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a b s t r a c t

The subspace classifiers are pattern classification methods where linear subspaces are used to represent

classes. In order to use the classical subspace classifiers for face recognition tasks, two-dimensional (2D)

image matrices must be transformed into one-dimensional (1D) vectors. In this paper, we propose new

methods to apply the conventional subspace classifier methods directly to the image matrices. The

up the training and testing phases of the classification process. Utilizing 2D image matrices also enables

us to apply 2D versions of some subspace classifiers to the face recognition tasks, in which the

corresponding classical subspace classifiers cannot be used due to high dimensionality. Moreover, the

proposed methods are also generalized such that they can be used with the higher order image tensors.

We tested the proposed 2D methods on three different face databases. Experimental results show that

the performances of the proposed 2D methods are typically better than the performances of classical

subspace classifiers in terms of recognition accuracy and real-time efficiency.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The subspace classifiers are pattern recognition methods,
where the primary model for each class is a linear subspace of
the Euclidean sample space [20]. The motivation behind the
subspace classifiers is that each class has its own set of
representative features differing from those of the other classes.
Therefore, the most conspicuous features are extracted from each
class by using the corresponding training set samples in the hope
that those features also carry the most important discriminatory
information. Even though this assumption is seldom valid, good
recognition rates can be achieved when the dimensionality of the
sample space is sufficiently large [17]. In subspace methods, it is
assumed that the vector distribution of a class corresponds to a
lower-dimensional subspace of the original sample space. The
subspaces representing classes are defined in terms of basis
vectors that are linear combinations of the sample vectors of each
class. Therefore, basis vectors spanning those subspaces must first
be computed. Also, determining the dimension of each subspace is
a major issue since subspace dimensions have a strong influence
on the performance of the subspace classifier. In particular, large
subspace dimensions lead to a low recognition performance due
to the overlapping regions among classes, whereas small subspace
dimensions increase the error rates because of a poor resulting
ll rights reserved.

+90 222 2393613.
approximation [13,17]. Once the basis vectors spanning those
subspaces are computed, a test sample vector from an unknown
class is classified based on the lengths of the projections of that
sample onto each of the subspaces or, alternatively, on the
distances of the test vector from these subspaces.

Watanabe et al. proposed the first subspace method, the Class-
Featuring Information Compression (CLAFIC), for pattern classifi-
cation [28]. This method employs the Principal Component
Analysis (PCA) to compute the basis vectors spanning subspace
of each class. A variation of the CLAFIC, which is called as the
CLAFIC-m, was proposed in Ref. [17]. In contrast to the CLAFIC
method, the CLAFIC-m method utilizes the class-specific means
during classification. Fukunaga and Koontz [11] proposed a new
method, which enables us to select the basis vectors in such a way
that the projections onto the so-called rival subspaces are
minimized. Gulmezoglu et al. [12] proposed the Common Vector
(CV) method for classification tasks, where the number of samples
in each class is smaller than or equal to the dimensionality of the
sample space. It is not always reasonable to assume that the most
representative features carry the most discriminatory information
during the construction of subspaces. Especially, if the number of
outlying samples in the tails of the probability density functions
of classes is large, these representative features will no longer yield
good separation among the classes. Therefore, the Learning Sub-
space (LS) method was proposed in Ref. [14], in which the
subspaces are iteratively modified in order to diminish the number
of misclassifications. However, it turned out that the final
computed basis vectors obtained using the LS method are sensitive
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to the presentation order of training set samples. This problem is
resolved in Ref. [16] by the introduction of the Averaged Learning
Subspace (ALS) method, in which the correction of the subspaces
are carried out in a batch fashion. This process increased the
statistical stability since the computed basis vectors representing
classes are independent of the presentation order of the training set
samples. Recently, the kernel based subspace methods [13,25], the
Kernel CLAFIC [2], and the Kernel CV [4], have been proposed to
extract nonlinear features of classes.

In order to apply the subspace methods to appearance based
face recognition problems, 2D image matrices must be transformed
into 1D vectors by concatenating rows or columns. The resulting
image feature vectors typically lead to a high-dimensional sample
space, which in turn forms a suitable environment for application
of subspace classifiers. It is because most of the assumptions,
upon which the subspace classifiers are founded, hold in high-
dimensional sample spaces. However, some of the subspace
classifiers cannot be applied in these high-dimensional sample
spaces since they require the use of large correlation matrices or
orthogonal projection operators explicitly. Fortunately, Yang et al.
introduced a new method, coined the 2D-PCA method, which
applies the classical PCA method directly to the image matrices
[31]. This procedure leads to easier evaluation of covariance
matrices since the size of the image covariance matrices using
2D-PCA is much smaller. Additionally, it has been reported that the
recognition performance of 2D-PCA is superior to the classical PCA
(Eigenface) method [5,31,33]. Similarly, 2D extension of LDA, called
2D-LDA, was introduced in Refs. [18,32]. Based on a similar idea as
in 2D-LDA, Kong et al. [15] proposed 2D-FDA method for
dimensionality reduction. Xu et al. [29] proposed matrix based
marginal Fisher analysis to handle 2D gray level images. Note that
all 2D based approaches use image matrices, which are in fact
second-order image tensors. More recently, there has been a
growing interest in using higher order image tensors other than the
second-order image matrices. Yan et al. [30] proposed multilinear
discriminant analysis in which they used filtered Gabor images
(third-order image tensor) for face recognition. Tao et al. [24] also
used high-order image tensors for human gait recognition. More-
over, same authors extended two famous margin based classifiers,
Support Vector Machine (SVM) and Minimax Probability Machine,
such that they can be used with the high-order image tensors
[22,23]. In this paper, motivated by these techniques, we propose
new subspace classifier methods, which will be referred to as the
2D-CLAFIC, the 2D-CLAFIC-m, and the 2D-ALS in order to apply the
classical subspace methods directly to the face image matrices.

The remainder of the paper is organized as follows: In Section
2, we first review the classical subspace methods, CLAFIC, CLAFIC-
m, and ALS. Section 3 introduces our proposed 2D methods. In
Section 4, we generalize CLAFIC and CLAFIC-m methods such that
they can be used with higher order image tensors. In Section 5,
experimental results are given. Finally, we draw our conclusion
based on the experimental results in Section 6.
2. Subspace classifiers

When subspace classifiers are used in the context of face
recognition, 2D face image matrices must be transformed into 1D
vectors if the gray level values are used as feature vectors.
However, this process ignores some spatial information among
image pixel values which may be useful for discrimination. On the
other hand, classical 1D subspace classifiers can be modified such
that they directly operate on 2D image matrices while preserving
spatial information as in Refs. [5,31]. As a result, the classification
performance of classical subspace classifiers can be improved.
Moreover, computational efficiency will also increase since
correlation and covariance matrices are evaluated easily in 2D
approaches. In this paper, we revise 1D subspace classifiers such
that they directly operate on 2D image matrices.

Before introduction of our proposed methods, we provide an
overview of the CLAFIC, the CLAFIC-m and the ALS methods in this
section.

2.1. The CLAFIC method

Suppose there are C classes denoted by oð1Þ;oð2Þ; . . . ;oðCÞ where
the ith class contains Ni samples. Let xi

j 2 <
d be a d-dimensional

column vector, which denotes the jth sample of the ith class. Let
L1; L2; . . . ; LC are the subspaces representing classes. Each subspace
is spanned by li orthonormal basis vectors fwi

1; . . . ;w
i
li
g in <d. The

CLAFIC method employs the PCA or the Karhunen–Loeve trans-
form to compute the basis vectors fwi

1; . . . ;w
i
li
g spanning each

subspace Li. The basis vectors are computed through eigen-
decomposition of class correlation matrices RðiÞ 2 <

d�d defined as

RðiÞ ¼
1

Ni

XNi

j¼1

xi
jðx

i
jÞ

T
¼

1

Ni
FðiÞFðiÞ

T

; i ¼ 1; . . . ;C, (1)

where F(i) is the matrix whose columns are the sample vectors of
the ith class. Note that the mean vectors mi of classes are not
subtracted. The correlation matrix R(i) is a positive semi-definite
matrix, hence all eigenvalues are larger than or equal to 0. The li
eigenvectors corresponding to the largest eigenvalues of R(i) are
chosen as basis vectors for the subspace Li. The number of basis
vectors determines the dimensionality of each subspace. In the
CLAFIC method, the number of basis vectors cannot exceed
min(d, Ni) for each class. There are different strategies to choose
the subspace dimensions li. One way is to set all lis to be equal to a
fixed value l. Then, the optimal value of l can be chosen from the
error curves as described in Ref. [17]. The other way employs
eigenvalues for choosing the dimensions of subspaces. Let the
eigenvalues of R(i) be ordered as

li
1Xli

2X � � �Xli
ri
40, (2)

where ri is the rank of the matrix R(i). The dimension of Li is
selected as the value by which the ratio of cumulative sums ki ¼Pli

j¼1l
i
j=
Pri

j¼1l
i
j; i ¼ 1; . . . ;C; exceeds a threshold. Typical values of

the threshold lie between 0.9pkip1. After the basis vectors of
subspaces are determined, one can proceed with the classification
phase. To classify a test sample vector, xtest, it is projected onto
each subspace separately and it is assigned to the class, in which
the projection has the maximum length. This is equivalent to
assigning the test sample to the class that achieves the best
reconstruction (the smallest reconstruction error) of the test
sample through a linear combination of the samples of corre-
sponding class. More formally, for classification of the test vector,
we use the following criterion function:

gðxtestÞ ¼ arg max
i¼1;...;C

PðiÞxtest

��� ���2
¼ arg max

i¼1;...;C
W ðiÞT xtest

��� ���2
, (3)

where P(i) is the orthogonal projection operator of the ith class,
and W(i) represents the transformation matrix whose columns are
the basis vectors wi

k of the ith class. Since the basis vectors are
orthonormal, the following relation holds between P(i) and W(i):

PðiÞ ¼W ðiÞW ðiÞT ; i ¼ 1; . . . ;C. (4)

2.2. The CLAFIC-m method

A variation of the CLAFIC, which is called as the CLAFIC-m
method, uses the class-specific means, mi, i ¼ 1; . . . ; C, in
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classification [17]. In this approach, each class is modeled as a
linear manifold centered at the mean of the corresponding class.
Therefore, instead of using class correlation matrices, class
covariance matrices are employed to compute the basis vectors.
The covariance matrix of each class is given as

SðiÞ ¼
1

Ni

XNi

j¼1

ðxi
j � miÞðx

i
j � miÞ

T
¼

1

Ni
F̄ðiÞF̄ðiÞ

T

; i ¼ 1; . . . ;C, (5)

where F̄ðiÞ is the matrix whose columns are the centered sample
vectors of the ith class. Similar to the correlation matrices, the
covariance matrices are also positive semi-definite. As in the
previous case, the eigenvectors corresponding to the maximum li
eigenvalues are chosen as the basis vectors. However, the above
classification rule given in Eq. (3) can no longer be used in this
method. Instead, the minimum distance of the centered test
vector from each subspace determines class label. In contrast to
the CLAFIC, this classification rule is equivalent to assigning the
test sample to the class achieving the best reconstruction of the
test sample through an affine combination of the corresponding
class samples. More formally, the following criterion is used
during classification:

gðxtestÞ ¼ arg min
i¼1;...;C

ðI � PðiÞÞðxtest � miÞ

��� ���2

¼ arg min
i¼1;...;C

jjxtest � mijj
2 � W ðiÞT

ðxtest � miÞ

��� ���2
� �

, (6)

where I represents the identity matrix.
A special case of the CLAFIC-m method occurs when the

dimensionality of the sample space is larger than the number of
training set samples in each class. In this case, (I�P(i)) will be the
orthogonal projection operator onto the null space of S(i) if the
basis vectors are chosen as the eigenvectors corresponding to all
nonzero eigenvalues. Then, all distances from training samples to
their corresponding subspace become zero, and hence 100%
classification accuracy with respect to the training set data can
be obtained. The method using this approach is called as the CV
method, and it can only be used if the dimensionality of the
sample space is larger than the number of training set samples of
each class [12].
2.3. The Averaged Learning Subspace (ALS) method

The ALS can be considered as an iterative learning version of
the CLAFIC method. The basic idea behind this method is to revise
the subspaces based on the misclassified samples. The modifica-
tion of subspaces is accomplished through rotation of subspaces.
When a misclassification error occurs, the correct subspace is
rotated towards the misclassified sample vector and the wrong
subspace is rotated away from it. As a result, this process yields a
better selection of subspaces in terms of classification accuracy. In
the ALS method, the unnormalized correlation matrix S(i) of each
class is modified after errors. The ALS algorithm can be
summarized as follows:
�
 Step 1: Compute the unnormalized initial correlation matrices
of classes for the epoch k ¼ 0 as

SðiÞo ¼
XNi

j¼1

xi
jðx

i
jÞ

T; i ¼ 1; . . . ;C. (7)

Then compute the basis vectors of each class using these
unnormalized correlation matrices as in the CLAFIC.

�
 Step 2: Classify all training set samples using Eq. (3)

and compute the misrecognized samples. Then, update the
correlation matrices as

SðiÞkþ1 ¼ SðiÞk þ a
X

xi
j
2AðiÞ

k

xi
jðx

i
jÞ

T
� b

X
xi

l
2BðiÞ

k

xi
lðx

i
lÞ

T; i ¼ 1; . . . ;C, (8)

where AðiÞk is the set of vectors in the ith class, which are
erroneously assigned to some other class during the training
epoch k, and BðiÞk is the set of vectors that are classified
erroneously as the ith class in that epoch. Here the parameters
a and b are some positive numbers.

�
 Step 3: Compute the new basis vectors using the modified

correlation matrices and continue with Step 2 unless a
predefined number of epochs has been reached, or the
classification accuracy starts to decrease.

In this algorithm, the positive coefficient parameters a and b
control the steepness of the error correction, and hence the
convergence speed and the stability of the algorithm heavily
depend on the values of these parameters. They are usually made
to decrease with the epoch number. The subspace dimensions li
can be set to a fixed value once and for all before starting the
training phase or they can be reselected after each epoch.

2.4. Computational considerations

It is not always practical to store and use the orthogonal
projection operators P(i) explicitly for computations in Eqs. (3) and
(6), especially if the number of samples in each class is smaller
than the dimensionality of the sample space. Instead, the basis
vectors are used for computations in such cases. However, we may
still have difficulties during computation of these basis vectors
that span the subspaces. This problem occurs when the dimen-
sionality of the sample space is large in comparison with the
number of samples in each class. In this case, the size of the
correlation or covariance matrices will be too large, e.g., in face
recognition tasks, images of size 256�256 yield correlation and
covariance matrices of size 65536�65536. Computing the
eigenvalues and eigenvectors of those huge matrices will be
difficult and numerically unstable. To solve this problem, let
the number of samples in the ith class be denoted by Ni and the
dimension of the subspace is d. Fortunately, the nonzero
eigenvalues and the corresponding eigenvectors for each class
can be obtained by applying eigen-decomposition to a smaller
Ni�Ni matrix, instead of the d�d matrix. If A is a d�Ni matrix
composed of all samples in the class, then, the matrix

CðiÞ ¼ AðiÞAðiÞ
T

; i ¼ 1; . . . ;C, (9)

could be any symmetric positive semi-definite matrix of size d�d,
e.g., correlation or covariance matrix of each class. Now, let li

k and
vi

k be the kth nonzero eigenvalue and the corresponding
eigenvector of CðiÞ

T

¼ AðiÞ
T

AðiÞ, where kpNi � d. Then wi
k ¼ AðiÞvi

k

will be the eigenvector corresponding to the kth nonzero
eigenvalue of C(i). Although this approach can be easily used in
the CLAFIC and the CLAFIC-m methods, it is not possible to use it in
the ALS since the unnormalized correlation matrix SðiÞk at any
epoch k cannot be decomposed as in Eq. (9) except at epoch k ¼ 0.
Therefore, the ALS cannot be used in face recognition tasks where
the dimensionality of the sample space is too large. However, as
shown in the next section, this drawback can be eliminated if we
use face image matrices directly in ALS.
3. Two-dimensional subspace classifiers

The application of classical subspace methods to face recogni-
tion problems involves the transformation of original 2D image
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matrix data into 1D vectors. This transformation is usually
accomplished by lexicographic ordering of image matrices into
column vectors, which is performed by concatenating rows or
columns. As opposed to the conventional subspace methods, our
proposed methods utilize image matrices instead of image
vectors, and 2D matrix form is preserved in all calculations.

The main purpose of 2D methods is to determine the set of
projection vectors which will map an image matrix to a set of
feature vectors forming a feature matrix [31]. Classification is
performed using these feature matrices. Following this scheme,
we will next examine the proposed methods in detail.

3.1. The 2D-CLAFIC method

Let Xi
j 2 <

n�m
denote the jth image matrix of the ith class

whose size is n�m (nXm). In this case, each correlation matrix
RðiÞ2D 2 <

n�n
of the image matrices is defined as

RðiÞ2D ¼
1

Ni

XNi

j¼1

Xi
jðX

i
jÞ

T; i ¼ 1; . . . ;C. (10)

Note that the size of the image correlation matrix, n�n, is much
smaller than the size of the correlation matrix, d�d, obtained
using the classical CLAFIC method since d ¼ mn. The image
correlation matrix RðiÞ2D is a positive semi-definite matrix, hence
all eigenvalues are larger than or equal to 0. The most significant li
eigenvectors of RðiÞ2D are chosen as the basis vectors as in the
classical CLAFIC method. The number of total basis vectors will be
limited by the number of columns of image matrices, which is
equal to m for each class. After basis vectors of subspaces are
obtained, to classify a test image matrix, Xtest, we project the
image matrix onto the basis vectors of classes to get the image
feature matrix

Yi
test ¼ ðW

i
Þ
TXtest; i ¼ 1; . . . ;C. (11)

For the classification of Xtest, we compute the Frobenius norms of
feature matrices by

jjYi
testjjF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXli

j¼1

Xm

k¼1

jyjkj
2

vuut ; i ¼ 1; . . . ;C, (12)

for each class. Then, the test sample is assigned to the class, in
which the image feature matrix has the maximum Frobenius
norm value, i.e.,

gðXtestÞ ¼ arg max
i¼1;...;C

jjYi
testjjF . (13)

3.2. The 2D-CLAFIC-m method

As in the CLAFIC-m method, we can utilize class-specific means
in the 2D-CLAFIC method. The 2D-CLAFIC-m method uses the
class-specific mean images of samples during classification. In this
approach, image covariance matrix of each class is used to
compute the basis vectors. The image covariance matrix SðiÞ2D 2

<
n�n of each class is defined as

SðiÞ2D ¼
1

Ni

XNi

j¼1

ðXi
j � X̄iÞðX

i
j � X̄iÞ

T; i ¼ 1; . . . ;C, (14)

where X̄i represents the mean image matrix of the ith class. The
most significant li eigenvectors corresponding to the largest
eigenvalues of each image covariance matrix are used as basis
vectors representing classes. Once the basis vectors are obtained,
we compute the distance of the centered test image from each
subspace by using the Frobenious norm, and we assign the test
sample image to the class in which it has the minimum norm
value, i.e.,

gðXtestÞ ¼ arg min
i¼1;...;C

ðjjXtest � X̄ijj
2
F � jjðW

i
Þ
T
ðXtest � X̄iÞjj

2
F Þ. (15)

3.3. The two-dimensional Averaged Learning Subspace (2D-ALS)

method

The 2D-ALS can be thought as an iterative learning version of
the 2D-CLAFIC method. In this method, the basis vectors spanning
each subspace are iteratively modified in order to reduce the
number of misclassified samples. The modifications of subspaces
are accomplished performing rotation of subspaces as in the
classical ALS. The 2D-ALS uses the unnormalized correlation
matrix SðiÞ 2 <

n�n of image samples to compute the basis vectors
representing classes. The classical ALS cannot be used if the
dimensionality of the sample space is large as mentioned in
Section 2.4. However, the 2D-ALS method can be easily used in
such cases since the size of the correlation matrices is n�n as
opposed to d�d. The algorithm of this method can be summarized
as follows:
�
 Step 1: Compute the unnormalized initial correlation matrices
of image samples for the epoch k ¼ 0 as

SðiÞo ¼
XNi

j¼1

Xi
jðX

i
jÞ

T; i ¼ 1; . . . ;C. (16)

Then compute the basis vectors of each class using these
unnormalized correlation matrices as in the 2D-CLAFIC.

�
 Step 2: Classify all training set samples using Eq. (13) and

compute the misrecognized samples. Then, update the correla-
tion matrices as

SðiÞkþ1 ¼ SðiÞk þ a
X

Xi
j2AðiÞ

k

Xi
jðX

i
jÞ

T
� b

X
Xi

l2BðiÞ
k

Xi
lðX

i
lÞ

T; i ¼ 1; :::;C, (17)

where AðiÞk is the set of image matrices in the ith class, which
are erroneously assigned to some other class during the
training epoch k, and BðiÞk is the set of image matrices that are
classified erroneously as the ith class in that epoch. Here the
positive coefficient parameters a and b control the steepness of
the error correction, and they should be properly set as in the
conventional ALS.

�
 Step 3: Compute the new basis vectors using the modified

correlation matrices and continue with Step 2 unless a
predefined number of epochs has been reached, or the
classification accuracy starts to decrease.

3.4. Computational considerations

In 2D subspace classifiers, the size of the correlation or
covariance matrices is n�n rather than d�d, where d ¼ mn. As
a consequence, the eigen-decomposition of these scatter matrices
is much easier compared to those of 1D subspace classifiers.
Therefore, 2D subspace classifiers are more efficient than 1D
subspace classifiers in terms of computational complexity.
Especially, testing complexity of our proposed 2D methods is
given by O(nd) whereas the testing complexity of the classical
subspace classifiers is O(d2).
4. Subspace classifiers with higher order image tensors

Recent studies showed that higher order image tensor
representations of data samples based on Gabor filtering improve
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the recognition accuracies in several classifications tasks [21–24].
In this section, we give the extensions of CLAFIC and CLAFIC-m,
called multilinear CLAFIC and multilinear CLAFIC-m methods,
which can be used with image tensors of order NX3. These new
methods operate on richer data representations, as a result one
may obtain better recognition accuracies. However, it should be
kept in mind that high-order image tensor representations of
objects such as Gabor function based representations bring
additional computational cost over original image matrix based
representations.

We first introduce basic tensor definitions which will be used
to extend the subspace classifiers to handle image tensors. The
definitions were adopted from Refs. [1,6,7,27]. An Nth-order
tensor, usually denoted by calligraphic capital letters, is a
multidimensional array having N indices: A 2 <

I1�I2�����IN . Ele-
ments of A are denoted as Ai1i2���iN or ai1i2���iN . The scalar product of

two tensors of the same order A;B 2 <I1�I2�����IN is defined as

hA;Bi ¼
P
i1

P
i2

� � �
P
iN

ai1 i2 ���iN bi1 i2 ���iN . The Frobenius norm of a tensor

A is defined as jjAjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA;Ai

p
. The n-mode product of a

tensor A 2 <I1�����In�����IN by a matrix U 2 <
Jn�In is denoted by

A�nU and defined as ðA�nUÞi1 ���in�1jninþ1���iN
¼
P
in

ai1���iN ujnin . Mode-n

matricizing of an Nth-order tensor A 2 <I1�����In�����IN is a matrix

AðnÞ 2 <
In�I1 I2���In�1Inþ1 ���IN which is the ensemble of vectors obtained

by keeping the index in fixed and varying other indices.
Let Xp

k 2 <
I1�I2�����IM denote the pth training tensor sample of

the kth class and let the kth class have Nk samples. The tensor
including the collection of the class samples are called as the
training data tensor of the kth class and denoted by Dk 2

<
I1�I2�����IM�IMþ1 where IM+1 ¼ Nk. Also it is possible to collect

mean-subtracted class samples (Xp
k � ð1=NkÞ

P
8pX

p
k) into a mean-

subtracted data tensor D̂k 2 <
I1�I2�����IM�IMþ1. Note that a hat on

the tensor letter denotes the data tensor of mean-subtracted
samples.

4.1. Multilinear CLAFIC method

In classical CLAFIC, basis vectors of subspaces are determined
from the eigenvalue–eigenvector decomposition of the correlation
matrix. In multilinear case, they can be determined directly from
the higher order singular value decomposition (HOSVD) of the
training data tensor. By definition, HOSVD exists for tensors and
any tensor A 2 <I1�I2�����IN can be expressed as the product A ¼
S�1Uð1Þ�2Uð2Þ � � � � �NUðNÞ in which S 2 <I1�I2�����IN is the core
tensor and UðnÞ 2 <

In�In ;n ¼ 1; . . . ;N are unitary matrices. Here,
the core tensor has two properties: (1) If Sin¼t is defined as the
subtensor of S obtained by fixing the nth index to t, two
subtensors Sin¼a and Sin¼b of S are orthogonal for all possible
values of n, a, and b subject to a 6¼b (hSin¼a;Sin¼bi ¼ 0 when
a6¼b); (2) Subtensors of S are ordered as
jjSin¼1jjXjjSin¼2jjX � � �X jjSin¼In

jjX0 for all possible values of
n. For more details, one should refer to Ref. [6].

In multilinear CLAFIC, for each class, mode-n matrices of the
data tensor are calculated by applying HOSVD to the data tensor
Dk 2 <

I1�I2�����IM�IMþ1

Dk ¼Sk�1Uð1Þk �2Uð2Þk � � � � �Mþ1UðMþ1Þ
k , (18)

where Sk is the core tensor and UðnÞk 2 <
In�In are unitary mode-n

matrices. For the subspace methods, in fact, one does not really
need to determine the core tensor. Applying HOSVD to determine
mode-n matrices is sufficient because basis vectors of subspaces
exist in the columns of UðnÞk matrices. Similar to the classical case,
the first lðnÞ

kn0
column vectors (n0pn) of UðnÞk are chosen as basis

vectors for the subspace Lk, and these basis vectors form the
projection matrix W ðnÞ
k 2 <

In�In0 when they are used in the
columns of the matrix. Note that W ðnÞ

k 2 <
In�In0 is the reduced

form of the matrix UðnÞk 2 <
In�In of the second dimension since

n0pn. Then, the n-mode projection of the sample tensors for the
kth class can be achieved through the projection operator Pk

given with the following relation.

Pk ¼ �1W ð1ÞT

k � 2W ð2ÞT

k � � � ��MW ðMÞT

k . (19)

For the classification of the test sample Xtest 2 <
I1�I2�����IM , the

following maximization criterion is used:

gðXtestÞ ¼ arg max
k¼1;...;C

jjXtest �Pkjj
2

¼ arg max
k¼1;...;C

jjXtest�1W ð1ÞT

k �2W ð2ÞT

k

� � � � �MW ðMÞT

k jj2. (20)
4.2. Multilinear CLAFIC-m method

Recall that, the CLAFIC-m method uses the class-specific means,
hence multilinear representation of CLAFIC-m operates on mean-
subtracted data tensor D̂k 2 <

I1�I2�����IM�IMþ1. First, HOSVD is
applied to determine mode-n matrices of the mean-subtracted
data tensor:

D̂k ¼ Ŝk�1Uð1Þk �2Uð2Þk � � � � �Mþ1UðMþ1Þ
k . (21)

Then the first lðnÞ
kn0

column vectors (n0pn) of UðnÞk are chosen as basis
vectors for the subspace Lk to determine mode-n projection
matrices W ðnÞ

k 2 <
In�In0 (n ¼ 1, y, M). These matrices form the

tensor projection operator of the kth class, Pk.

Pk ¼ �1W ð1ÞT

k �2W ð2ÞT

k � � � ��MW ðMÞT

k . (22)

Since the centered tensors are used in multilinear CLAFIC-m
method, the classification criterion of this method is different
from the criterion of the multilinear CLAFIC method. During
classification, the class means must be subtracted from the test
sample for each class, and hence the following minimization
criterion is used:

gðXtestÞ ¼ arg min
k¼1;...;C

ðjjXtest � X̄kjj
2 � jjðXtest � X̄kÞ �Pkjj

2Þ,

¼ arg min
k¼1;...;C

ðjjXtest � X̄kjj
2 � jjðXtest � X̄kÞ�1W ð1ÞT

k

�2W ð2ÞT

k � � � � �MW ðMÞT

k jj2Þ

where X̄k ¼ ð1=NkÞ
P
8pX

p
k is the class mean of data tensors.

4.3. Comparison to related methods

The proposed methods described in this section operate on
high-order image tensors and do not suffer from undersample

problem [24] as in Multilinear Discriminant Analysis (MDA) [30]
and General Tensor Discriminant Analysis (GTDA) [24]. However,
there is a major difference between these methods (MDA and
GTDA) and our proposed methods. This difference is similar to the
difference between Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). LDA is built on the
assumption that all classes have similar covariance structures.
Thus, the class covariance matrix is same for all classes, and it is
approximated by the within-class scatter matrix. As a result, LDA
produces linear decision boundaries if it is used as a classifier
rather than a method for feature extraction. On the other hand,
QDA assumes all classes have different covariance structures, and
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covariance matrix of each class is estimated using class-specific
samples. Therefore, QDA yields quadratic decision boundaries as
opposed to linear decision boundaries of LDA. Similar to LDA, both
MDA and GTDA methods also assume that all classes have
identical covariance structures. But, our proposed methods
are built on the assumption that each class has different
covariance (or correlation) matrix as in QDA. Therefore, MDA
and GTDA can be seen as a special case of the proposed
multilinear subspace classifiers by using the analogy between
LDA and QDA. In the proposed methods, the differences between
class covariance (or correlation) matrices of classes are utilized
during computation of the distance between the query and
subspaces representing classes. The decision boundaries are again
quadratic. The same differences apply to the proposed 2D
methods and 2D-LDA.
5. Experiments

We performed experiments on three well-known face image
databases, namely the AR1 [19], Yale2 [3] and ORL (Olivetti-Oracle
Research Lab)3 face databases. The AR and Yale face databases
have been employed to evaluate the recognition performances of
the proposed methods under conditions where there are varia-
tions over time, in facial expressions, and in lighting conditions,
whereas the ORL face database has been used to examine the
recognition performances of the proposed methods under condi-
tions where the pose is varied. As mentioned before, computa-
tional costs of the methods using Gabor filter based
representations are higher than those of the methods using
original image matrix based representations since image matrices
occur naturally without any extra cost as opposed to the Gabor
filtered image matrices. Therefore, we performed experiments
restricting our attention to 2D based approaches. Beside the
proposed 2D subspace classifiers here, we also tested the CLAFIC
and CLAFIC-m subspace classifier methods for comparison. In
addition, we also tested the PCA, 2D-PCA and 2D-LDA methods for
a better assessment of the recognition performances of our
proposed methods [15,26,31]. Note that we could not test the
classical ALS method since the dimensionality of the sample space
is too large for all face databases. A small set of randomly created
training and test sets was employed to compute subspace
dimensions [28]. To determine each subspace dimension, we set
all subspace dimensions to be equal to a fixed value l for all
classes. Then, the optimal value of l was chosen from the
recognition rate curves obtained from test sets. Typical recogni-
tion rate curves are illustrated in Fig. 1 for the AR face database.

In the 2D-ALS method, we used the same values for both a and
b parameters as recommended in Ref. [17]. To determine the best
value for a and b, we covered the values between 0 and 5 with an
increment 0.5 during the selection phase in all experiments.
After computing the best value for a and b parameters, this value
was forced to decrease with the epoch number. The maximum
number of epochs in the algorithm was chosen as 10 in order to
avoid over-fitting problem. The subspace dimensions were set to a
fixed value l, and they were kept the same during all epochs in the
2D-ALS method. In contrast to the other subspace classifiers, the
data samples were projected onto a unique subspace in PCA,
2D-PCA, and 2D-LDA methods. The dimensionality of this
space was found using recognition curves as described above.
1 Available at: http://cobweb.ecn.purdue.edu/�aleix/alexi_face_DB.html.
2 Available at: http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
3 Available at: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.

html.
Then, the nearest-neighbor algorithm has been employed during
classification.
5.1. Experiments on the AR face database

The AR face database includes 26 images with different facial
expressions, illumination conditions, and occlusions for 126
subjects. All individuals are in an upright, frontal position. Images
were recorded in two different sessions 14 days apart. Thirteen
images were recorded under controlled circumstances in each
session. The size of the images in the database is 768�576 pixels,
and each pixel is represented by 24 bits of RGB color values.

We randomly selected 50 individuals (30 males and 20
females) for the experiment. Only nonoccluded images ((a)–(g)
and (n)–(t) as in Fig. 2) were chosen for every subject. Thus, our
face database size was 700 with 14 images per subject. First, these
images were converted to grayscale images. Second, we pre-
processed these images by aligning and scaling them so that the
distances between the eyes were the same for all images, and also
ensuring that the eyes were located in the same coordinates of the
image. The resulting image was then cropped. The final size of the
images was 299�222. Finally, based on empirical observations,
we decreased the dimensionality of the sample space to 134�99
by down-sampling.

The training set consisted of seven images randomly selected
from each subject, and the rest of the images were used for the
test set. Note that there is no overlap between the training and
test sets. This process was repeated 25 times, and 25 different
training and test sets were created. The first five data sets were
used for subspace dimensionality and parameter selections, and
the remaining 20 sets were used to evaluate performance. Thus,
the final recognition rates for the experiment were found by
averaging these 20 rates obtained in each trial. We set initial a and
b parameter values to 1. The computed recognition rates,
corresponding standard deviations, empirically selected subspace
dimensions are shown in Table 1. In the same table, we also
provided the testing times for classifying a single test sample.

As can be seen in the table, the best recognition accuracy is
achieved by 2D-LDA. Our proposed method, 2D-CLAFIC-m,
achieved the best recognition rate among all subspace classifiers
tested here. Although the 2D-CLAFIC-m method outperformed the
CLAFIC method, the 2D-CLAFIC method could not outperform its
classical counterpart. Using class-specific means in 2D approach
significantly improved the recognition rates since the 2D-CLAFIC-
m method yielded better recognition rates than the 2D-CLAFIC
method. There were only a few misrecognized samples in the
training sets, thus subspaces could not be modified substantially.
As a result, the 2D-ALS method did not show much improvement
over 2D-CLAFIC. It should be noted that all subspace classifiers
outperformed the classical PCA method.

Testing time is the consumed time that is required to classify a
new test image. To classify a test image, we have to evaluate the
criterion functions given in Eqs. (3), (6), (13) and (15) depending
on the chosen method. This process involves the projection of test
samples onto the basis vectors spanning each subspace. The
subspace dimensions of classical subspace classifiers and their
corresponding 2D classifiers are similar. Therefore our proposed
methods are also more practical than classical subspace classifiers
for real-time image recognition applications since the testing
complexity of our proposed methods is given by O(nd) whereas
the testing complexity of the classical subspace classifiers is O(d2),
where image size is n�m and d ¼ mn. Note that we omitted the
subspace dimensionality and the number of the classes from the
complexity term for the sake of clear comparison between the
classical and 2D subspace approaches. PCA, 2D-PCA and 2D-LDA

http://cobweb.ecn.purdue.edu/~aleix/alexi_face_DB.html
http://cobweb.ecn.purdue.edu/~aleix/alexi_face_DB.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 1. The recognition rates as a function of subspace dimensionalities on the AR face database: in each method the dimension of the subspace is chosen as the value

yielding the highest recognition rate on the validation set.

Fig. 2. Images of one subject in the AR face database. First 13 images (a)–(m) were taken in one session and the others (n)–(z) in another session. Only nonoccluded images

(a)–(g) and (n)–(t) were used in our experiments.

Table 1
Recognition rates on the AR face database

Methods Subspace dimensions Recognition rates (%) Standard deviation Testing time (ms)

PCA l ¼ 330 75.1 1.56 9.57

2D-PCA l ¼ 55 91.64 1.46 8.96

CLAFIC l ¼ 7 93.73 1.45 7.43

CLAFIC-m l ¼ 6 92.27 1.55 9.97

2D-CLAFIC l ¼ 10 89.79 1.68 4.43

2D-CLAFIC-m l ¼ 4 95.39 0.98 5.92

2D-ALS l ¼ 10 90.39 1.45 4.45

2D-LDA l ¼ 18 97.86 0.81 6.68
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methods are used as feature extraction methods in the experi-
ments. Therefore, following the projection of data samples onto
the chosen axes, one has to search for the nearest neighbor in the
reduced space to label the test sample. As a result, the testing
times of these methods are typically higher than the proposed 2D
subspace classifiers as given in Table 1.
5.2. Experiments on the Yale face database

The Yale face database consists of images from 15 different
people, using 11 images from each person, for a total of 165
images. The images contain variations with the following facial
expressions or configurations: center-light, with glasses, happy,
left-light, without glasses, normal, right-light, sad, sleepy, sur-
prised and wink. For subjects numbered 2, 3, 6, 7, 8, 9, 12 and 14,
the normal facial expression and the without glasses (or with
glasses if subject normally wears glasses) images were copies of
each other. Thus, we removed the image without glasses (or with
glasses if subject normally wears glasses) from every subject in
order to make all classes have an equal number of samples and
have all sample images distinct. Thus, we had 10 samples per
subject yielding a face database size of 150. We pre-processed
these images by aligning and scaling them so that the distances
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between the eyes were the same for all images, and also ensuring
that the eyes occurred in the same coordinates of the image. The
resulting image was then cropped. The final image size was
152�126.

We randomly selected five samples from each class for training
and the remaining samples were used for testing. This process
was repeated 25 times and 25 different training and test sets were
created. As in the previous case, the first 5 data sets were used for
determining the subspace dimensions and the best parameter
values whereas the remaining 20 data sets were used for
performance evaluation. The initial a and b parameter values
were chosen as 0.5. The computed recognition rates, standard
deviations, subspace dimensions and testing times of methods are
shown in Table 2.

In terms of classification accuracy, the best recognition rate
was attained by the proposed 2D-CLAFIC-m method. Subspace
classifiers typically yielded better recognition rates than the PCA
method. As in the previous case, although the 2D-CLAFIC-m
method outperformed its classical counterpart, the 2D-CLAFIC
method did not offer any improvement over the CLAFIC method. It
should be noted that the 2D-ALS method significantly improved
the recognition rates of the 2D-CLAFIC method in this case.
Table 2
Recognition rates on the Yale face database

Methods Subspace dimensions Recognition ra

PCA l ¼ 75 75.27

2D-PCA l ¼ 13 78.73

CLAFIC l ¼ 5 80.06

CLAFIC-m l ¼ 4 77.67

2D-CLAFIC l ¼ 9 76.27

2D-CLAFIC-m l ¼ 2 82.67

2D-ALS l ¼ 3 80.67

2D-LDA l ¼ 12 80.40

Fig. 3. Images of some individuals

Table 3
Recognition rates on the ORL face database

Methods Subspace dimensions Recognition ra

PCA l ¼ 190 94.20

2D-PCA l ¼ 16 94.90

CLAFIC l ¼ 5 94.22

CLAFIC-m l ¼ 4 95.05

2D-CLAFIC l ¼ 6 91.93

2D-CLAFIC-m l ¼ 2 93.30

2D-ALS l ¼ 6 92.40

2D-LDA l ¼ 10 95.60
5.3. Experiments on the ORL face database

The ORL face database contains 40 individuals, with 10 images
per person. The images are taken at different time instances with
different lighting conditions (slightly), facial expressions, and
facial details. Some individuals from the ORL face database are
shown in Fig. 3. The size of each image is 112�92.

We selected randomly five samples from each class for training
and the remaining samples were used for testing. We did not
apply any pre-processing to the images. This process was repeated
25 times. As in the other experiments, the first 5 data sets were
used for finding subspace dimensionalities and optimal parameter
values, and the remaining 20 data sets were used to evaluate the
performance. The initial a and b parameters were set to a value
of 1. The computed recognition rates, standard deviations,
subspace dimensions and testing times are shown in Table 3.

For the ORL face database, the 2D-LDA method achieved the
best recognition rate among all methods tested here. The classical
subspace methods outperformed our proposed 2D-based sub-
space classifiers. Furthermore, the 2D-PCA method showed only a
little improvement over the PCA method. Therefore, we conclude
that the 2D-based subspace classifiers do not offer a significant
tes (%) Standard deviation Testing time (ms)

4.34 2.81

3.95 1.93

4.96 2.37

4.19 3.37

4.07 1.57

5.01 2.03

3.25 0.77

3.87 1.93

from the ORL face database.

tes (%) Standard deviation Testing time (ms)

1.50 4.47

1.47 4.01

1.40 3.51

1.45 5.06

1.62 2.24

1.75 3.10

1.50 2.25

1.26 2.69
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improvement over their 1D-based counterparts for image recog-
nition problems where there is a variation in pose. However, it
should be noted that as in the previous cases, our proposed
methods are better suited for real-time image recognition
applications than the conventional 1D subspace classifiers
because of their low computation cost.
6. Discussion and conclusion

In this paper we have proposed new 2D subspace classifiers for
face recognition problems. The major advantage of two-dimen-
sional subspace classifiers over the conventional subspace
classifiers is that they can be applied directly to the image
matrices. This process gives rise to correlation and covariance
matrices with smaller size. As a result, eigenvalue–eigenvector
decomposition of scatter matrices can be performed fast, which in
turn speeds up the training and testing phases. Since employing
only a few number of basis vectors leads to high recognition rates
in 2D subspace classifiers, our proposed methods are more
practical than 1D based subspace classifiers for real–time face
recognition tasks. In addition, experimental results of different
databases demonstrated that the proposed methods are more
robust to varying illumination conditions, which is a serious
problem that PCA based feature extraction techniques cannot
handle well. However, one drawback of the proposed methods is
their sensitivity to rotations in poses as observed in experiments
on the ORL face database. Nevertheless, when the subspace
dimension and the computational efficiency of the proposed
methods are considered, the recognition accuracies can be
accepted as satisfactory.

Among the proposed three methods, especially 2D-CLAFIC-m, is
superior to other proposed two-dimensional methods. It implies
that the mean subtraction scheme which uses the covariance
measure is more successful in face recognition problems rather
than the methods using correlation matrix. The 2D-ALS method
generally achieves better results than 2D-CLAFIC method, but
none of these methods show an improvement over their
respective 1D subspace classifier methods. In general, 2D-
CLAFIC-m method gives rise to better recognition results with
less amount of subspace dimension. These results demonstrate
the superiority of the proposed 2D-CLAFIC-m method in face
recognition applications.

The proposed 2D subspace classifiers are typically outper-
formed by 2D-LDA method followed by the nearest-neighbor
classification rule since the face classes have similar covariance
structures. But, this does not make the proposed methods
uninteresting or useless. Because, there are a lot of applications,
in which image classes have different covariance structures. For
instance, the objects in Coil100 database have quite different
covariance structures and LDA based methods yield poor results
compared to subspace classifiers [4]. Moreover, it has recently
become more and more popular to use multiple images for face
recognition [8–10]. As demonstrated in these studies, although
conventional methods using single images, such as LDA, have
been successful in controlled environments, these methods
typically fail in real world applications. On the other hand, the
methods using multiple images are more successful than
conventional methods in real world applications and they are all
built on subspace classifiers. Therefore, we believe that our
proposed methods will find wide application areas in the near
future.

Although we introduced multilinear subspace classifiers,
which allow us to use subspace classifiers with high-order image
tensors, we have not experimented with these methods. In near
future, we are planning to focus on this direction. Since multi-
linear subspace classifiers operate on richer data representations,
we expect to improve the recognition accuracies.
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