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ABSTRACT 
 

Image representation models such as bag of words (BoW) or Fisher vector (FV), which are built depending on encoding local 

features, are commonly used in visual object classification tasks. In this context, the local patches sampled from images are 

represented by different texture and shape descriptors such as Scale Invariant Feature Transform (SIFT), Local Binary 

Pattern (LBP), Speed up Robust Features (SURF), etc. In this study, we propose a new descriptor using weighted histograms 

of phase angles of local 2-D discrete Fourier transform (FT). We make comparisons with the classification accuracies 

achieved by using the proposed descriptor to the ones achieved by other commonly used descriptors on Caltech-101, Coil-

100 and PASCAL VOC 2007 databases. Experimental results show that our proposed descriptor yields good classification 

accuracies (the best results on Coil-100, and the second best result on Caltech-101 and PASCAL VOC 2007 datasets) 

indicating that FT based local descriptors obtain important properties of images that are valuable for visual object 

classification. By combining image representations resulting from FT descriptor with the representations resulting from other 

descriptors, accuracies even get better demonstrating that tested descriptors encode different supplementary knowledge. 

 

Keywords: Visual object classification, Fourier transform, Descriptor, Bag of words, Fisher vector 

 

 

1. INTRODUCTION 

 

Visual object classification can be described as the task of labeling an image with one or multiple 

labels corresponding to the existence of a visual object class. This task is treated as a standard 

supervised learning problem in which classifiers that predict the labels of images are learned by using 

a training set of labeled images. It is a significantly important task, and a useful visual object 

categorization system may considerably improve the productivity of other essential computer vision 

applications such as image retrieval and object localization. The main problem in visual object 

classification stems from the large intra-class differences and the variations of viewpoints in all of the 

object categories. Other difficulties of visual object classification task are changes in illumination and 

scale, complex backgrounds, occlusion and existence of noise in the images. 

 

Most of the state of art research on visual object classification has been devoted to the design of 

successful image representations. A very successful representation paradigm is to extract a set of local 

patch descriptors from an image and encode them into a high-dimensional visual feature vector. Bag 

of words (BoW) model was applied in most of the state-of-art object classification techniques for this 

purpose. BoW was firstly used for text classification and it was applied to the visual object 

classification by Csurka et al. [1]. After this, these kinds of representations have been extensively used 

for both visual object classification and localization [2,3,4,5,6]. The BoW model illustrated in Figure 1 

treats each image as a regular collection of local patches. Hence, one has to sample a set of patches 

from the image, extract descriptor vectors from each patch, quantize the descriptors, and accumulate 

histograms of patch appearances using this quantization to obtain the final image representation.  
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There are essentially three important design issues in BoW model: (1) to extract patches from image, 

(2) to select descriptor type, and (3) to quantize the final descriptors. Patches are typically extracted 

from the image at many various positions and scales by using different sampling techniques including 

dense sampling [3,7], random sampling [8], sampling based on the output of some sort of salient 

region detector [1,5], or sampling built on the output of segmentation techniques [9,10]. After patches 

are chosen, they are described by using different descriptors. The final descriptors are then clustered to 

acquire visual words (also called visual words dictionary or vocabulary). Several clustering algorithms 

including k-means clustering [1,4], mean shift [2], hierarchical clustering [6], randomized trees [11] or 

other clustering methods were used for this purpose. Finally, the image feature histogram is obtained 

by averaging the presence of counts, that is commonly referred to as the average pooling. More recent 

methods adopted better coding techniques by using the soft-assignment of the local descriptors. There 

are various methods for this, e.g., to use sparse coding [12,13], local coordinate coding [14], or 

locally-constrained linear coding [15], which enforce a descriptor to be assigned to several number of 

visual words in the dictionary. Using soft-assignment techniques in BoW models also gave rise to new 

aggregation techniques such as max-pooling [12,16] or geometric 
pl -norm pooling [17] beside the 

most common average pooling strategy.  
 

In contrast to the BoW modeling which uses a simple first-order statistic of visual word occurrence, 

more recent image representation models have utilized higher-order statistics. Among these, the Fisher 

Vector (FV) representation of Perronnin and Dance [18] encodes the deviation of a set of local 

descriptors from a Gaussian mixture model (GMM) obtained from training images. Despite its 

inherent limitation of returning dense representations, FV models significantly outperformed BoW 

models when they are used with linear SVMs [18,19]. In a similar manner, the Super Vector (SV) [16] 

representations of local descriptors and the Vector of Locally Aggregated Descriptors (VLAD) [20] 

also used higher-order statistics and successful accuracies have been reported for both retrieval and 

classification tasks owing to the fact that these methods perform an explicit embedding of local 

descriptors in very high-dimensional discriminative spaces, and consequently linear classifiers work 

well on these. 
 

Once the image feature vectors are obtained, these are fed to classifiers that learn to predict the image 

labels. Various classification methods including Nearest Neighbor, Naïve Bayes, Support Vector 

Machines (SVM) or other kernel methods were used for visual object classification for this purpose, 

but currently linear/kernelized SVMs dominate the field. 
 

In this paper, we concentrate on the descriptors, which are used for describing image patches and we 

introduce a new descriptor using weighted histograms of phase angles of Fourier Transform to be used 

in BoW or FV models for visual object classification. A preliminary version of this paper has appeared 

in [21]. This paper extends our previous work with (1) a more elaborated analysis of the current 

related work on image representation, (2) a more detailed description of the proposed descriptor and 

modifications on the descriptor by changing the histogram construction, (3) more experiments on 

larger image classification data sets, and (4) testing different design methodologies such as the sizes of 

cells, the sizes of the phase angle bins, and different normalizations of histograms on the classification 

performance.  
 

1.1 Related Work 
 

In this paper we are interested in the descriptors which are used for representing image patches. We 

want the descriptors to be invariant to the variations due to the image transformations, illuminating 

variations and occlusions, because these properties are irrelevant to the image categorization. Also, 

descriptors must include discriminative information to separate the object categories. Among all 

descriptors, histogram based descriptors became very popular since they perform well and they are 

easily computed. Most of the histogram based descriptors use oriented image gradients, containing 
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SIFT [22], SURF [23], Histograms of Oriented Gradients (HOG) [24], Generalized Shape Context [25], 

Multi-support Region Order-Based Gradient Histogram (MRHOG) [26]. Some of them use color 

histograms [27, 28] whereas some use local patterns of qualitative gray level differences such as Local 

Binary Patterns (LBP) [29] and Local Ternary Patterns (LTP) [30]. In contrast, some descriptors may use 

filter outputs including Gabor descriptors [31] or Zernike-Moment Phase descriptor of Chen and Sun 

[32]. Empirically, the best descriptor set depends on the implementation and new ones are being 

developed constantly. Here we briefly describe the most popular SIFT, SURF, LBP and LTP descriptors. 
 

SIFT: SIFT descriptor is constructed by accumulating gradient norms around some key points and the 

final descriptor is a 128-dimensional vector. To this end, we first calculate the gradient magnitude and 

orientation at each image sample point in a region around the key point. Then, these samples are 

weighted and accumulated into orientation histograms. Finally, the descriptors are built by combining 

histograms of 4 4  cells with eight orientation bins in each [22].  
 

SURF: The SURF descriptor represents a distribution of  Haar-wavelet responses within some interest 

point neighborhood. The interest region is first split up into 4 4 square sub-regions. The Haar 

wavelet responses in horizontal and vertical directions are computed for each sub-region. These 

responses are weighted with a Gaussian kernel function to make the descriptor more robust to 

geometrical deformations. Then, wavelet responses are summed and these values together with their 

absolute values are combined to produce a descriptor vector with dimension 64 [23]. 
 

LBP: The LBP descriptor defines a small neighborhood around every pixel, thresholds the pixels of 

the neighborhood at the value of the central pixel and uses the resulting binary valued image patch as a 

local image descriptor. Initially, it was defined for 33  neighborhoods giving 8 bit integer LBP codes 

depending on the 8 neighboring pixels. More precisely, the LBP operator takes the form 

 

  𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 2𝑛 𝑓(𝐼𝑛 −7
𝑛=0 𝐼𝑐),    (1) 

 

where in this case 𝑛 runs over the 8 neighbors of the central pixel 𝑐, 𝐼𝑐 and 𝐼𝑛 are the gray level values 

at 𝑐 and 𝑛, and 𝑓(𝑢) is 1 if 𝑢 ≥ 0 and 0 otherwise. LBP descriptors are robust to most lighting 

changes, but they are sensitive to noise in near-uniform regions [29]. 

 
LTP: LBP descriptors are discriminative features for texture classification and they are resistant to 

illumination changes in a sense that they are invariant to monotonic gray level transformations. On the 

other hand, since they threshold at exactly the value of the central pixel 𝐼𝑐 they tend to be sensitive to 

noise, particularly in near-uniform image regions. The LTP descriptor extends LBP to 3-valued 

descriptors, Local Ternary Patterns (LTP), in which gray-levels in an area of width ∓𝑡 around 𝐼𝑐 are 

quantized to zero, ones above this are quantized to +1 and ones below it to −1, i.e. the indicator 𝑓(𝑢) 

is replaced with a 3-valued function and the binary LBP descriptors is replaced by a ternary LTP 

descriptors as 

  𝑓(𝑢, 𝐼𝑐 , 𝑡) = {

 1,          𝑢 ≥ 𝐼𝑐 + 𝑡

   0,          |𝑢 − 𝐼𝑐| < 𝑡
−1, 𝑢 ≤ 𝐼𝑐 − 𝑡

,     (2) 

 

where  t is a user specified threshold. As a result, LTP descriptors are more resistant to noise, but no 

longer strictly invariant to gray level transformations [29]. 
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Figure 1. Visual object classification using bag of words model: a) Sampling of the patches and 

extraction of the descriptor values b) Clustering and construction of the visual vocabulary 

c) Building image histograms d) Classification of images based on histograms. 
 

2. METHOD 
 

2.1. Motivation 
 

In order to motivate the proposed descriptor, we start with a widely known example shown in Figure 2 

illustrating the significance of the phase information of the 2-D FT for image description. When we 

draw the magnitude and phase information of an image, the phase image looks similar to some sort of 

noise that does not contain any significant information related the original image. However, the 

reconstructing image by inverse FT using only magnitude information produces a largely blank image 

that does not include any important information for classification. Conversely, when we use the phase 

information for inverse FT to reconstruct image, the final image is more similar to the input image as 

shown in the figure. This undoubtedly demonstrates that the phase information includes more 

characteristic knowledge useful for image representation compared to the magnitude of FT. In fact, 

recent studies also report the similar findings and show the importance of phase information in other 

image representations such as image gradients [24] or Zernike moments [32]. Therefore, in the 

proposed descriptor, we put more emphasize on the phase of FT during encoding FT values. 
 

Using FT as descriptor is not new [31,33,34,35,36,37,38]. However, the commonly known FT based 

descriptors use magnitude of FT to obtain rotational invariance property, or they use the FT with other 

image features (such as gradients or LBP features) together. The local 1-D FT histograms of gradient 

images were used for texture recognition in [31, 34]. However, they disregard the phase information 

and use only the magnitude to acquire image representations that are invariant to image rotations (in 

contrast with magnitudes of FT, phases of FT are sensitive to rotational transformations). In [33], the 

authors extract 1-D FT of 3 × 3 neighborhoods, and the image is described by concatenating the 

histograms of magnitudes and phases. Recently, Ahonen et al. [35] propose a rotation-invariant 

descriptor by using magnitudes of FT applied to the LBP descriptors extracted from images. In [36], 

object boundaries are obtained by using edge detection first and then each object boundary is 

transformed into a 1-D signal and finally FT of this signal is used to describe the objects. [36,37] both 

use Local Phase quantization, in which 2D-FT is aplied to difference of neighboring image pixel 

values only on 4 selected frequencies. 
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        (a)              (b)                       (c)                    (d) 

  
         (e)               (f)                       (g)                     (h) 
 

Figure 2. (a) motorbike image; (b) car image; (c) magnitude of the FT of image (a); (d) phase of the FT 

of image (a); (e) the resulting image by inverse Fourier transform applying just magnitude of 

(a) with random phase information; (f) the resulting image by inverse FT applying phase of (a) 

with random magnitude; (g) the resulting image by inverse FT using phase of (b) with random 

magnitude; (h) the resulting image by inverse FT using phase of (a) with magnitude of (b). 
 

In this study we also introduce a descriptor that utilizes the discrete FT of local patches as shown in 

Figure 3. In contrast with the recent studies defined above, we use 2-D discrete FT of local patches 

and apply it directly to the image gray-level values (not to gradients or LBP features) of patches 

extracted from the images. The construction of our histogram also diverges from the other methods in 

a way that we use histograms of phase angles weighted by magnitude values as defined below. 

 

2.2. D Fourier Transform Based Descriptor 
 

In image representations using BoW or FV models, patches are sampled from images at many various 

positions and scales by applying different sampling methods. Then, the fixed-size features are 

extracted from the patches by applying different descriptors such as SIFT, SURF, LBP, LTP, etc. We 

use two-dimensional (2-D) discrete Fourier transform of image patches to compute the proposed 

descriptor. 
 

The discrete Fourier transform of an image region 𝐼(𝑥, 𝑦) of size 𝑀 × 𝑁 is given by the equation 

𝐹(𝑢, 𝑣) = ∑ ∑ 𝐼(𝑥, 𝑦) 𝑒−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0
𝑀−1
𝑥=0 , 1,...,0 ,1,...,0  NvMu .   (3) 

 

The original image 𝐼(𝑥, 𝑦) can be obtained by using the inverse Fourier transform, given by the 

expression 
 

𝐼(𝑥, 𝑦) =
1

𝑀𝑁
∑ ∑ 𝐹(𝑢, 𝑣) 𝑒𝑗2𝜋(

𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑣=0
𝑀−1
𝑢=0  , 1,...,0 ,1,...,0  NyMx .  (4) 

 

Equations (3) and (4) comprise the 2-D discrete Fourier transform (DFT) pair. The variables u and v 

are referred to as the frequency variables. Fourier spectrum, phase angle, and power spectrum of an 

image are defined respectively as follows: 
 

|𝐹(𝑢, 𝑣)| = [𝑅𝑒2{𝐹(𝑢, 𝑣)} + 𝐼𝑚2{𝐹(𝑢, 𝑣)}]1/2, 

𝜙(𝑢, 𝑣) = 𝑡𝑎𝑛−1[𝐼𝑚{𝐹(𝑢, 𝑣)}/𝑅𝑒{𝐹(𝑢, 𝑣)}], 
𝑃(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2,  

 

where 𝑅𝑒{𝐹(𝑢, 𝑣)} and  𝐼𝑚{𝐹(𝑢, 𝑣)} are the real and imaginary parts of 𝐹(𝑢, 𝑣), respectively. 
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The value of the 2-D FT transform at the origin becomes 𝐹(0,0) = ∑ ∑ 𝐼(𝑥, 𝑦) 𝑁−1
𝑦=0

𝑀−1
𝑥=0 , which gives 

the sum of values of 𝐼(𝑥, 𝑦). In other words, if 𝐼(𝑥, 𝑦) is an image region, the value of the Fourier 

transform at the origin is equal to the sum of all pixel values in that region. Because both frequencies 

are zero at the origin, 𝐹(0,0) is also called the dc-component of the spectrum.  
 

In our proposed method, we partition the patch region into nn  non-overlapping sub-regions (cells) 

as illustrated in Figure 3. After that, the magnitudes and phase angles of 2-D FT of each cell are found. 

The descriptor is then created by accumulating weighted votes to phase angle bins. The phase angle 

bins are evenly spaced into b (we tried 9 and 19 bins) intervals over  2,0 . The vote may be a 

transformation of the FT magnitude, either the magnitude itself, its square, its square root, or a clipped 

form of the magnitude demonstrating soft existence/absence of the phase angle bin. In our study, the 

magnitude of FT is used to vote the bins followed by a normalization. The size of the resulting 

descriptor vector is fixed for any patch size and it is equal to bnd  2
.  

 

As we mentioned above, the dc-component term at the origin is just equal to the sum of the pixel 

values and its magnitude is the highest compared to the other Fourier spectrum values. Its magnitude 

always contributes to the first bin of the phase angle histogram. As a result, the first histogram bin 

typically dominates other bin values, and this may negatively affect the classification performance. 

Therefore, we ignore the contribution of dc-component term during computing values of histogram 

bins. The number of pixels in each cell may vary based on the sizes of the patches, thus cell 

histograms must be normalized. To this end, we tried different normalization types as given below; 
 

 𝐿1:  𝑉𝑘 = 𝑉𝑘/(∑ 𝑉𝑖 )𝑏
𝑖=1  (histograms are normalized so that the sum is equal to 1) 

 𝐿1 − 𝑠𝑞𝑟𝑡 ∶  𝑉𝑘 = √𝑉𝑘/(∑ 𝑉𝑖 )𝑏
𝑖=1   (histograms are normalized so that the sum is equal 

to 1, and then they are square rooted.) 

 𝐿2 ∶  𝑉𝑘 = 𝑉𝑘  /√(∑ 𝑉𝑖
2 )𝑏

𝑖=1   , (this nonlinear normalization emphasizes cells whose 

counts are distributed into many bins.) 

 𝐿𝑜𝑔2:  𝑉𝑘 = 𝑙𝑜𝑔2(𝑉𝑘 + 1)  (a simple 𝑙𝑜𝑔2 compression of the histogram bins.) 

 

Here 𝑉𝑘 represents k-th bin of the histogram.  
 

 
 

Figure 3. Computation of FT descriptor: Firstly, image patch is split into 44  cells in this example. 2D FT 

is extracted from every cell, and the histogram of every cell is constituted by accumulating 

weighted votes to phase angle bins followed by normalization. The resulting descriptor is 

constructed by concatenating the histograms of all cells. 
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We use these normalization types for different number of cell sizes ranging from 4 × 4 to 7 × 7. The 

phase angle bins are evenly spaced into 9 or 19 intervals over [0,2𝜋]. The best classification 

accuracies are obtained by using 5 × 5 cells, 9 bins and 𝑙𝑜𝑔2 normalization. Therefore the default size 

of the resulting descriptor vector is fixed for any patch, and it is equal to 𝑑 = 225(52 × 9). 

 

It should be noted that the final descriptor is not rotational invariant similar to the most commonly 

used descriptors such as SIFT, HOG, and LBP. We believe that the introduced descriptor encodes 

more important information for image representation in comparison with other commonly known 

descriptors. When we consider the SIFT descriptor for instance, it uses weighted histograms of 

gradient angles. This knowledge is already included in high-frequency components of FT. In addition 

to this, low-frequency components of the proposed FT descriptor capture information related to the 

general appearance of patches. But, SIFT does not contain this infromation. 

 

3. EXPERIMENTS 

 

The proposed descriptor is tested on three challenging visual object classification databases: the Coil-

100, Caltech-101, and PASCAL VOC 2007. We also conducted experiments to determine the best 

design parameters, such as bin size, cell size and cell normalization type. We used BoW or FV models 

to represent images. The proposed FT descriptor is compared with the most commonly used 

descriptors, such as SIFT, LBP, LTP, and SURF. Moreover, we conducted some tests to verify that 

whether the combining the image representations resulting from FT descriptor with the representations 

resulting from other descriptors achieve better accuracies rather than using these descriptors alone. 

The linear and nonlinear Support Vector machine (SVM) classifier were used for classification in 

experiments, and either one-against-rest or one-against-one techniques is utilized to extend the binary 

SVM classifier to multi-class classification. We just give the accuracy for the one that performs best.  

 

3.1. Experiments for Setting The Best Design Parameters 

 

There are design parameters of the proposed FT based descriptor that seriously affect the overall 

classification performance. These are the number of phase angle bins, the number of cells, and the 

type of the cell normalization. We conducted some experiments to estimate the best values of these 

parameters. As we mentioned at the Introduction section, the patches can be chosen from the images at 

numerous positions and scales densely or based on the output of some sort of salient region detector. 

Many studies [2,8] show that dense sampling significantly outperforms other sampling types in the 

context of object classification, so we use dense sampling in our experiments. To determine the best 

parameters, we used the images selected from 10 categories of Caltech-101 database (available at 

http://www.vision.caltech.edu/ImageDatasets/ Caltech101/). To set bin size, we compared the 

descriptors using 9 and 19 phase angle bins. For cell sizes, we tried 4 × 4, 5 × 5, 6 × 6, and 7 × 7 

cells. Finally, for normalization we compared the descriptors using L1, L2, L1-sqrt, and Log2 

normalizations. The classification accuracies for different design parameters are given in Table 1. 

Linear SVM is used as classifier. In general, Log2 normalization significantly outperforms other 

normalization techniques and the best accuracy is obtained by FT descriptor using 5 × 5 cells, 9 bins 

and Log2 normalization. Therefore, we used these parameters for the rest of the experiments. 
 

Table 1. Classification rates (%) for different design parameters 

 
Bin Size 9 bins 19 bins 

Cell Size 4×4 5×5 6×6 7×7 4×4 5×5 6×6 7×7 

L1 55.9 53.7 63.4 51.2 57.4 56.7 56.2 45.1 

L2 57.1 49.1 60.9 55.6 52.1 49.6 55.8 49.5 

L1-sqrt 57.5 53.2 57.5 52.3 50.5 49.0 51.7 50.0 

Log2 68.9 71.9 64.4 64.2 67.1 71.4 67.4 64.2 
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3.2. Experiments on the Coil-100 Database 
 

The Coil 100 dataset contains images of hundred different object classes (available at 

http://www.cs.columbia.edu/CAVE/software/ softlib/coil-100.php). Each class includes 72 images for 

every object category and the size of images is 128128  pixels. Images include several poses of the 

same objects under same illuminating conditions and background. We selected 40 object categories 

(illustrated in Figure 4) from the dataset for our experiments. 
 

The background of images in this database is uniform, therefore the object can be easily separated 

from the background. Firstly, all images were converted to gray-scale and BoW model is used to 

represent images. To this end, we firstly extracted patches densely from the images. For each chosen 

patch, we computed the proposed FT and other tested descriptors. Then, we used k-means clustering 

method to determine the visual words of BoW model. We set the dimensionality of the visual 

vocabulary to 1,000. To construct feature histograms of test images, the extracted descriptors are 

compared to the visual words based on their Euclidean distances and the final histogram of “visual 

word” occurrences is built based on average pooling (i.e., we count the number of occurrences for 

every visual word and divide by the total number of descriptors). Therefore, the size of the image 

feature vectors is also 1000.  
 

The classification accuracies are given in Table 2. Linear SVM is used as classifier as before. The 5-

fold cross-validation method is used for computing the classification accuracies. Our proposed FT 

descriptor achieved the best accuracy for all cases and it is followed by SIFT. SURF descriptor is the 

worst performing descriptor. The classification accuracies typically get better after combination of the 

image representations by using different descriptors (we just concatenate image feature histograms to 

form an extended feature vector without any normalization). More precisely, the best classification 

accuracy is achieved by combining the representations resulting from the best performing 3 

descriptors (FT, SIFT, and LTP), which indicates that the tested descriptors capture supplementary 

knowledge.  
 

 
 

Figure 4. Forty object classes is selected from Coil-100 dataset 

 

Table 2. Classification rates (%) on the Coil 40 dataset 

 
Descriptors Classification Rates 

FT 93.30 2.2  

SIFT 89.45 5.2  

SURF 87.88 9.1  

LBP 88.36 3.1  

LTP 89.26 3.3  

FT+SIFT 92.83 6.1  

FT+SURF 93.18 3.2  

FT+LBP 92.54 4.1  

FT+LTP 93.37 3.2  

FT+SIFT+LTP 95.09 6.1  
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3.3. E xperiments on the Caltech-101 Database 

 

Caltech-101 is an image database that contains images belonging to 101 object categories. There is 

also an additional background class, making the total number of classes 102. There are 40 - 800 

images each category, and a lot of categories include approximately 50 images. Some examples are 

given in Figure 5. The images of object categories have background clutter and significant intra-class 

and scale variability, so we again use the “bag of features” representation using the spatial pyramid 

approach of Lazebnik et al. [39]. We set the visual vocabulary size to 600, which yields image feature 

histograms of size 12600. We use the same experimental setup as in [40,41]. We randomly pick 30 

images from every class and divide them into 15 for training part and 15 for test part. Then, we invert 

the role of training and test part. The final classification rates are the averages. 
 

We used both linear and nonlinear (kernelized) SVMs to assess the classification performance. The 

Gaussian kernel, 
2( , ) exp( || || / )k x y x y    𝑘(𝑥, 𝑦) = exp (−‖𝑥 − 𝑦‖2/𝜎)  is used for nonlinear 

SVM classifier, as a kernel in all experiments. The results are given in Table 3. It should be noted that 

lower accuracies are reported for SIFT descriptors compared to our results for linear SVMs in the 

literature. This is due to the normalization of histograms. We standardized the image feature 

histograms so that standard deviation of each feature histogram bin is equal to 1. This yielded 

significant improvements (up to 10%) in linear classification accuracies. This also explains that why 

kernels using Chi-squared distances perform much better compared to the Euclidean distance based 

linear kernels. The best classification accuracies are obtained by using SIFT descriptors for both linear 

and nonlinear cases. The proposed FT based descriptor yield to the second best result after SIFTs. LBP 

descriptor is the worst performing descriptor. Moreover, we combined the feature extracting 

techniques with using the best performing three descriptors (SIFT, FT and SURF) to see if any further 

improvement can be achieved. Approximately 2.5-3% improvement is obtained over the best 

performing SIFT descriptor when 3 different descriptors are used together. 

 
 

Figure 5. Some image samples belonging to 5 object classes (airplanes, faces, cougar_body, pyramid 

and motorbikes) in Caltech-101. Images in each class have significant intra-class and scale 

variability, which make the classification problem more difficult.  
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Table 3. Classification rates (%) on the Caltech 101 dataset 

 
Descriptors Linear Kernel Gaussian Kernel 

FT 48.33 51.05 

SIFT 60.37 62.12 

SURF 42.84 44.58 

LBP 33.47 36.01 

LTP 42.78 43.89 

FT+SIFT+SURF 63.37 64.51 

 

We also visually compare the image descriptor histograms on some images chosen from this dataset in 

Fig. 6. These are simple 600-dimensional BoW feature histograms extracted without using spatial 

pyramid approach. As can be seen in the figure, the feature histograms obtained using FTT for the 

objects in the same category are very similar whereas histograms for different objects are quite 

different. Histograms obtained using SIFT also have this property but the LBP histograms fail in the 

sense that the histograms of objects in the same category are quite different for LBP descriptors. 

 

3.4. Experiments on the PASCAL VOC 2007 Database 

 

The PASCAL VOC 2007 database includes images of daily scenes with annotations for all entirely or 

partial samples of 20 common visual object classes: aeroplane, bicycle, bird, boat, bottle, bus, cat, car, 

chair, cow, dog, dining table, horse, motorbike, person, potted plant, sofa, sheep, train, and tv-monitor. 

Its training/validation subset contains 5011 images with 12608 annotated instances, and its test set 

contains 4952 images with 12032 annotated instances. We use the standard protocol for training and 

test, i.e., we train and set the parameters of the classifiers by using the provided “train” and “val” sets, 

and test the classifiers on the “test” set. The accuracies are computed by applying the standard 

measure on this database, that is the Average Precision (AP) scores obtained from Precision-Recall 

curves. 

 

We used FV representation for this dataset since this model significantly outperforms BoW when 

linear SVM classifier is used. For this purpose, we implemented the same structure as in [19]. More 

precisely, we extracted roughly 10K descriptors for each image from 2424  patches on a regular grid 

each four pixels at 5 scales. The size of the tested descriptors is reduced to 80 by applying Principal 

Component Analysis (PCA) except for the SURF descriptor, for which the dimensionality is reduced 

to 60 since the original dimensionality of the descriptor is 64. We used 
6106  descriptors to learn the 

projections of PCA and the components of Gaussian mixture model (GMM). We used 256 

components for GMM model. Also as in [19], we used the same spatial pyramid structure and 

extracted 4 FVs per image: one FV for the entire image and one in three horizontal stripes according to 

the top, middle, and bottom regions of the image. We used only linear SVMs since the dimensionality 

of the final FV representation is too high (the final dimensionality is around 164K). 

 

The accuracies for the tested descriptors are given in Table 4. We also give the best result of official 

winner of the original VOC 2007 challenge (available at: http://pascallin.ecs.soton.ac.uk/ challenges/ 

VOC/voc2007/results/index.shtml) for each class for comparison. When single descriptors are used, 

SIFT descriptor significantly outperforms others yielding an average AP score of 58.3%. It is followed 

by the proposed FT descriptor and LTP. SURF is the worst performing descriptor. When we combine 

the best performing three descriptors SIFT, FT and LTP, the accuracies improve over the best 

performing SIFT descriptor. In general, we obtain better results than the best results reported in the 

official PASCAL VOC contest for 11 object categories, whereas our results are slightly behind for 9 

object categories.  
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Figure 6. Visual comparision of feature histograms for different descriptors 
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Table 4. Classification Accuracies (AP Scores) for PASCAL VOC 2007 dataset 
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VOC 2007 

Winner 

77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 

FT 73.2 49.1 39.1 61.7 22.9 48.0 67.6 43.5 45.9 33.8 42.7 35.9 69.1 50.4 77.7 22.5 35.2 41.1 69.8 35.8 

SIFT 77.6 65.2 51.7 67.4 29.9 65.3 77.2 57.0 51.1 45.0 53.5 40.4 78.6 67.7 82.0 28.6 47.6 49.4 78.7 51.9 

SURF 60.9 39.7 32.8 37.9 10.9 33.0 60.7 29.1 34.8 20.9 27.3 19.8 62.1 43.5 67.7 11.4 18.7 37.4 47.8 29.7 

LBP 69.6 45.4 39.5 54.4 22.6 47.2 66.7 43.7 42.9 26.3 38.9 35.7 70.6 55.1 75.4 21.8 26.5 38.4 66.6 38.9 

LTP 68.1 50.0 37.6 63.4 21.4 46.5 68.1 47.2 45.0 36.1 43.6 32.8 69.2 49.1 76.2 24.3 33.9 38.6 71.9 37.9 

FT+SIFT 77.8 65.2 53.8 69.6 29.6 65.0 77.1 55.6 50.8 45.3 54.4 40.2 78.9 68.6 83.2 28.3 46.7 50.6 78.6 50.8 

FT+SURF 70.1 51.5 46.2 55.3 21.3 49.5 70.0 44.7 42.4 26.9 39.7 29.8 70.5 56.1 75.8 20.8 31.9 44.4 68.8 38.8 

FT+LBP 75.8 53.9 45.1 66.5 20.6 53.5 71.6 49.7 47.1 32.9 44.0 38.8 73.0 58.5 79.9 24.8 35.0 48.7 74.6 41.9 

FT+LTP 72.0 52.6 44.0 64.5 24.5 52.7 71.1 51.2 46.5 36.9 45.0 37.5 72.5 56.5 78.8 24.9 35.9 43.2 72.1 39.1 

FT+SIFT+LTP 78.2 66.3 55.1 71.1 29.5 66.4 78.1 57.3 52.0 44.6 56.7 42.3 78.6 68.6 83.3 28.5 47.9 51.5 80.2 51.8 

 

4. CONCLUSION 

 

We have proposed a new descriptor using 2-D discrete FT of an image patch for categorization of 

different object classes to be used with BoW and FV image representation models. In the proposed 

descriptor, we focus on the phase information of FT that is disregarded in the most of the state of art 

descriptor methods to gain rotational invariance. We build our descriptor by accumulating weighted 

histograms of phase angles of FT of local patches. We tested different cell sizes, bin sizes, and different 

normalizations to estimate the best design parameters that work best for the proposed descriptor. 

Although we obtained the best classification accuracy with our FT descriptor for small Coil-40 dataset 

including more image samples per-class, our proposed descriptor yielded the second best accuracy on 

more challenging Caltech 101 and PASCAL VOC 2007 datasets. However, combining image 

representations obtained by the proposed descriptor and other tested descriptors improved the results 

over the best performing single descriptor, which shows that our proposed descriptor encodes 

complementary information for classification of images.  
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