the orientation of 
each marker by relating it to the location of the centroids of other markers. The phantom was scanned in both MR 
(Spin-Echo, TR= 3sec, TE=14ms) and CT (kvP=120, exposure=350mas). The MR image had 256 256 59× ×  voxels. 
Three CT images were acquired. The first had 512 512 44× × voxels. The remaining two scans had 
512 512 45× × voxels. Pixel sizes, slice thicknesses, number of markers and the resulting RMS FAE are given in 
Table 2.  
 

Table 2. RMS for FAE for markers imaged on phantom.  

Image Modality Pixel Size Slice Thickness Numb. Markers RMS FAE (deg) 
CT 0.59 mm 2.5 mm 23 2.8 
CT (two scans) 0.59 mm 2.0 mm 16 (8 per scan) 4.8 
MR 0.94 mm 4.0 mm 15 3.6 

 
 

3.2. Registration accuracy 
A simulation was performed to assess the behavior of the registration method described in Section 2.2. Two markers 
were configured 100mm apart, as shown in Fig. 3, with varying values of the angle θ . Thus, the configuration is 
described by Eq. (9) with 2pN =  and 2aN = . Random, independent, normally distributed perturbations were 
applied to both centroids and to both axes to produce Point-set 1, 1 2 1 2ˆ ˆ, , ,p p a a . The process was repeated to form 
Point-set 2: 1 2 1 2

ˆ ˆ, , ,q q b b . The two point sets were then registered. The resulting rigid transformation was applied to 
the target point, Tp . We call the magnitude, T TR + −p t p , of its displacement the “target registration error” (TRE) 
at that point. The point perturbations were applied independently to each coordinate of each point. The RMS 
perturbation distance is called the Fiducial Localization Error (FLE).  
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Experiments were performed (not shown) with varying values of fiducial localization error FLE1 and FLE2, 
respectively, in the two space. While the resulting value of TRE was observed, as expected, to depend on the 
combined 2 2 1/ 2

1 2FLE FLEFLE ( )= + and 2 2 1/ 2
1 2FAE FAEFAE ( )= + , it did not depend on the individual values of FLE1 

and FLE2. We then set FLE at 1 mm and varied FAE from 1 to 7 degrees. For simplicity we kept the axes in the x-y 
plane and we kept the angles of the two marker axes relative to the line between the two marker centroids equal. We 
varied this angle, which is labeled θ  in Figure 3, from 10 degrees to 90 degrees. A total of 10,000 repetitions were 
performed for each combination of FAE andθ . The resulting RMS values of TRE are plotted in Fig. 4.  
 
For comparison, TRE was calculated without using marker orientation. Instead, a third marker was located on the y 
axis at varying positions three of which are marked by the × s in Fig. 3. As the position of that third marker was 
reduced from 25 to 10 to 5 mm from the center of the first two markers, the value of RMS TRE was calculated [6] 
and found to increase from 1.4 to 3.4 to 6.9 mm. Not surprisingly, as the three markers become more collinear, the 
quality of the registration is degraded and the use of two markers with marker orientation becomes relatively more 
beneficial. 
 
 

4. DISCUSSION  
 
Registration based on fiducial markers can produce highly accurate results simply by measuring the centroids of 
three or more markers and bringing them into alignment. When the markers are nonspherical, additional information 
about their orientation may be obtained that may serve as an adjunct to the centroid positions. In the case of 
cylindrical markers, the axis of symmetry of the marker provides such information. Accurate measurement of the 
orientation of that axis is made difficult by the typically small size of the marker relative to the voxel sizes and by 
noise present in the typical MR or CT image. Nevertheless, as shown in Table 2, we have found that it is possible, 
for at least one type of cylindrical marker, to estimate the direction of the axis to within about 3 to 5 degrees (RMS 
values of FAE) in these modalities.  
 
Employing the additional orientation information for the purpose of rigid registration requires an extension of the 
standard methods, which employ only centroid information. We have shown that a simple extension results in a 
closed-form solution. One clear advantage of the technique is that it is capable of producing a registration with only 
two markers, as opposed to a minimum of three. Investigating that case in particular, we have found, as shown by 
Figure 4, that for a combined FLE of 1 mm and a combined FAE ranging from 1 to 7 degrees, the configuration 
shown in Figure 3 yields TRE values ranging from 0.9mm to 3.4mm for reasonable values of θ . The consistent 
improvement as θ  is increased toward 90 degrees is predictable. The orientations of the marker axes provide 
information about the relative rotation of the two spaces about all axes except themselves, and that information is 
more accurate for axes that are more perpendicular to the marker axes. The combination of the two marker 
centroids, on the other hand, provides rotational information about all axes except the x-axis, and that information is 
more accurate for axes that are more perpendicular to the x-axis. Thus, as the marker axes become more 
perpendicular to the x-axis, their contributions to orientation information become more complementary to the 
information provided by the two centroids. It is therefore clear that θ  should be as close as possible to 90 degrees, 
but our results show that degradation is minor down to about 70 degrees.  
 
Calculation of the combined RMS FAE, 2 2 1/ 2

1 2FAE FAEFAE ( )= + , from all combinations of the values given in Table 
2 produces values ranging from 4.0 to 6.8 degrees. Thus, the RMS FAE values used in Figure 4 bracket the values of 
the combined FAE involving these markers and these modalities (i.e., CT-CT, CT-MR, and MR-MR). These values 
of TRE are comparable to that achievable with three markers when the markers are configured such that the target is 
outside the triangle formed by the markers, as in Figure 3 and becomes more important as the marker configuration 
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becomes more collinear. This situation may be important for certain applications when orientation information is 
available and there are restrictions on the placement of the markers relative to the targets of interest; it is clearly 
important when only two markers are available and when the markers are nearly collinear.  
 
 

5. CONCLUSION 
 
These results are preliminary, but they show that it is possible to determine the orientations of axis of symmetry of 
cylindrical markers in CT and MR images to within about 3 to 5 degrees and to use those orientations in a closed-
form registration algorithm to achieve a target registration errors of about 2 to 3 millimeters for a configuration in 
which two markers are separated by 100 mm with a target 50 mm from their mean position. Further work is needed 
to explore the effects of variations of marker numbers, configurations, axes orientation, and altering marker shape. A 
larger ratio of height to diameter, for example, might be expected to reduce FAE. While the use of marker 
orientation unlikely ever to be as effective as the use of additional, widely spaced markers, our results may be 
important for situations in which only two markers are available or only nearly collinear configurations are feasible. 
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Figure 2. Photographs of markers. (a) Marker affixed atop a post, which is 
implanted into bone for surgical guidance applications. (b) Close-up of 
marker, which is a hollow plastic cylinder filled with fluid that is visible in 
CT and MR.  Outline of interior volume is shown. 

(a) (b) 

7 mm 

5 mm 

 
 

Figure 1. CT and MR images of markers. (a)-(d) are CT. (e)-(h) are MR. 
Note that the plastic container is relatively dim in CT and is invisible in 
MR. By  proper thresholding it is possible to segment the interior in CT 
before calculating the centroid and axis of symmetry. In MR voxel sizes 
are larger and noise levels are higher, so the image is of somewhat lower 
quality. 

(e) (g)(f) (h)

(a) (c)(b) (d)
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Figure 3. Marker Configuration used in our testing. Two cylindrical markers 
with nominal angular orientations θ .  are located at [x,y,z] = [-50,0,0] and 
[+50,0,0]. The ×s show positions of a third marker, as described in the text. 

θ  θ  

Target position 

25 mm 

50 mm 50 mm 

50 mm 

10 mm 5 mm 

 
Figure 4. Plots of Target registration error (TRE) versus θ  for the marker 
configuration of Figure 3 for fiducial angular error (RMS FAE) of 1, 3, 5, and 7 
degrees. Larger values of FAE correspond to higher plots. The dotted lines show 
TRE for the three-marker configurations shown in Figure 3 with higher lines 
corresponding to positions of the third marker that are closer to the x-axis. 

RMS FAE = 1,  3,  5,  7 (deg) 

Dotted lines show TRE for 3-
marker configurations with 3rd 
marker at y = 5, 10, and 25 mm 


