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Abstract

Nearest neighbour classifiers and related kernel meth-
ods often perform poorly in high dimensional problems be-
cause it is infeasible to include enough training samples to
cover the class regions densely. In such cases, test sam-
ples often fall into gaps between training samples where
the nearest neighbours are too distant to be good indica-
tors of class membership. One solution is to project the
data onto a discriminative lower dimensional subspace. We
propose a gap-resistant nonparametric method for finding
such subspaces: first the gaps are filled by building a con-
vex model of the region spanned by each class – we test the
affine and convex hulls and the bounding disk of the class
training samples – then a set of highly discriminative direc-
tions is found by building and decomposing a scatter matrix
of weighted displacement vectors from training examples to
nearby rival class regions. The weights are chosen to focus
attention on narrow margin cases while still allowing more
diversity and hence more discriminability than the 1D lin-
ear Support Vector Machine (SVM) projection. Experimen-
tal results on several face and object recognition datasets
show that the method finds effective projections, allowing
simple classifiers such as nearest neighbours to work well
in the low dimensional reduced space.

1. Introduction

Although high-dimensional feature spaces often contain
the information needed for effective multi-class classifica-
tion, it can be difficult to exploit this with simple near-
est neighbour classifiers or related kernel methods [27,21].
This is particularly true when the classes have high intrinsic
dimensionality: it is seldom feasible to cover such classes

densely with training samples and the resulting sparse scat-
ters of samples tend to have many ‘holes’ – regions that have
few or no nearby training samples from the class. When
such regions lie close to inter-class boundaries1 the near-
est training samples may lie in the wrong class, thus lead-
ing to classification errors. One way to control such ef-
fects is to find a small set of particularly discriminant fea-
tures or directions and project the feature space onto these,
thus reducing the dimensionality while still preserving suf-
ficient inter-class separability for classification. Margin-
based classifiers [7,5,16] such as SVM’s and perceptrons
are an extreme case in which just one discriminant direc-
tion is retained. However two class problems that are not
linearly separable and multi-class problems require multi-
dimensional projections to provide the necessary separabil-
ity, which in turn implies the use of non-trivial classifiers
within the reduced subspace.

In this paper we study an approach that uses margin-
based sample reweighting to find a good set of linear dis-
criminant projection directions. The method begins by ‘fill-
ing in the holes’ by approximating each high-dimensional
class with a convex set containing its training samples. This
is a reasonable strategy because high-dimensional approx-
imations tend to be simple: for a fixed sample size, the
amount of geometric detail that can be resolved usually
decreases rapidly as the dimensionality increases [11,14].
Here we test methods based on the affine hull of the train-
ing samples, their convex hull, and their bounding hyper-
disk (the intersection of their affine hull and their minimum
volume bounding hyper-sphere). For each training sample,
we calculate the displacement vector linking it to the clos-
est point on the convex approximation of each other class.
The vectors are reweighted to focus attention on the hard-

1Inter-class margin � hole radius ≈ local separation of same-class
training samples.



to-classify narrow margin cases, and informative projection
directions are chosen by extracting the dominant directions
of the resulting weighted set using singular value decom-
position of the set itself or eigendecomposition of the cor-
responding scatter matrix. Samples are classified by pro-
jecting them into the discriminant subspace and applying
a conventional classifier: here we used nearest neighbour
classifiers for simplicity but any other nonlinear classifier
could be used.

To illustrate the possible applications of the proposed
method, we provide experimental results on several high-
dimensional visual recognition tasks including face recog-
nition. This is a good illustration because face images
vary along many dimensions, even for a single person, and
there are typically only a few training images for each
person. The results show that the proposed method finds
highly discriminant low dimensional projections that com-
pare favourably to existing methods.

1.1. Related Work

Many dimensionality reduction methods have been ap-
plied to face recognition. Principal Component Analy-
sis (PCA) [26] and Fisher Linear Discriminant Analysis
(FLDA) [2] are both popular, but they have their deficien-
cies. The PCA optimizes for reconstruction rather than dis-
crimination, and FLDA is constrained both by its Gaussian-
with-equal-covariance construction and by its inability to
handle degenerate class covariances (prior projection onto
the span of the covariances is possible but it tends to remove
much of the discriminant information).

Local neighbourhood based nonlinear dimensionality re-
duction techniques such as Isomap [25], Locally Linear
Embedding [20], Stochastic Neighbor Embedding [13] and
Laplacian Eigenmaps [3] have also been used, but these are
essentially descriptive methods not discriminative ones. In
fact, as initially defined they handle only training data. To
incorporate test samples an additional local transformation
matrix must be learned, e.g. as in Neighborhood Compo-
nents Analysis (NCA) [9] or Locality Preserving Projec-
tions (LPP) [12], and the resulting projection is still not de-
signed for optimal discrimination. Moreover, all of these
methods typically rely on unlabelled nearest neighbours to
construct their local neighbourhood graphs so they are sub-
ject to hole artifacts just like other nearest neighbour meth-
ods.

One way to reduce the influence of holes is to take ac-
count of known degrees of variability in the classes, ei-
ther introducing a distance function that downweights the
most variable directions (tangent distance in the local case,
Mahalanobis distance in the global one) or explicitly gen-
erating and including additional training samples by de-
forming existing ones according to the expected variation
model [22]. This works to some extent, but there is a limit

to the number of such samples that can be handled, particu-
larly when the expected variations are high-dimensional. If
a well-adapted distance function is available it should cer-
tainly be used, but we still prefer to explicitly fill in the holes
using a convex class model.

Some techniques learn a distance metric that ensures that
samples with the same (or semantically similar) labels re-
main close while samples with different labels are pushed
apart [29,6]. However, learning a general distance metric
in high-dimensional spaces is impractical as the number of
parameters to be estimated is the square of the dimensional-
ity. Thus, in high-dimensional feature spaces these methods
must be preceded by dimensionality reduction, which may
remove a lot of the discriminant information. In fact, such
methods are typically more suitable for retrieval purposes
rather than classification.

A method that is more closely related to ours is Margin
Maximizing Discriminant Analysis (MMDA) [16]. This at-
tempts to preserve as much discriminant information as pos-
sible by projecting the dataset onto margin maximizing di-
rections (separating hyperplane normals) found by an SVM
algorithm. Like SVM, MMDA is intrinsically a two-class
approach and the best strategy for generalizing it to multi-
ple classes is unclear.

The above methods all select generic projection direc-
tions (linear combinations of input features). Another class
of methods is designed to select useful subsets of input
features (information gain, mutual information, odds ratio,
etc.) [10,30]. Such variable selection methods usually re-
quire combinatorial search and we will not consider them
here.

2. Method

Our approach is based on bounding each training class
c with a convex set Hc and using the weighted displace-
ment vectors between the training samples and these sets to
choose suitable projection directions. We first describe how
we estimate the projection given the bounding sets, then we
consider several kinds of bounding sets. Let P(x, H) de-
note the projection of a point x on a convex set H (i.e. the
point in H that lies closest to x), dx(x, H) = x−P(x, H)
denote the displacement vector from x to H , d(x, H) =
‖dx(x, H)‖ denote the corresponding point-set distance
and d̂(x, H) = dx(x, H)/d(x, H) denote the correspond-
ing unit-norm displacement direction. The basic intuition
is that the displacement vectors from a class to the nearby
training examples of other classes are useful projection di-
rections because they allow the class to be separated from
its nearby rivals. Compare this to SVM, which uses a single
projection direction – the displacement between the con-
vex hulls of the training examples of its two classes. This
is problematic when the classes are not linearly separable



and also in the multiclass case. Our aims are more mod-
est. We do not necessarily expect the classes to be linearly
separable, but we would like to find a set of projection di-
rections that is rich enough to allow the projected classes
to be separated with a generic classifier (nearest neighbour,
nonlinear SVM, etc.) while still remaining sufficiently low
dimensional to avoid the gap effect.

To implement this we take our projection directions to be
the largest few eigenvectors of the weighted scatter matrix
of the normalized training displacements over all classes

S =
C∑

c 6=c′=1

Nc∑
i=1

w(xci,Hc′ )
Nc

d̂(xci, Hc′) d̂(xci, Hc′)> (1)

or equivalently the largest few singular vectors of the matrix
of the weighted training displacements[

. . . ,

√
w(xci,Hc′ )

Nc
d̂(xci, Hc′), . . .

]
c6=c′∈1...C,i=1...Nc

(2)

Here, xci ∈ IRd are the training samples, c = 1, . . . , C
indexes the C classes and i = 1, . . . , Nc indexes the Nc
samples of class c. w(x, H) is a heuristic weighting func-
tion that focuses attention on the training examples that are
most relevant for the separation. It is typically a decreasing
function of the point-class distance d(x, H). By default we
will use a simple exponential

w(x, H) = exp (−d(x, H)/q) (3)

where q is a global scale parameter that needs to be set
by cross-validation. We have also experimented with more
scale-independent local weighting functions of the form

w(xci, Hc′) = 2
min{d(xci,H

knn
c )α,d(xci,H

knn
c′ )α}

d(xci,Hknn
c )α+d(xci,Hknn

c′ )α
, (4)

where Hknn
c and Hknn

c′ are respectively the convex bounding
sets of xci’s k nearest neighbors in classes c and c′ and α
is a sharpness parameter. These functions typically have
sigmoid-like behaviour, remaining close to 1 within c and
near the decision boundary and dropping fairly rapidly to
zero as we move away from the boundary.

Given S, we take its largest few eigenvectors as the pro-
jection directions, i.e. we find a rectangular orthogonal ma-
trix U that maximizes J(U) = trace(U>SU). We either
take sufficiently many projection directions to ensure that
a given fraction (typically 90–98%) of the overall energy
(sum of the eigenvalues) is retained, or set the number to
optimize a performance metric such as cross-validated clas-
sification error.

2.1. Affine Hull (AH) Case

We now specialize to the case where each class is ap-
proximated by the affine hull of its training examples

Haff
c =

{
x =

∑Nc

i=1 αi xci
∣∣ ∑

i αi = 1
}

(5)

We suppose that the affine hulls have dimension less than
d, so they are proper subsets of IRd. This necessarily holds
for small training sets in high dimensions, Nc � d, and
in practice we find that the affine hull method often works
surprisingly well in this case despite the fact that it provides
only a rather loose bound on the training samples. The pro-
jection of a point x ontoHaff

c gives a displacement vector of
the form dx(x, Hc) = P⊥c (x − µc) = (I − Pc)(x − µc)
where Pc projects along the directions spanned by the vec-
tors within Haff

c , P⊥c is the complementary orthogonal pro-
jection and µc is the mean of the class c training samples (or
any other reference point withinHaff

c ). Note that the projec-
tion vector µ⊥c = P⊥c µc of µc is not zero in general – it
encodes the orthogonal displacement of the affine subspace
Hc from the origin.

Numerically, Pc = QcQ>
c where Qc is the U matrix

of the thin SVD (or equivalently the Q matrix of the thin
QR decomposition) of the matrix of centered class-c train-
ing examples [xc1 − µc, . . . ,xcNc

− µc]. This allows point
projections to be computed on the fly using Qc without ex-
plicitly evaluating and storing the d× d projection matrices
Pc and P⊥c .

In practice the training data is often somewhat noisy.
This can lead to the inclusion of spurious ‘noise’ dimen-
sions within the affine hulls, which can harm inter-class dis-
criminability. To reduce this we suppress dimensions of the
SVD (and hence of Qc) that correspond to overly small sin-
gular values.

2.2. Convex Hull (CH) Case

The affine hull gives a rather loose approximation to
the class region because it does not constrain the position
of the training points within the affine subspace. Alterna-
tively we can take a maximally tight bound by approxi-
mating the class region with the convex hull of the train-
ing samples. To do this we need to include non-negativity
constraints αi ≥ 0, i = 1, . . . , Nc in (5) and replace the
affine displacement and distance computations with convex
hull based ones. Given a query point, finding the closest
point on a convex hull in general requires the solution of a
quadratic programming problem [27]. However for classes
whose training samples are affinely independent, the hull is
a simplex and we can compute the closest point with a sim-
ple elimination procedure: successively project the input
point onto the affine span of the training samples (simplex
vertices), write the result as a linear combination of these
with weights αi, and eliminate the vertex with the most



negative weight. Continue until all vertices have positive
weights αi. The final projection point is the desired output.

In the two class case our convex method has some simi-
larities to a classical linear SVM. The SVM finds the min-
imum distance vector between the convex hulls of the two
classes [8,4] and projects the dataset onto this unique di-
rection. All of the weight is concentrated on the points of
closest approach of the hulls (expressed as convex combina-
tions of support vectors) and only one projection direction is
used. In contrast, our convex method finds distance vectors
from the convex hull of each class to the training samples
(not the convex hull) of the other classes and uses a weight-
ing that grades off more gradually with distance to find a
number of promising projection directions using all of the
data points, not just the closest points on the convex hulls
as in SVM.

2.3. Bounding Disk

If the affine hull gives a rather loose approximation to the
class, the convex hull method often gives an over-tight one
because training examples are necessarily rather sparse in
high dimensions and the class region is likely to extend well
beyond their convex hull. As a third alternative we develop
an approximation based on intersecting the affine hull of the
training points with their bounding hypersphere (the small-
est hypersphere enclosing all of them). This gives hyper-
disk shaped class regions that can be computed economi-
cally and that support rapid nearest point computations. We
are not aware of any other machine learning methods based
on bounding hyper-disks, but bounding hyperspheres have
often been used for both outlier detection [24] and classifi-
cation [28].

The minimum bounding hypersphere of a point set
{xi | i = 1, . . . , N} is characterized by its center c and
radius r. These can be found by solving the following
quadratic optimization problem

min
c,r2,ξ

(
r2 + γ

∑
i

ξi

)
s.t. ∀i ||xi − c||2 ≤ r2 + ξi,

(6)
or its dual

min
α

∑
i,j

αiαj xi · xj −
∑
i

αi ‖xi‖2


s.t.
∑
i

αi = 1, ∀i 0 ≤ αi ≤ γ.
(7)

Here, the αi are Lagrange multipliers and γ ∈ [0, 1] is a
ceiling parameter that can be set to a finite value to eliminate
over-distant points as outliers [24]. The center of the hyper-
sphere is then c =

∑
i αi xi and its radius is r = ‖xi − c‖

for any xi with 0 < αi < γ.

Given an arbitrary point x, the closest point on the
hyper-disk can be computed by projecting x onto the affine
subspace supporting the disk, then, if the projected point
xaff = P(x, Haff) is not already within the disk, moving
along the line from the projection to the disk center until
the boundary of the disk is crossed, i.e. P(x, Hdisk) is xaff
if ‖xaff − c‖ ≤ r and c + r

‖xaff−c‖ (xaff − c) otherwise.

3. Experiments
We illustrate the proposed affine hull (‘MBDR-AH’),

convex hull (‘MBDR-CH’), and hyper-disk (‘MBDR-INT’)
methods with experiments on four high-dimensional super-
vised classification tasks from visual recognition, compar-
ing them to Fisher Linear Discriminant (‘FLDA’), Locality
Preserving Projections (‘LPP’) [12] and linear Support Vec-
tor Machines (‘SVM’). For all four tasks the within-class
scatter matrices have rank less than d owing to the high di-
mensionality of the visual feature space. Both FLDA and
LPP require nonsingular scatter matrices so before apply-
ing them we used the PCA of the total scatter to project
the training data onto a subspace in which the within-class
scatter had full rank. LPP used the heat kernel method to
compute its weights and the k-nearest neighbors from each
class to construct its adjacency graph. We tested both the
exponential and the local weighting functions (3,4) and they
yielded similar results. We report the results for the expo-
nential weighting function here. The outlier detection in
the hyper-disk method was disabled by setting the ceiling
parameter γ to 1. For multi-class SVM we used the one-
against-all approach. For each method we optimized the
algorithm parameters using a global coarse-to-fine search,
using random partitions of the training data into training and
validation sets unless the data set designates a validation set
for this purpose.

To demonstrate how effective our method is at ‘filling in
the holes’ we used a very simple classifier – nearest neigh-
bours (NN) – in the reduced space. We also ran some tests
using SVM’s and distances to the affine or convex hulls of
the training samples in the reduced space, but for brevity we
do not report on these here.

3.1. ORL Face Dataset

The Olivetti-Oracle Research Lab (ORL) face dataset2

contains 10 upright frontal face images per person of C =
40 individuals. The images are 92 × 112. They were taken
at different times and they have slightly different lighting
conditions, image positions, facial expressions and facial
details. For this experiment we used the raw image pixels
as input features without applying any visual preprocessing.
For training we randomly selected k = 3, 5, 7 images of
each individual, keeping the remaining 10 − k for testing.

2From http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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Methods k = 3 k = 5 k = 7
MBDR-AH 88.43% 94.45% 97.67%
MBDR-CH 88.36% 94.45% 98.67%
MBDR-INT 88.43% 94.45% 98.42%
SVM 87.11% 95.20% 97.58%
FLDA 86.07% 93.00% 94.42%
LPP 86.75% 91.95% 94.08%

Figure 1. Recognition rates on the ORL Face dataset as a function of number of projection directions for k = 3 (top left), k = 5 (top right)
and k = 7 (bottom left) training examples per subject, with testing on the remaining 10−k. (Bottom right) The best computed recognition
accuracies.

(a) (b)
Figure 2. Some image samples from extended Yale-B face database: (a) original images; (b) the corresponding illumination normalized
images.

We tested the methods with various numbers of projection
directions, in all cases using a Euclidean NN classifier in the
reduced space for classification. The reported recognition
rates are averages over 10 random test/training splits.

The results are shown in figure 1. As can be seen, our
proposed methods outperform the other linear dimension

methods in all cases, particularly for low-dimensional pro-
jections. For k = 3, 5 all three methods gave very similar
results with the affine hull based methods having a slight
lead. For k = 7 the convex hull method was preferred. Our
proposed methods have similar performance to a classical
SVM classifier – all of the proposed methods slightly out-
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Figure 3. Recognition rates on the extended Yale-B face dataset as
a function of the number of projection directions.

perform SVM for k = 3, 7 while SVM wins for k = 5.

3.2. Extended Yale-B Face Dataset

To study the performance of the methods in a more chal-
lenging and realistic scenario, we also tested them on the
Extended Yale Face dataset3. This includes 38 subjects,
each seen from 9 camera poses under 64 illumination con-
ditions that range from straightforward to very challenging.
The images are divided into five subsets according to the an-
gle between the light source direction and the central cam-
era axis. Our experiments used the frontal images, with sub-
sets 1 and 2 (frontal and near frontal lighting) for training
and subsets 3-5 (increasingly severe tangential lighting) for
testing. A robust visual feature set is necessary for accept-
able results on this dataset. After aligning and scaling the
images so that the centers of the two eyes always fall at fixed
coordinates and cropping the results to 120 × 120, we pre-
processed the images to reduce the effects of illumination
variations using the method of [23]. This involves strong
gamma compression, difference of Gaussian (DoG) filtering
with well-chosen inner and outer scales, robust normaliza-
tion of the resulting range of output variations, and strong
sigmoid-based compression to reduce the effects of any re-
maining isolated peaks such as specularities. These steps
greatly reduce the influence of illumination variations, local
shadowing and highlights while still preserving the essential
elements of visual appearance that are needed for recogni-
tion. Some pre-processed images are shown in figure 2. Fi-
nally, Local Binary Histogram features [1] were computed
to give a robust but very high-dimensional visual feature set
for recognition.

Recognition rates as a function of the number of projec-
tion directions are given in figure 3. Again our methods give
the best results. The proposed methods and SVM all had an

3From http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html.

asymptotic error rate of 0.07% on this dataset. To the best
of our knowledge these are state of the art results.

3.3. Visual Object Recognition Problems

We also tested the proposed methods on two ob-
ject recognition datasets: Pascal Challenge 20064 and
Birds [17]. The Pascal dataset contains images of 10 ob-
ject categories. For each category there is a set of natu-
ral images containing objects of the category, taken from
assorted viewpoints and scales under various lighting con-
ditions and often with partial occlusion. There is substan-
tial intra-class variation in all of the categories. The goal
is to predict whether or not objects from the category are
present in each test image. We tested the methods on the
first four categories – bicycles, buses, cars, and cats. In all
there were 2618 training images and 2686 test images. As
before, the nearest neighbour method was used for classi-
fication in the reduced subspace. For SVM we trained a
binary one-against-all classifier for each category, i.e. the
training images from the category being learned were pos-
itives and all of the remaining training images were nega-
tives. Since this is a binary classification problem, we also
tested the MMDA method.

The Birds dataset contains six categories, each with 100
images. It is a challenging dataset with highly cluttered
backgrounds and large intra-class, scale and viewpoint vari-
ations. We used 5-fold cross validation to test the general-
ization performance. As before a nearest neighbor classifier
is used in the reduced space.

We used a “bag of features” image representation for
both datasets as they are too diverse to allow simple geomet-
ric alignment of their objects. In bag of features methods,
patches are sampled from the image at many different po-
sitions and scales, either densely, randomly or based on the
output of some kind of salient region detector. Each patch
is described using the robust visual descriptor SIFT [18]
and vector quantized using nearest neighbour assignment
against a visual dictionary learned from the complete set of
training patches [15]. The “visual words” of each image
are then histogrammed to make a representation analogous
to the bag-of-words one used in document analysis. De-
spite the fact that they only encode image geometry rather
weakly, bag of features representations turn out to be very
effective in content based image classification tasks. Expe-
rience shows that the most critical factor is the number of
patches sampled not the sample selection method [19], so
for simplicity we randomly sampled thousands of patches
per image. The size of the dictionary was 5000 words for
the Pascal Challenge dataset and 2000 for the Birds one.

Our experimental results on the Pascal Challenge 2006
dataset are summarized in table 1. Recognition rates are

4From http://www.pascal-network.org/challenges/VOC/voc2006/index.html.



Methods Bicycles Buses Cars Cats

MBDR,AH 90.3, [9] 94.6, [9] 95.8, [9] 89.2, [9]
MBDR,CH 89.8, [7] 94.4, [13] 94.0, [7] 85.2, [10]
MBDR,INT 90.3, [9] 94.8, [10] 95.8, [11] 89.2, [9]
FLDA 82.3, [1] 91.3, [1] 89.0, [1] 78.7, [1]
LPP 77.8, [10] 87.7, [15] 92.1, [20] 80.0, [15]
MMDA 86.7, [10] 92.1, [13] 94.5, [10] 85.4, [8]
SVM 88.6 93.6 95.0 86.6

Table 1. Recognition Accuracies (%) in terms of AUC on the Pas-
cal Challenge Dataset.

Methods Recognition Accuracies (%)
MBDR,AH 93.83, σ = 1.62, [6]
MBDR,CH 92.99, σ = 2.38, [6]
MBDR,INT 93.83, σ = 1.62, [6]
SVM 93.46, σ = 3.47

FLDA 91.50, σ = 2.59, [5]
LPP 92.66, σ = 2.32, [15]

Table 2. Recognition Accuracies and Standard Deviations for the
Birds Dataset.

given in terms of areas under the ROC curves (AUC). The
number of selected projection directions is given in square
brackets. The affine hull and hyper-disk methods signifi-
cantly outperform the other methods tested including SVM,
particularly for low-dimensional projections. The convex
hull is less good but still outperforms SVM on the Bicycles
and Buses categories.

Table 2 gives the recognition rates for the Birds dataset.
The number of projection directions that were selected is
shown in square brackets. Again the affine hull and hyper-
disk methods come equal first. SVM comes second and the
convex hull method third. The identical performance of the
affine hull and hyper-disk methods suggests that the hyper-
sphere bounds are usually inactive, i.e. the projections of
training samples onto the affine hulls of the other classes
typically lie within those classes hyperspheres.

3.4. Discussion

Despite its simplicity, the affine hull method regularly
outperformed the convex hull one in the experiments. This
can be attributed to the high dimensionality of the input
spaces. For classes that span general regions in high-
dimensional feature spaces, most of their volume is typi-
cally outside of, and often quite far from, the convex hull
of the available training examples. For example, a simplex
spanned by points sampled from a high-dimensional sphere
can include only a negligible fraction of the volume of the
sphere, even if the vertices themselves are well spaced and
close to the surface of the sphere. Filling out the complete

boundaries of the support region of the class would typically
require a number of training samples that is exponential in
the classes affine dimension, which is infeasible in practice.
Hence, in many cases the affine hull and the hyper-disk ap-
proximations are better guides to the region that might be
spanned by the class than the convex hull. Similar com-
ments apply to other convex hull based methods such as
linear SVM: owing to sparse sampling in high dimensions,
true class boundaries often extend well beyond the hyper-
plane of the observed support vectors into the margin.

4. Summary and Conclusion

We have proposed a discriminative linear dimensional-
ity reduction method that attempts to preserve separability
by choosing projection directions that are well-aligned with
inter-class margins while suppressing directions orthogonal
to these. The method works by approximating each class
with a convex set containing its training samples, accumu-
lating a weighted scatter matrix of the vectors separating
each sample from the sets of its rival classes over all train-
ing samples and classes, using the dominant eigenvectors of
the scatter matrix as projection directions and finally apply-
ing a simple classifier (nearest neighbours in our case) in the
reduced space. The separation vector weights are designed
to focus attention on samples that lie close to rival classes.
We tested three methods of this type based respectively on
the affine hull, the convex hull, and the bounding hyper-disk
(the intersection of affine hull and the minimal bounding
sphere) of the training samples. Experiments on four high-
dimensional visual recognition problems suggested that the
proposed methods – particularly the affine hull and hyper-
disk ones – have better performance than most other lin-
ear projection based approaches and that they are competi-
tive with SVM while allowing the easy integration of new
classes.

Ongoing work. For high-dimensional feature spaces, the
eigenvalue problem for the scatter matrix can be trans-
formed into a smaller one with a matrix of size M(C −
1) ×M(C − 1), where M denotes the size of the training
set. However this may be still problematic if the training
set size M is too large. One way to deal with this is to ig-
nore any sample-class pairs whose separation is greater than
some given threshold. Another approach would be to di-
rectly use the geometric nearest distance separation between
manifolds in either a one-against-one or a one-against-all
manner, which would result in ‘easy’ eigendecompositions
of size at most C(C−1)×C(C−1) or C×C. This should
allow the proposed schemes to be scaled to problems in-
volving many training samples. We are also working on in-
corporating the kernel trick into our framework. Given that
affine hulls gave better results than convex hulls in many
of our experiments, the kernelization of affine hull based



methods might yield more efficient classifiers than SVM in
terms of both accuracy and computational complexity.
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