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Local Classifier Weighting by Quadratic Programming

Hakan Cevikalp and Robi Polikar

Abstract—It has been widely accepted that the classification accuracy can
be improved by combining outputs of multiple classifiers. However, how to
combine multiple classifiers with various (potentially conflicting) decisions
is still an open problem. A rich collection of classifier combination proce-
dures—many of which are heuristic in nature—have been developed for
this goal. In this brief, we describe a dynamic approach to combine clas-
sifiers that have expertise in different regions of the input space. To this
end, we use local classifier accuracy estimates to weight classifier outputs.
Specifically, we estimate local recognition accuracies of classifiers near a
query sample by utilizing its nearest neighbors, and then use these esti-
mates to find the best weights of classifiers to label the query. The problem
is formulated as a convex quadratic optimization problem, which returns
optimal nonnegative classifier weights with respect to the chosen objective
function, and the weights ensure that locally most accurate classifiers are
weighted more heavily for labeling the query sample. Experimental results
on several data sets indicate that the proposed weighting scheme outper-
forms other popular classifier combination schemes, particularly on prob-
lems with complex decision boundaries. Hence, the results indicate that
local classification-accuracy-based combination techniques are well suited
for decision making when the classifiers are trained by focusing on different
regions of the input space.

Index Terms—Classification, classifier fusion, combining multiple clas-
sifiers, ensemble learning, local classification accuracy, neural networks,
quadratic programming.

I. INTRODUCTION

Ensemble (multiple classifier)-based systems have recently enjoyed
increased attention due to their favorable classification accuracies over
single-classifier systems on a wide spectrum of applications [1]–[5].
Ensemble systems improve generalization performance primarily by
decreasing the variance in classification decisions. This is done by
strategically combining a diverse set of classifiers. Different strategies
can be followed to ensure the diversity among classifiers, e.g. classi-
fiers with identical architectures can be trained on different subsets of
training data, or classifiers with different architectures—such as neural
networks with different number of layers/nodes, error goals, etc.—can
be trained on the entire data set. Classifiers then make different errors
on different instances, and a suitable combination of these classifiers’
decisions can hence reduce the total error [1]. However, how to
combine multiple classifiers with various (potentially conflicting)
decisions is still an open problem.

There is a rich collection of classifier combination strategies in the
literature. These strategies make different assumptions on classifier in-
dependence (dependent [6], [7] or independent [1], [8]), type of classi-
fier output (crisp labels [9], posterior probabilities [1], [8]), aggregation
strategies (global [1], [4], [7] or local [10], [11]), aggregation proce-
dures (a function [4], [12], a neural network [10], an algorithm [9]),
etc. These methods typically fall into one of two categories: classifier
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selection or classifier fusion. Classifier selection approaches use only
one (or few) classifier(s) that is(are) predicted to be the most reliable
in some sense [11], [13]. On the other hand, classifier fusion methods
use some weighted average of many classifiers’ outputs [1], [7]–[9],
[12]–[14]. Such weights can be fixed for any given classifier (as in
AdaBoost [7]), or weights can be dynamically updated for each query
point. Classifier combination strategies also include hybrid approaches
that combine classifier selection and fusion, Dempster–Shafer-based
combination [15], [16], fuzzy integral, and decision templates [5], [6].
Although most classifier combination methods typically employ func-
tions to aggregate classifier outputs, these outputs may also be treated
as an input to a second-level classifier, which then makes the final de-
cision [5], [10]. Comparison and theoretical analyses of these rules are
discussed in [1], [4], [13], and [17].

In this brief, we restrict our attention to local dynamic classifier com-
bination strategies and propose a dynamic weighting scheme to com-
bine classifiers that are trained on different subsets of the training data.
Dynamic classifier combination methods typically include a partition
of the input space. The partitions can be defined based on the degree
of agreement among classifiers [9], by dividing the input space into re-
gions through clustering [6], or by using the neighborhood of the test
sample [11]. In each case, a measure of competency of classifiers is
estimated for each region, and the classification decisions are made by
the most (more) competent classifier(s). For instance, Jacobs et al. [10]
proposed adaptive mixtures of local experts where local experts are
trained to learn from different subsets of the training data. The label as-
signment of a test sample is made through a gating network that decides
which experts should be used for the final decision. Kuncheva [6] intro-
duced a sophisticated dynamic method, which decides between using
local classifier selection or decision templates based on a statistical sig-
nificance test. Similarly, Woods et al. [11] proposed a simple heuristic
approach, dynamic classifier selection by local accuracy (DCS-LA), for
classifier selection based on the local accuracy estimation of the classi-
fiers. In this work, we also follow a similar approach and compute local
classification accuracies. However, unlike DCS-LA, which uses local
accuracies to select a single classifier (hence, classifier selection), we
use local accuracies to determine the best weights of the most compe-
tent classifiers. Therefore, the proposed method can be seen as a hybrid
approach that combines the classifier selection and fusion. Moreover,
the proposed approach also differs from other classifier fusion strate-
gies in the way the weights are computed. Specifically, we propose to
determine the weights by casting the problem as a quadratic optimiza-
tion problem with a convex objective function. Hence, the determined
weights are optimal for the given classifiers and the given query point
to be classified, with respect to the chosen objective function.

The rest of this brief is organized as follows. In Section II, we first
review DCS-LA method and then introduce the proposed method.
Section III describes the experimental results. Finally, concluding
remarks are given in Section IV.

II. METHOD

A. Problem Setting

Let us assume that we have an ensemble of classifiers, each member
of which is trained to become an expert in some local region of the
entire feature space. Such an ensemble can be generated in several dif-
ferent ways. For example, competition among classifiers can be en-
couraged by using a suitable objective function as in mixtures of local
experts [10]. Similarly, neural network classifiers can be trained to be-
come an expert for a particular class by changing the weight decay pa-
rameter as described in [12]. Boosting [18] also allows us to train classi-
fiers with local expertise: AdaBoost iteratively trains a set of classifiers

such that each classifier is dependent on the previous one and focuses
on the instances misclassified by the previous classifiers. As a result,
each classifier becomes an expert on different subsets of data. In our
experiments, we use AdaBoost to train classifiers, however other algo-
rithms may also be used.

Let � � ���� � � � � ��� be a set of � locally expert classifiers
trained on the given data by using one of the techniques mentioned
above and ���� � � � � ��� be a set of classes. We assume that all classi-
fiers produce soft class labels. More specifically, for a given query point
�� � ���, each classifier�� �� � �� � � � � �� produces a�-dimensional
hypothesis vector ������ � ��������������� � � ��������	

� where
������� represents the support given to class � by classifier �, which is
often interpreted as an estimate of the posterior probability 	�������

for class �� , satisfying ������� � �
� �	 and �

���
������� � �. Some

classifiers immediately offer estimates of posterior probabilities, such
as the multilayer perceptron trained with backpropagation. Otherwise,
one can compute these estimates of posterior probabilities by using the
distances to the decision boundaries as described in [8]. Note that the
decision of any classifier can be converted to a crisp label by using the
maximum membership rule when crisp labels are needed for decision
making


 �������� � �� ������� � ��
���������

��������� � (1)

For a given query sample �� and an ensemble of classifiers � , our
objective is to compute nonnegative weights to be used in combining
classifier outputs to label the query. Formally, we search for a weight
vector ���� � �� � � ��	

� where � � 
 and �

���
� � �. Thus,

our goal is to find the best interpolating hypothesis obtained from the
classifier outputs. Once the weights are computed, the final support
for each class �� (an estimate of posterior probability 	�������) is
computed as the weighted sum of the hypotheses of the classifiers in �

	������� �

�

���

��������� � � �� � � � � �� (2)

Due to constraints on the coefficients, the final hypothesis vector
�

���
������� is a convex combination of the contributions of clas-

sifiers in the ensemble. Geometrically, the final hypothesis vector lies
in the convex hull of the classifiers’ output vectors considering these as
data points in �-dimensional hypothesis space. Consequently, better
classification performances can be obtained if the classifier outputs are
diverse (i.e., they are far from each other in the �-dimensional space),
which implies that the volume of the corresponding convex hull is
large. On the other hand, if the classifiers’ output vectors are similar
(i.e., they are close to each other in the �-dimensional space), then
the volume of the corresponding convex hull will be small giving rise
to a combined output, which is also similar to the individual classifier
outputs. During the decision making, the query is assigned to the class
with the highest estimated posterior probability

�� � �� � 	������� � ��
���������

�	�������� � (3)

Before discussing our proposed solution to this problem, we first re-
view a related method called DCS-LA. Similar to the DCS-LA, our pro-
posed method is also built on the concept of local accuracy of the clas-
sifiers in the ensemble. However, the proposed approach is designed to
overcome certain limitations of DCS-LA, which we discuss below.
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B. Dynamic Classifier Selection by Local Accuracy

DCS-LA estimates classifier accuracies in local regions of feature
space near a query sample, and then employs the most locally accu-
rate classifier for labeling the given query point [11]. In contrast to
our proposed method, it does not need soft class labels because it uses
crisp labels in the process. The local regions are defined in terms of the
�-nearest neighbors of the query sample. To estimate the local accu-
racy, the authors described two approaches: 1) overall percentage of the
correctly classified nearest neighbors and 2) local accuracy of the pre-
dicted class—given a classifier that assigns a query point to class �� ,
the nearest neighbors assigned to class �� are found, and the local ac-
curacy of the classifier is then defined as the proportion of those points
whose true labels are �� . The latter approach, also known as the preci-
sion in the context of information retrieval, is preferred by the authors
and others [13] (hence, we will compare our results to those of this
procedure). While these two approaches are individually analyzed and
compared, their combination is not explored in [11]. Merging these two
estimates of local accuracies into a unique framework is one of the fea-
tures of the proposed method.

Furthermore, there may—and usually will be—several winners of
the local accuracy contest, because both DCS-LA approaches use the
crisp labels of the outputs. If these classifiers assign different labels to
the query, making the final decision can be problematic. Tie breaking
is typically handled heuristically by choosing the class that is selected
most often among the tied classifiers. If a tie still exists, the classifiers
with the next highest local accuracy are employed to break the tie. How-
ever, these series of heuristics do not always solve the problem because
there is no guarantee that the ties will be broken by this procedure.

C. Local Classifier Weighting by Quadratic Programming

For a given query and an ensemble of classifiers, our objective is
to determine nonnegative weights of classifiers in the ensemble. Intu-
itively, the weights should reflect the competence of the classifiers in
the neighborhood of the query, and more accurate classifiers should be
weighted more heavily for decision making. Tresp and Taniguchi [19]
proposed a dynamic weighting function defined as the inverse of the
variance depending on the query in the context of regression and they
showed that the variance of a regression module can be used to assess
the local competence of the module. In the classification context, how-
ever, variance-based weighting has serious drawbacks for minimization
of classification errors [12]. Thus, the local accuracy of the classifiers
should be defined based on the classification errors in the neighborhood
of the query �� .

To determine the weights, we minimize the square of the Euclidean
norms of the difference vectors between the weighted classifier out-
puts for training samples in the neighborhood of the query and corre-
sponding target vectors. As in DCS-LA, local regions are defined in
terms of the �-nearest neighbors of the query. As we show below, this
leads to a convex quadratic programming problem and hence a global
optimal solution exists. One may use other loss functions such as the
one defined based on a smooth misclassification measure in [12]. How-
ever, an analytical solution often does not exist for such loss functions,
and the final weights are usually computed using a gradient-descent
procedure that may get stuck in a locally optimum solution. Further-
more, gradient-descent procedures introduce additional parameters to
be fixed and they are very sensitive to initialization. Finding a good ini-
tialization point generally requires a priori information on the problem,
which is typically not available on most practical applications. A poorly
selected initialization, on the other hand, often leads to suboptimal so-
lutions, or even divergence.

Now, let ����� � ��� � � � �� �
� be a �-dimensional true class index

(target) vector whose �th component is 1, with all others zero, if the �th
nearest neighbor �� comes from class �� . Then, the weight estimation
problem can be formulated as

��	
��� �

�

���

������

�

���

��������

�


��� �� � �	

�

���

�� � � (4)

Because �

��� �� � , the associated error for a single neighbor ��
can be written as


���� �

�

���

�� �������� ������

�

� (5)

This error term is equal to���������������where the matrix���� �

����� is

�
���� �

���
��

�	���	���	�
��������������	������������� � (6)

Here, ��	 �� denotes the dot product between two vectors. Note
that ���� is a symmetric positive-semidefinite matrix. If we let
� � �

����
���, then our initial weight estimation problem can be

written as

��	
��� �

�����
�
������


��� �� � �	

�

���

�� � � (7)

This is a quadratic programming problem that can be solved using
standard optimization techniques. Note that the Hessian matrix
� � ����� is a positive-semidefinite matrix, thus the cost function is
convex and a global minimum exists. Moreover, the matrix � is more
likely to be strictly positive definite if the multiplication of number of
classes and the number of the nearest neighbors ����� is larger than
the number of classifiers �. In this case, the solution is unique and
it is guaranteed to be the global minimum. One may ask under what
condition on the matrix �, the best single classifier is also equivalent
to the best combined classifier. To answer this question, we first define
the best single classifier 
 such that �

 � ��	������. Then, the
following observation adopted from [20] holds.

Observation 1: The best single classifier 
 in the ensemble is also
the best combined classifier if and only if

�

 � ��
	 for all � � 	 � � � 	 �� (8)

D. Integrating Confidence of Classifier Decisions
to the Objective Function

We note that the above-described estimation procedure does not uti-
lize the information on whether classifier outputs agree on the label of
�� . This can be problematic especially if the classifiers yielding the
smallest error disagree on the label of the query. In such cases, the
weights will be shared randomly among such classifiers (all yielding
the smallest error) even though these classifiers assign different labels
to �� . However, as empirically demonstrated in [11], local accuracy of
a classifier in the ensemble with respect to the predicted class (i.e., pre-
cision), which can be seen as a measure of confidence of the classifier
in its decision, is an important guide for the decision making. Using
this measure for the classification may yield better results than using
overall local classification accuracy only. Therefore, we add another
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term to the cost function to include this information merging the two
separate definitions of local accuracy discussed in [11]. The cost of this
integration is one additional design parameter as described below.

Assume that a classifier �� assigns �� to the class �� . Then, the
corresponding confidence of the classifier is estimated as

��� �
���

��� � ��� � ���
(9)

where ��� is the number of nearest neighbors correctly classified as
class �� (true positives), ��� is the number of nearest neighbors erro-
neously classified as class �� (false positives), and ��� is the number
of samples in class �� that are erroneously assigned to other classes
(false negatives). This confidence measure is similar to the local class
accuracy (precision) concept of DCS-LA with the exception that we
also include ��� term. The chosen weights must then maximize the
weighted sum of confidences, thus the new weight estimation problem
can be written as

���
��� �

�����
�
������� ��

�
�����

��	� �� � 
	

	

���

�� � �� (10)

where � � ����    ��	�
� is the column vector of class confidence

measures, and � is the regularization parameter that controls the
tradeoff between the local classification accuracy and confidence of
classifiers on the weight estimation. We call the proposed method local
classifier weighting by quadratic programming (LCW-QP).

Guide for Setting Design Parameters: For a given ensemble of clas-
sifiers, the proposed method has two design parameters: the number of
the nearest neighbors 
 and the regularization parameter �. The shape
of the decision boundaries among classes, the type of the classifiers in
the ensemble, and the sparsity of the training samples greatly affect the
optimal values of these parameters. In other words, choosing best pa-
rameters is data and application dependent. Therefore, these parameters
should be determined by fivefold or tenfold cross-validation or leave-
one-out procedure. Because we have two parameters, this requires a
search in a 2-D parameter space. We follow a global coarse-to-fine
search to set parameter values. Specifically, we first determine the min-
imum and maximum values of design parameters that produce accept-
able classification rates by coarsely searching over a wide range of the
parameter space. Then, we construct a coarse grid over the unknown
parameters using these computed values and finally perform a local
search near the parameters yielding the best classification rate and com-
pute the final best values.

III. EXPERIMENTS

We tested the proposed method on binary and multiclass classifi-
cation problems using several benchmark and real-world databases,
comparing the approach to the maximum, average, sum, and product
classifier combination rules, the weighted majority voting used in Ad-
aBoost, and the DCS-LA method described earlier. In all experiments,
the classifiers were trained using the AdaBoost distribution update rule,
however, the classifiers so created were combined using the aforemen-
tioned methods, as well as the proposed approach. In addition, we also
trained strong neural network classifiers with different architectures for
United States Postal Office (USPS) handwritten digit database.1 For
binary classification tasks, decision stumps were used as weak base
classifiers whereas (stronger) neural network classifiers were chosen

1Available at ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data

in the multiclass classification problems. The number of base classi-
fiers in the ensemble is fixed based on the performance of the weighted
majority voting rule, which is the native combination rule used in Ad-
aBoost. The individual decisions were converted to crisp labels by the
maximum membership rule when crisp labels were needed for classi-
fier combination. Unless stated otherwise, all design parameters and
base classifier parameters were determined through fivefold cross val-
idation. We followed a global coarse-to-fine search in the parameter
space in each experiment and we covered values between 1 and 30 for

 (1 and 50 for the USPS database), and values between 0 and 5 for �.

A. Binary Classification Problems

In this group of experiments, we first conduct experiments on rotated
Checkerboard data and investigate the effects of the algorithm parame-
ters (
 and �) on the classification performance. Then, we test the gen-
eralization performance of the proposed approach on other two-class
databases.

1) Experiments on the Rotated Checkerboard Data: We ex-
perimented with two variations of the rotated Checkerboard data,
where each class covers specific regions of a 2-D input space with
the second distribution being more challenging than the first one as
shown in Fig. 1. An ensemble of � � �
 base classifiers were trained
using decision stumps as base classifiers for the first distribution and
� � �
 base classifiers were trained for the second. Because the
decision stumps do not readily provide estimations of the posterior
probabilities, the sigmoids of the distances to the decision boundaries
were used to obtain estimation of posterior probabilities. To fix the
parameter values, we randomly sampled 500 samples for training and
5000 samples for testing. This was repeated five times and parameters
were set to the values yielding the best average classification rate.
The best parameter values were found as 
 � � and � � � for
the first Checkerboard distribution and 
 � � and � � � for the
second. To test the generalization performance, we repeated the above
procedure ten times and the final classification rates were determined
by averaging the classification accuracies of each run. The results are
given in Table I, where the asterisks indicate performance differences
that are statistically significant at 5% level between the given method
and the corresponding best result indicated in bold. Table I indicates
that the proposed method significantly outperforms other combination
rules. The improvement is particularly high for the more challenging
second Checkboard data.

We have also conducted experiments to observe the effects of
changing the regularization parameter and the number of the nearest
neighbors on the generalization performance. To do so, we first fixed
the number of the nearest neighbors to the best values found by the
search scheme described earlier and then varied the regularization
parameter value. The results are illustrated in Fig. 2(a). The best
classification accuracy is obtained as 91.32% for � � 
 and 87.09%
for � � 
�� on the first and second Checkerboard distributions, respec-
tively. These results imply that the method is not very sensitive to the
changes on the regularization value. Then, we fixed the regularization
parameter to those values yielding the best classification accuracies
and varied the number of the nearest neighbors. The results are illus-
trated in Fig. 2(b). We note that the approach is indeed sensitive to the
changes in the number of the nearest neighbors. The best classification
rates are successively obtained as 92.81% and 87.35% for 
 � � on
the first and second distributions, and they monotonically decrease as

 further increases.

We should note that the improvement on the classification perfor-
mance obtained by LCW-QP comes at a cost of additional computa-
tional complexity. In particular, additional computations are required
for the nearest neighbor search and solving the quadratic programming
problem. In the first Checkboard data classification problem using 50
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Fig. 1. Checkerboard database has two classes and each class covers the regions shaded in different colors. We sampled data points from two distributions—(a)
and (b)—where the second distribution (b) is more challenging than the first one (a).

Fig. 2. Classification rates under variation in various parameters. (a) The classification rates as a function of the regularization parameter. (b) The classification
rates as a function of the number of nearest neighbors.

base classifiers, it approximately takes 0.18 ms for the nearest neighbor
search, 2.1 ms for evaluation of the base classifiers, and 34.2 ms for
solving the quadratic programming problem on a 2.40-GHz machine
with 4 GB of RAM. Testing times for evaluation of the base classi-
fiers and quadratic programming problem depend on the number of the
base classifiers in the ensemble. On the other hand, testing time of the
nearest neighbor search depends on the training set size and the dimen-
sionality of the input space. If the dimensionality and/or training set
size are large, we can employ fast nearest neighbor search algorithms
such as KD-trees [21] or locality sensitive hashing [22] to speed up the
search procedure.

2) Experiments on Other Binary Classification Problems: In these
experiments, we compared algorithms on five two-class databases:
Iris,2 Wisconsin Diagnostic Breast Cancer (WDBC), Pima, Banana,
and Lithuanian Classes (LC) databases. Among these, the first three
come from the University of California at Irvine (UCI) machine
learning repository3 and the remaining two databases are created using
PRTOOLS Matlab toolbox.4 The key features of these databases are
summarized in Table II. In all experiments, we used fivefold cross
validation to estimate design parameters and tenfold cross validation
to assess the generalization performance.

2In fact, Iris database has three classes. One class is linearly separable from
other two and the latter two are not separable from each other. We removed the
linearly separable class in our experiments, leaving two classes for this experi-
ment.

3From http://archive.ics.uci.edu/ml/
4From http://www.prtools.org/

TABLE I
CLASSIFICATION RATES (IN PERCENT) FOR THE CHECKERBOARD DATA

TABLE II
KEY FEATURES OF SELECTED DATABASES

The results are given in Table III. The number of the base classi-
fiers used in each ensemble is given in the square brackets for each
database. The results suggest that when the classes are close to being
linearly separable as in Iris and WDBC, most of the classifier com-
bination strategies yield similar results, with DCS-LA having a slight
lead. As the decision boundaries become more complex (Banana and
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TABLE III
CLASSIFICATION RATES (IN PERCENT) ON SOME TWO-CLASS DATABASES

TABLE IV
CLASSIFICATION RATES FOR THE VOC DATABASE

LC databases), the proposed method takes the lead and finally it signif-
icantly outperforms all other methods when the classes are very hard
to separate as in the Pima database.

B. Multiclass Classification Problems

1) Experiments on the Volatile Organic Compound Database: The
Volatile Organic Compound (VOC) database comes from a real-world
application, where the goal is to determine the identity of a volatile
organic compound, detected by an array of six quartz crystal microbal-
ance-type sensors. There are five VOCs of interest (ethanol, octane,
toluene, xylene, and trichloroethylene). The identification must be
invariant to the concentration of the VOC, which makes this problem
a challenging one, as different VOCs at different concentrations
may—and typically have—similar responses from different sensors.
The small size of this 6-D, five-class data set with 384 samples, also
adds another challenge. Additional information and the database itself
are available online.5

We trained � � �� classifiers using AdaBoost distribution update
rule. Because this is a relatively challenging multiclass problem, deci-
sion stumps were not appropriate as base classifiers. Therefore, we used
the feedforward multilayer perceptron neural network (MLPNN) clas-
sifier as base classifiers. We deliberately left the MLPNNs undertrained
via early stopping and small architecture (ten hidden-layer nodes). The
number of the nearest neighbors was determined as � � �, and the
control parameter � was determined as one through fivefold cross val-
idation. Also, due to particularly challenging small size of this data
set, we used leave-one-out to assess the classification accuracy. This
process was also repeated five times and the final classification ac-
curacy was determined by averaging the classification accuracies ob-
tained in each run. The classification results are given in Table IV. As
before, the asterisks indicate performance differences that are statisti-
cally significant at 5% level between the given method and the corre-
sponding result in bold. We observe that the proposed method LCW-QP
significantly outperforms other classifier combining strategies.

2) Experiments on the USPS Database: The USPS database con-
tains 9298 16� 16 gray-scale images of handwritten digits where 7291
images are allocated for training�validation and the remaining 2007

5Available at http://users.rowan.edu/~polikar/RESEARCH/vocdb.html

TABLE V
CLASSIFICATION RATES WITH WEAK CLASSIFIERS ON THE USPS DATABASE

for testing. Because the training, validation, and test sets are fixed, de-
sign parameters are set by using allocated validation set and the gener-
alization performances are assessed on the allocated test set. We per-
formed two different types of experiments. In the first one, we trained
weak classifiers, whereas in the second experiment, we trained strong
neural network classifiers with different architectures to observe the
generalization performance of the proposed method on strong classi-
fiers.

For the first experiment, we trained � � �� MLPNN classifiers.
Each MLPNN had one hidden layer with ten nodes, with all layers
using sigmoidal activation functions. The number of the nearest
neighbor was set to � � ��, and the control parameter to � � ���.
The classification rates are given in Table V. In the table, we also give
the classification rate of the single best (SB) classifier in the ensemble.
Except for the weighted majority rule, all other classifier combination
methods improve the recognition accuracy over the best classifier in
the ensemble. The recognition accuracies of classifier combination
schemes are mostly similar. This indicates that the weak classifiers are
not adequately diverse, and most of the misclassified samples overlap.
Nevertheless, the proposed method takes the advantage of small diver-
sity among the classifiers and achieves the best performance among
all other classifier combination strategies. In the second experiment,
we trained � � � strong classifiers, one MLPNN and four radial
basis function (RBF) neural network classifiers. The MLPNN had one
hidden layer with 100 nodes. The sigmoidal functions were used in
the hidden and output layers. For the RBF neural network classifiers,
we used spherical Gaussian function �� � ��	
��� � ���

�����,
	 � �
 � � � 
 �, as hidden unit function, where � represents the number
of hidden units. To ensure the diversity among the classifiers, each
RBF classifier was initialized with different number of hidden units

�� at different positions. The number and the initial positions of the
hidden units were determined by using the support vector machines
(SVMs) [23]. We first trained one-against-all SVM [24] classifiers
using linear kernel, polynomial kernels with degree � � �
 , and the
Gaussian kernel. Then, extracted support vectors were used to initialize
the centers of RBF neural network classifiers. The initial widths of all
hidden functions were fixed to �� � ������, 	 � �
 � � � 
 �, where
��� is the minimum distance among all support vectors belonging
to different classes. The control parameter � was again set to 0.5. All
parameters were chosen using the error rates of the allocated validation
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TABLE VI
CLASSIFICATION RATES WITH STRONG CLASSIFIERS ON THE USPS DATABASE

set. After fixing classifier parameters, the validation set is added to the
training set and the classifiers are retrained using this new training set.
Classification rates are given in Table VI.

The minimum error rate is obtained by the proposed weighting
scheme using � � �� nearest neighbors. Using other classifier
combination schemes yields worse recognition accuracies than the
accuracy of the best classifier in the ensemble. It should be noted that
the majority, sum, and product rules smooth out the differences among
the classifiers because these combination rules implicitly assign static
weights to all classifiers. Consequently, it is not possible to choose
the best classifier for a given sample, resulting in poorer results. On
the other hand, the proposed scheme successfully chooses the best
classifiers for a particular sample and ignores the contribution of
other less accurate classifiers by assigning dynamic (instance specific)
weights to all classifiers. As a result, an improvement is obtained over
the best single classifier in the ensemble.

IV. SUMMARY AND CONCLUSION

In this brief, we proposed a local dynamic weighting system to lin-
early combine classifiers. For a given query sample, we estimate local
classification accuracy of each classifier and classifier confidences
for labeling the query. The local regions are defined in terms of the
�-nearest neighbors of the query. Estimating local weights of classi-
fiers is formulated as a convex quadratic optimization problem. The
optimization returns nonnegative weight coefficients such that the most
locally accurate classifiers contribute more to the decision making
whereas the contribution of less accurate classifiers is largely ignored.
There are two parameters to be fixed in the proposed method: the
number of the nearest neighbors� and the regularization parameter �.
Although the method’s generalization performance greatly depends on
the number of chosen nearest neighbors, the regularization parameter
does not appear to have the same impact on the performance. In most
cases, the best values of � were small, suggesting that the classifiers
yielding the smallest error on the nearest neighbors typically agree
on the label of the query point, which in turn reduces the effect of
classifier confidence term in the optimization procedure. Nevertheless,
small improvements were obtained by nonzero values of � in our
experiments. Hence, keeping the classifier confidence term makes the
method more flexible and versatile for various classification tasks.

To demonstrate the efficacy of the proposed weighting scheme, we
tested it on both binary and multiclass classification problems. The pro-
posed scheme along with DCS-LA outperformed other existing classi-
fier combination methods in all cases verifying that local classifica-
tion-accuracy-based combination methods are better suited when clas-
sifiers are trained by focusing on different regions of the input space.
Compared to the other local combination rule DCS-LA, the proposed

method generally yielded better results, particularly when the decision
boundaries are highly nonlinear and complex.
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