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Abstract: Unmanned aerial vehicles (UAV) are popular research platforms that find increasing amount of 
applications in many areas, such as military, civil, commercial, and entertainment due to their high 
maneuverability, vertical take-off and landing abilities, and suitability for use in indoor and outdoor spaces. Today, 
small, and single board computers with very high CPU/processor capacities are developed, and by means of these 
processors, which will be inserted into unmanned aerial vehicle platforms, many real-time machine vision 
applications became possible. This study discusses the problem of car localization in aerial images taken from 
unmanned aerial vehicles. Within this context, a new dataset was created by using quadcopter-type unmanned 
aerial vehicles and various cameras.  Both Polyhedral Conic Classifier and You Only Look Once (YOLO) 
algorithm, which is currently one of the fastest methods in literature, and uses deep learning architecture, were 
used to locate the cars in collected images, and the results were compared. 

Keywords: Unmanned aerial vehicle, polyhedral conic classifier, deep learning, you only look once. 

1. Introduction  
Object localization is a machine vision application, which requires detection of any example of a general object 

in a digital image along with its position and scale. This has recently become a popular subject with increasing 
number of security, robotics, military, and commercial fields of application. On the other hand, despite of 
numerous significant developments in the last decade, localization of the objects in digital images is very difficult.  
The most important reason for this is that the data samples of the same class differ in terms of appearance, color, 
texture, and pose/exposure. Many natural object groups, such as humans, cats, and chairs, include flexible 
deformations, and similar objects look quite different in images, which were taken from different viewpoints. In 
addition to these difficulties, differences in scale and light, complex backgrounds, overlapping, and cropped object 
images are some of the most significant factors that obstruct the problem of localization. 

There are two main factors that affect the performance of object localization: Features that are used to describe 
the samples, and the learning algorithm that performs object localization process. Histogram of Oriented Gradients 
(HOG) [1], Scale Invariant Feature Transform (SIFT) [2], Local Binary Patterns (LBP) [3], and CNNs 
(Convolutional Neural Networks) are the most common features that are used for object localization. These 
methods can be used separately or as hybrids [4]. In order for the machine to detect the desired object, we must 
use a learning algorithm that separates the object class samples from the background. To this end, classifiers, such 
as support vector machines (SVM), artificial neural networks (ANN), nearest neighborhood, and decision trees 
are used. 
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In recent years, the most effective object localization algorithms have been deep learning-based algorithms. 
Krizhevsky et al. [5] obtained very successful results in image classification through large data by using 
convolutional neural networks. Since then, the interest in deep learning has been rapidly increasing due to the 
higher rates of success. Deep learning has many applications in various machine learning fields, such as image 
processing, sound analysis, classification, and text recognition. The difference between deep learning algorithms 
and other algorithms in machine learning is that it requires data in higher quantities, and devices with very high 
calculation capacity that will be able to process these data with its complex structure. The amount of labeled data 
has reached millions thanks to social media platforms that are used by too many people. Together with advancing 
technology, processors, which are able to run algorithms that are capable of processing these higher amounts of 
data, and deep learning grabbed the attention of companies with high data storage capacities (Google, Facebook, 
Microsoft, Nvidia, Baidu).  In addition, these companies turn their libraries into open source libraries, and greased 
the skids for developments in deep learning. By means of graphics processing units (GPU) developed by Nvidia, 
it became possible to realize real-time deep learning architectures. In line with these developments, real-time 
algorithms in object localization have been developed in recent years.  The most significant ones may be listed as 
follows: YOLO (You Only Look Once) [6], SSD (Single Shot MultiBox Detector) [7], Faster R-CNN (Towards 
Real-Time Object Detection with Region Proposal Networks) [8], YOLOv2 [9].  

In this study, we worked on localization of the cars in the aerial images obtained by quadcopters.  For this 
purpose, object localization algorithm [4] that uses deep learning-based YOLO algorithm and sliding window-
based polyhedral conic classifiers were used, and the performances and real-time performances of these methods 
were compared. 

2. Method 
In this study, the problems about detection and localization of cars in the images taken by quadcopters were 

addressed. Two methods were used for this purpose. The first method is the object localization algorithm that uses 
extended polyhedral classifier – EPCC [4], and the second method is YOLOv2 (You only look once 2) method, 
which is one of the fastest methods in literature that gives the best results. 

2.1. Extended Polyhedral Conic Classifier 
     Unlike support vector machines, extended Polyhedral Conic Classifiers– EPCC model the class of an object as 
a polyhedral region, and use this model for classification purposes. Polyhedral conic function was first introduced 
to literature by Gasimov and Öztürk [10] and extended and used for object localization and classification by 
Cevikalp and Triggs [4]. Extended polyhedral classifier uses the following function, 

𝑓",$,%,& 𝑥 = 𝑤* 𝑥 − 𝑐 +	𝛾* 𝑥 − 𝑐 − 𝑏.   (1) 

In equation (1), x	∈ 𝑹𝒅 denotes d dimensional test data, c ∈ 𝑹𝒅 denotes the vertex of the cone, w	∈ 𝑹𝒅 and  𝜸 ∈ 𝑹𝒅 
are learned weight coefficients, 𝒖 	= 	 𝒖𝟏 , 𝒖𝟐 , … , 𝒖𝒅 𝑻	is the component-wise modulus, and b is the bias 
parameter. While all samples that satisfy the condition, 𝒇 𝒙 < 𝟎, are classified as positives in polyhedral conic 
classifiers, all samples that satisfy 𝒇 𝒙 ≥ 𝟎 are classified as negatives. In order to make sure that the classifier is 
not subject to over-fitting, and that it can be used for very large databases, the problem is formulated as a quadratic 
programming similar to the one used in support vector machines. Within this context, if the cone vertex is taken 
as the average of positive samples, and if we show any data sample with  

𝑥	 ≡ 	 @A%
@A% 	                                                                                             (2)  

and show the weight vector to be learned with the following equation 

 𝑤	 ≡ 	 A"
A$                                                                                                  (3) 

 the classification problem turns into a quadratic optimization problem as in SVMs [4]. After obtaining the training 
parameters of the classifier, first, the test sample is augmented as, 



𝑥BCDB ≡ 	
@EFGEA%
@EFGEA%

                                                                          (4) 

Then the following decision function  

𝑓 𝑥 = 	𝑤*𝑥BCDB + 𝑏                                                                       (5) 
can be used to assigned the test sample to the object class or back-ground based on the sign of the decision function. 
     The object localization algorithm using this classifier consists of root detectors based on sliding windows 
method as in [4]. First, the number of root detectors to be used for different car poses was determined, and then 
the dimensions of sliding windows of these root detectors were determined by using the annotated data in the 
training set. In order to eliminate the problems that may arise at labeling process of the data set during training of 
the localization, the latent training [11], [12] method was used. In this method, the positions of the boxes that show 
the actual positions of the object samples on the image were addressed as latent variables. First, the classifiers are 
trained by using the ground truth of objects. Then the trained system searches for the sample of the object in 
different positions and scales around each object sample. The position with the highest score is regarded as the 
actual position of the object, and these positions are used to re-train the system. Then the samples that do not 
include the samples of the object (difficult background objects and false positive objects) are collected and these 
samples are used as negatives to train the system.  This process is repeated a few times, and the localization 
algorithm is finalized. 

2.2. You Only Look Once v2 (YOLOv2) 
YOLO, which is one of the deep learning algorithms that give the most correct and fast results in object 

detection and location, uses the open source-coded darknet library [9]. YOLO combines the different components 
of object detection in a single neural network. This neural network first divides the image into S´ S cells and uses 
all features of the image in order to extrapolate all bounding boxes, and synchronously extrapolates all bounding 
boxes in that image. While creating its architecture shown in Figure 1, YOLO was inspired by the model created 
by GoogleNet for classification. This network consists of 23 convolutional layers, 5 maxpooling, and 2 fully 
connected layers. In addition, YOLO Tiny architecture was also used, which is a faster version of YOLOv2 model 
with a smaller architecture, and slightly lower performance. YOLO Tiny version consists of  9 convolutional layers 
and 6 maxpooling layers [9]. 

Fig. 1: YOLO architecture [9]. 

3. Experiments 
Although there are numerous sites where we can find data sets, one of the biggest problems is that these data 

must be annotated specifically for our problem. For a car detection and localization problem, we created our own 
data set consisting of colored digital images and the images that we obtained in different weather conditions and 
scales by using DJI matrice 600 Pro and DJI Inspire 1 unmanned aerial vehicles. The data set consists of 
approximately 10.000 colored digital images, and it contains approximately 30.000 aerial view car images. We 
annotated the cars by using the bounding boxes and created the data belonging to the positive class. The data set 



of the negative class was created by using 700 digital images that did not contain any car views taken in various 
conditions. Figure 2 shows examples from the data set that contains positive images. 
    The most common and most realistic metric for success criterion in object localization algorithms is PASCAL 
VOC criterion. According to this metric, the position of the object is classified as wrong or right in accordance 
with the overlapping ratio of the detected coordinates and the ground truth positions. This overlapping was 

calculated by using 𝒂𝒓𝒆𝒂	 𝑸	∩	𝑹
𝒂𝒓𝒆𝒂	 𝑸	∪𝑹

	formula. In this formula, Q shows the ground-truth location of object and R shows 

the location returned by the algorithm. If this is over 50%, the detected position is considered as true positive – 
TP, if not, it is considered as false positive – FP. Then the mean average precision-mAP was determined by using 
precision-recall curves. 
 

Fig. 2: Samples of the positive dataset 
For training with polyhedral conic classifier, the features of each car image among 30.000 car images within 

the data set were represented by the histogram of oriented gradient. In order for these features to make better sense, 
8 different root detectors were designed by dividing the 360° angle into 45-degree angles based on aspect ratios 
of the front parts of the cars, and models were created by training the system. Then the images, of which 8 different 
orientations are located on the symmetries of each other according to x-y axis, are re-trained to be aligned in the 
same direction to accelerate the system, and models were created for 4 different root detectors. These orientations 
are designed as shown in Figure 3 (a) and (b). HOG coefficients of EPCC classifiers, which were trained for 
different orientations, were drawn in Figure 4 and Figure 5. As can be seen in Fig. 5, the trained classifiers learned 
each car orientation successfully.  

(a)                 (b) 
Fig. 3: (a) 8 Different orientations that the root detector was trained, (b) 4 Different orientations that the root detector was 

trained 



 

Fig. 4: HOG coefficients of classifiers trained for 8 different root detectors. 

Fig. 5: HOG coefficients of classifiers trained for 4 different root detectors 
 

Two different architectures were used when using Yolo method. YOLOv2 and YOLO Tiny. 2 Quadro K5000 
GPUs were used when training these methods. Experimental results are shown in Table 1. The highest performance 
was obtained through EPCC method with 8 root detectors. This method was followed by YOLOv2. The lowest 
performance was obtained through YOLO Tiny method. In terms of speed, the fastest method was YOLO Tiny 
method, which has a smaller architecture. The slowest method was EPCC method with 8 root detectors, which 
showed the highest performance. However, it should be noted that while parallel programming was adopted in 
YOLO methods, parallelization was not adopted in EPCC methods. If the EPCC methods are run in parallel, the 
models will operate faster. Figure 6 shows the detector outputs of tested methods on some test images.  

Fig. 6: Performances of classifiers on test images are represented as: YOLOv2 – Red, YOLO Tiny – Yellow, EPCC with 8 
orientations – Black, EPCC with 4 orientations – Green rectangles. 



TABLE I: Comparison of Methods for the Dataset 

Method 
Average 

Precision Score 
Speed 

EPCC with 8 Root 
Detectors 

%84,49 2,2 sec. – 0,45 FPS 

EPCC with 4 Root 
Detectors 

%81,19 1.7 sec. – 0,58 FPS 

YOLOv2 %83,35 0,136 sec. – 7,7 FPS 
YOLO - Tiny %80,19 0,0175 sec. – 57,1 FPS 

 

4. Conclusion 

     In this study, we have compared the EPCCs with 8 and 4 root detectors and YOLOv2 and YOLO Tiny 
algorithms, which can detect the cars and return their positions in the images taken from UAVs in real time. The 
EPCC classifier using 8 root detectors achieves the highest score, but it is slower than the model that uses 4 root 
detectors. In YOLO models, which use deep-learning architecture, the average precision score of YOLOv2 model 
was higher, but slower than YOLO Tiny model. If the localization algorithms that use EPCC method are run in 
parallel, their speed will be similar to deep learning methods. As it is seen in experimental results, all tested 
methods achieved very high accuracies since the car poses in aerial videos can easily be grouped under 8 different 
categories. 
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