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Abstract7

This study presents two new clustering algorithms for partition of data sam-8

ples for the Support Vector Machine (SVM) based hierarchical classification.9

A divisive (top-down) approach is considered in which a set of classes is10

automatically separated into two smaller groups at each node of the hierar-11

chy. The first algorithm splits the data samples based on a variation of the12

Normalized Cuts (NCuts) clustering algorithm wherein the weights of adja-13

cency matrix are modified to utilize class membership in the process. The14

second algorithm also uses the NCuts clustering; however, it considers the in-15

volved classes rather than the individual data samples. It uses the minimum16

distances between the convex hulls of classes as a distance measure for deter-17

mining the weights of the graph. Splits are determined for both algorithms18

based on the eigenvector corresponding to the second smallest eigenvalue of19

a Laplacian matrix, and it is observed that the proposed algorithms generate20

well-separated and well-balanced clusters. Unlike other clustering methods21

used for this purpose, the methods in the present study are found to be22

more suitable when SVMs are used as base classifiers. As demonstrated in23
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the experiments, the proposed clustering algorithms are integrated into the24

hierarchical SVM classifiers, which results in significantly improved testing25

times with a negligible decrease in classification accuracies as compared to26

the traditional multi-class SVMs.27

Key words: hierarchical classification, support vector machines, multi-class28

classification, clustering, normalized cuts29

1. Introduction30

Automatic classification of data samples is very important for several31

applications including visual object classification, text classification, speech32

recognition, etc. This leads to a requirement for efficient and accurate clas-33

sifiers. For example, in visual object localization problems, hundreds of sub-34

windows need to be classified. This task will become tedious if the chosen35

classifier is not fast. It is known that there is a direct relationship between36

the real-time performance of a classifier and the number of classes. Human37

beings can classify between 104 and 105 object categories, and therefore,38

this seems to be a practical goal for machines as well (Griffin and Perona,39

2008). It is thus crucial that classification algorithms must scale well with40

the number of classes.41

The Support Vector Machine (SVM) classifier is a successful method that42

simultaneously minimizes the empirical classification error and maximizes the43

geometric margin (Cortes and Vapnik, 1995; Burges, 1998; Schölkopf and44

Smola, 2002). Essentially, it finds a separating hyperplane that yields the45

largest margin (separation gap) between two class samples. The SVM for-46

mulation was originally designed for binary classification; however, extend-47
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ing this formulation to more than two classes makes it very complex and is48

therefore generally avoided. Yet, many classification applications have more49

than two classes. The multi-class SVM problems are dealt with construct-50

ing several binary classifiers. There are various strategies to achieve this51

goal. Among these, the earliest and the most popular are the one-against-52

rest (OAR) strategy and the one-against-one (OAO) strategy (Hsu and Lin,53

2002). For a C-class classification problem, the former strategy trains C bi-54

nary classifiers, in which each classifier separates one class from the remaining55

C − 1 classes. All classifiers are trained on the entire training set, and the56

class label of a test sample is determined based on the highest output value57

of the classifier in the ensemble. The latter strategy constructs all possible58

C(C − 1)/2 binary classifiers out of C classes. The decision of the ensemble59

is typically made using the max wins algorithm: Each OAO classifier casts60

one vote for its preferred class, and the final decision is made for the class61

with the most votes. The OAO strategy builds more classifiers than the OAR62

strategy, and in general, it is considerably faster than OAR during training63

since it operates on a smaller number of training samples (Hsu and Lin, 2002).64

However, the OAO classifiers grow in size quadratically with the number of65

classes, which makes the OAO strategy very expensive for applications with66

large number of classes.67

Recently, SVM based hierarchical classifiers have gained significant at-68

tention for large class problems owing to their capability to scale well with69

the number of classes (Platt et al., 2000; Vural and Dy, 2004; Casasent and70

Wang, 2005; Marszalek and Schmid, 2008; Chen et al., 2004; Griffin and71

Perona, 2008; Zhigang et al., 2005; Liu et al., 2005). Two popular methods72
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fall into this category, namely, Decision Directed Acyclic Graphs (DDAGs)73

(Platt et al., 2000) and Binary Hierarchical Decision Trees (BHDTs) (Vural74

and Dy, 2004; Casasent and Wang, 2005; Chen et al., 2004; Griffin and Per-75

ona, 2008; Zhigang et al., 2005). The DDAG method first trains C(C − 1)/276

binary classifiers, and subsequently uses a Directed Acyclic Graph (DAG)77

during the testing phase. This is equivalent to operating on a list where78

each node of the DAG eliminates one class from the list. Thus, the method79

requires only C − 1 decision nodes to be evaluated for labeling a test sample80

rather than C(C − 1)/2 classifier evaluations, which results in a significant81

speeding up of the testing phase. However, this algorithm makes some un-82

necessary comparisons which are considered as irrelevant for the classification83

of a particular test sample. As an example, consider a visual object classi-84

fication problem: When a test sample belonging to the ‘dogs’ class arrives,85

it is rather unnecessary to make comparisons between unrelated classes such86

as buildings, airplanes, and cars. In this way, the real-time performance87

could be further improved. BHDT algorithms have been introduced in or-88

der to improve the efficiency of SVM classifiers by reducing the unnecessary89

comparisons while maintaining the high classification accuracy. To reduce90

unnecessary class comparisons, a BHDT algorithm uses a decision tree that91

divides the data hierarchically into two subsets until each subset consists of92

only one class. The SVM classifier is then used for separating those sub-93

sets at each node of the binary tree. The data partition is often achieved94

using a clustering algorithm, and the accuracy of the SVM classifier at each95

internal node depends on the generated clusters. Different hierarchy strate-96

gies (top-down (Vural and Dy, 2004; Casasent and Wang, 2005; Chen et97
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al., 2004; Griffin and Perona, 2008) and bottom-up (Zhigang et al., 2005))98

and different clustering algorithms, such as k-means (Vural and Dy, 2004;99

Zhigang et al., 2005), kernel k-means (Casasent and Wang, 2005), spherical100

shells (Vural and Dy, 2004) and balanced subset clustering (Vural and Dy,101

2004), have been used in the literature. It is known that BHDT algorithms102

employ various distance measures for partition such as the Euclidean dis-103

tance between class means (Vural and Dy, 2004; Zhigang et al., 2005), the104

Kullback-Leibler distance between class densities (Chen et al., 2004), or the105

number of misclassifications between classes (Griffin and Perona, 2008). In106

addition to these algorithms, some BHDT methods determine the partitions107

based on the clustering of data samples rather than the class sets (Marsza-108

lek and Schmid, 2008). A well-balanced tree requires approximately log2C109

classifier evaluations for traversing a path from the top to a bottom decision110

node. This results in a more efficient structure as compared to the DDAG111

algorithm in terms of testing time.112

The present study is focused on SVM based BHDTs wherein two clus-113

tering algorithms are proposed for the partition of classes. Similar to other114

BHDT algorithms, the main objective is to improve the real-time efficiency115

(testing time) while maintaining the high classification accuracy. The first116

clustering algorithm operates on data samples whereas the second algorithm117

considers the class sets. It is found that both methods yield well-separated118

and well-balanced partitions, which is compatible with the goal of SVM clas-119

sification. The remaining sections of this article are organized as follows:120

In section 2, the proposed clustering methods are introduced. In section121

3, the data sets and the experimental procedure are described. Lastly, the122
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conclusion is provided in Section 4.123

2. Method124

2.1. Design Issues125

BHDT methods use clustering algorithms for the partition of data; thus,126

the classification accuracy and computational efficiency of the hierarchical127

classification system depend heavily on the generated clusters. More pre-128

cisely, well-balanced separable clusters at each node of the tree would signifi-129

cantly improve the performance of the overall system. This requires that the130

employed clustering algorithm must be compatible with the base classifier,131

that is, the SVM classifier in our study.132

To design optimal clustering algorithm, we should first examine the base133

classifier SVM since the clustering algorithm as well as the base classifier134

must aim achieving the same goal for a satisfactory performance. The SVM135

classifier finds a separating hyperplane that maximizes the margin, which is136

defined as the distance between the hyperplane and the closest samples from137

the classes. To do so, SVM first approximates each class with a convex hull138

(Bennett and Bredensteiner, 2000). A convex hull consists of all points that139

can be written as a convex combination of the points in the original set, and140

a convex combination of points is a linear combination of data points where141

all coefficients are nonnegative and sum up to 1. More formally, the convex142

hull of samples {xi}i=1,...,n can be written as143

Hconvex =

{
x =

n∑
i=1

αixi|
n∑

i=1

αi = 1, αi ≥ 0

}
. (1)
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Convex hulls of two classes are illustrated in Fig. 1. Following this approx-144

imation, SVM finds the closest points in these convex hulls (Bennett and145

Bredensteiner, 2000). Then, these two points are connected with a line seg-146

ment. The plane, orthogonal to the line segment that bisects the line, is147

selected as the separating hyperplane as shown in Fig. 1. From this geomet-148

rical point of view, in a separable case, the two closest points on the convex149

hulls determine the separating hyperplane and the SVM margin is merely150

equivalent to the minimum distance between the convex hulls that represent151

classes.

Figure 1: Two closest points on the convex hulls determine the separating hyperplane of

the hard-margin SVM classifier.

152

The clustering algorithms based on k-means clustering are not good choices153

for SVM based BHDTs since they do not directly target at margin maxi-154

mization in the sense described above. In a similar manner, the clustering155

algorithm maximizing the Kullback-Leibler distance between class densities156

is also not compatible with SVMs owing to the same reason. When the clus-157

tering algorithms using k-means or Kullback-Leibler distance are employed,158
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it may be more difficult to separate the resulting clusters for SVM classifiers,159

which in turn would degrade both the classification accuracy and the real-160

time efficiency of the overall classification system. On the other hand, the161

Normalized Cuts (NCuts) clustering of (Shi and Malik, 2000) is more suitable162

for partition of data since its objective is similar to that of SVMs. The NCuts163

clustering algorithm maps the data samples into an infinite-dimensional fea-164

ture space and cuts through the data by passing a hyperplane through the165

maximum gap in the mapped data (Rahimi and Recht, 2004). It then labels166

points that fall on the same side of the hyperplane as belonging to the same167

cluster. However, NCuts is an unsupervised approach and its split does not168

guarantee that samples belonging to the same classes are always grouped169

together in the same node unless class-specific samples are very close to each170

other and they are far from the other class samples. As a result, NCuts clus-171

tering may create overlapping classes that have samples in different clusters.172

If the created clusters are not compact, the real-time performance of the173

BHDTs degrades and they behave like K-D trees (Friedman et al., 1977). In174

the following section, the NCuts algorithm is modified and two variations are175

proposed that generate well-balanced compact clusters with the maximum176

margin.177

2.2. Sample Based Large Margin Clustering178

Let the training samples be xci ∈ IRd, where c = 1, . . . , C indexes the179

C classes and i = 1, . . . , nc indexes the nc samples of class c. Prior to180

introduction of the first proposed method, a summary of the NCuts clustering181

algorithm is provided since the proposed method is built on this approach.182
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2.2.1. Normalized Cuts Clustering183

Given a dataset of m samples, the NCuts algorithm constructs a weighted184

graph with m vertices {v1, . . . , vm} (one for each sample) and a set of edges185

containing these vertices. Each edge between vertices vi and vj carries a non-186

negative weight wij = wji ≥ 0 based on the similarity between the samples187

associated to the vertices. In the present study, a fully connected graph is188

considered in which all edges are connected. A common choice for weighting189

the edges, is the heat kernel (Gaussian kernel) wij = exp(−d(xi,xj)
2/t)),190

where d(xi,xj) represents the distance between samples xi and xj computed191

using the preferred distance function, and t is the width of the kernel.192

The matrix W = (wij)i,j=1,...,m is the weighted adjacency matrix of the193

graph. In the case of binary clustering, assigning a label yi ∈ {−1,+1} to194

each sample xi cuts the graph into set A of the vertices with label +1 and195

set B of vertices with label −1. The cost function of the method is defined196

as197

NCut(A,B) =

(
1

V ol(A)
+

1

V ol(B)

) ∑
i∈A,j∈B

wij (2)

where V ol is the sum of the weights in a set and
∑

i∈A,j∈B wij is the total198

weight of the edges that must be removed to make A and B disjoint. This199

cost function penalizes the cuts that are not well-balanced and ensures that200

the sets A and B have approximately the same number of elements (Shi and201

Malik, 2000). However, optimizing the above criterion is NP hard. Thus,202

by resorting a relaxation, the problem is reduced to minimization of the203

Laplacian of the graph. If the Laplacian matrix is denoted with L = D −204

W, where D is the diagonal matrix whose entries are the column (or row)205

sums of W, the algorithm would consist of solving the following generalized206
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eigenvalue problem207

L = λDa. (3)

Subsequently, the components of the eigenvector a∗ corresponding to the208

second smallest eigenvalue of (3) are thresholded to split data into two sets,209

i.e.,210  yi = −1 if a∗i > ∆,

yi = +1 if a∗i ≤ ∆,
(4)

where ∆ is the chosen threshold which is typically equal to zero.211

2.2.2. Modified Normalized Cuts Clustering212

As mentioned earlier, NCuts clustering is an unsupervised method which213

does not take class membership information into consideration. Thus, the214

resulting clusters may have overlapping classes. To overcome this pitfall215

and reduce the overlapping regions among classes, the following similarity216

function is adopted to weight the edges217

wij =

 exp(−d(xci,xćj)/αt) if c = ć,

exp(−d(xci,xćj)/t) if c 6= ć,
(5)

where α ≥ 1 is a tuning parameter that is used to change the similarities218

between class-specific samples. As opposed to the original heat kernel func-219

tion, this new similarity function has a supervised nature. In particular, if220

α parameter is equal to 1, the algorithm is equivalent to the original NCuts.221

However, if α is set to a value higher than 1, the similarity between any two222

patterns in the same class is artificially increased. As a result, similarities223

between samples in a same class usually become larger than the similarities224

between any two patterns belonging to different classes. Thus, samples be-225

longing to the same classes tend to group in the same clusters as illustrated226
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in Fig. 2. This results in improvement of the real-time performance of the227

BHDT classification system.
same classes tend to group in the same clusters as illustrated in Fig. 2. This202

improves the real-time performance of the BHDT classification system.

(a) (b)

Figure 2: NCuts clustering algorithm splits data samples in order to create maximum

gap between the separated samples and it creates overlapping classes as in (a). Modified

NCuts algorithm on the other hand takes class membership information into consideration

and it creates more compact clusters as in (b).

203

Given a set of n samples at each internal node of the hierarchical tree,204

the proposed method applies the modified NCuts clustering algorithm to split205

data. In some cases, there might still be classes which lie on both sides of the206

cluster decision boundaries. In such cases, we follow the approach introduced207

in (Marszalek and Schmid , 2008). In particular, we introduce the overlapping208

classes into both clusters if the ratio of the overlapping samples is greater209

than a selected threshold and postpone the resulting uncertain classification210

decisions until the number of classes gets reduced and learning good decisions211

becomes tractable.212

2.3. Class Based Large Margin Clustering213

In this method, we focus on the separability of classes rather than samples214

and apply original NCuts clustering to partition class sets directly. Given a215

10

Figure 2: NCuts clustering algorithm splits data samples in order to create maximum gap

between the separated samples and it creates overlapping classes as in (a). Modified NCuts

algorithm on the other hand takes class membership information into consideration, and

samples in the same classes tend to group in the same clusters. So, this process creates

more compact clusters as in (b).

228

Given a set of samples at each internal node of the hierarchical tree,229

the proposed method applies the modified NCuts clustering algorithm to230

split data. In some cases, there might still be classes that lie on both sides231

of the cluster decision boundaries. In such cases, the approach introduced232

in (Marszalek and Schmid, 2008) is followed. In particular, the overlapping233

classes are introduced into both clusters if the ratio of the overlapping samples234

is greater than a selected threshold, and the resulting uncertain classification235

decisions are postponed until the number of classes is reduced and it becomes236

tractable for learning good decisions.237

2.3. Class Based Large Margin Clustering238

In this method, we focus on the separability of classes rather than samples239

and apply original NCuts clustering for partitioning class sets directly. Given240
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a set of m (m ≤ C) classes at each internal node of the hierarchical tree, the241

proposed clustering algorithm would now construct a weighted graph with242

m vertices (one for each class at a node) and a set of edges containing these243

vertices. It should be noted that the size of the graph is greatly reduced since244

the number of classes in a node is considerably smaller than the number of245

samples in those classes. Since the SVM margin is equivalent to minimum246

distance between the convex hulls of classes, this distance measure is used247

during computation of the weights of the edges. As in SVM, the shortest248

distance between convex hulls of two classes ωi and ωj is determined by the249

two closest points in these convex hulls. The problem of finding these two250

points can be represented as a quadratic optimization problem251

min
u,v

1

2
||Xiu−Xjv||2

s.t.

ni∑
k=1

uk = 1,

nj∑
k=1

vk = 1, u ≥ 0, v ≥ 0,
(6)

where Xi represents the matrix whose columns are sample vectors belonging252

to the class ωi and u ≥ 0 implies that its all elements are greater than or253

equal to zero. It must be noted that the objective function of this quadratic254

optimization problem is convex and a global minimum exists. This for-255

mulation is also equivalent to the hard-margin SVM formulation (Bennett256

and Bredensteiner, 2000). Let u∗ and v∗ be an optimal solution of (6).257

The minimum distance between the convex hulls of classes is then given by258

d(ωi, ωj) = ||Xiu
∗ − Xjv

∗||. This distance is equivalent to 2/||w|| in SVM259

formulation where w represents the normal of the optimal separating hyper-260

plane returned by the SVM algorithm. However, a problem may arise if the261

convex hulls of classes overlap, i.e., classes are not linearly separable. In this262
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case, the distances between those classes become zero and it may not reflect263

the actual similarity between classes. If the classes are close to being linearly264

separable and they overlap because of a few outliers, the influence of those265

outliers can be reduced by contracting or reducing the convex hulls during266

distance computation by introducing an upper bound on the coefficients in267

(6)1. In this case, the new optimization problem becomes268

min
u,v

1

2
||Xiu−Xjv||2

s.t.

ni∑
k=1

uk = 1,

nj∑
k=1

vk = 1, 0 ≤ u ≤ τ, 0 ≤ v ≤ τ,
(7)

where τ ≤ 1 is the user-chosen positive bound. However, if the classes are269

not linearly separable, the data can be mapped into a higher-dimensional270

space where the classes become linearly separable. It should be noted that271

the objective function of (7) can be written in terms of the dot products of272

the samples, which allows the use of the kernel trick. As a result, the data273

can be implicitly mapped into a higher-dimensional space where the convex274

hulls do not overlap and the distances between classes in the mapped space275

can be computed.276

There is only one design parameter t, the width of the heat kernel, to be277

fixed. Well chosen values of t generate well-balanced clusters at each node278

of the decision tree, which is critical for an efficient and reliable classifica-279

tion. On the other hand, if the width is too small, the algorithm will favor280

separating a single isolated class from the remaining classes. For unbalanced281

1In fact this is equivalent to soft margin formulation of SVMs. The reader is referred

to (Bennett and Bredensteiner, 2000) for more information.
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datasets, it is more efficient to separate the large classes (classes with many282

samples) at the upper levels of the hierarchy, which renders the well-balanced283

binary decision nodes less efficient. In such cases, the weights of the adja-284

cency matrix and the width of the kernel can be adjusted to accommodate285

this kind of supervision. More precisely, we can deliberately decrease the286

values of the edge weights between the large classes and the others by lower-287

ing the width to ensure that the large classes will be separated at the upper288

levels of the hierarchy.289

2.4. Removing Outliers290

In the proposed clustering method, the presence of data outliers can sig-291

nificantly change the true geometric structure of the convex hulls. It is un-292

desirable to allow a few outlying points to excessively influence the distance293

computations. Therefore, the influence of data outliers should be restricted294

in the clustering process. As described earlier, this can be done by contract-295

ing or reducing the convex hulls during distance computations by putting296

an upper bound on the coefficients in (7) (Bennett and Bredensteiner, 2000).297

Although this procedure reduces the effects of data outliers, it does not allow298

the identification of all outlier samples. For a fair comparison with the ex-299

isting methods, the Support Vector Data Description (SVDD) method (Tax300

and Duin, 2005) was used for identifying and removing the outliers in the301

experiments. Given a class, the SVDD method finds a compact bounding302

hypersphere enclosing all samples in that class. In the case of data outliers,303

the volume of the hypersphere is minimized for detecting those outliers. The304

class samples that fall outside the bounding sphere are considered as outliers.305

This method also allows the use of the kernel trick, and thus it is compatible306
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with the proposed clustering method and SVMs.307

3. Experiments308

The BHDTs using the proposed clustering methods were tested on syn-309

thetic and real databases to assess their performance, and they were com-310

pared to the OAO, OAR and DAG SVMs as well as the BHDTs using k-means311

based clustering (Vural and Dy, 2004) in terms of classification accuracy and312

testing time2. We experimented with the SVM classifiers using linear ker-313

nel k(xi,xj) = 〈xi,xj〉, polynomial kernels k(xi,xj) = (〈xi,xj〉)p with degree314

p = 2, 3, and the Gaussian kernel exp(−d(xi,xj)
2/t)). For some databases, it315

was found that the SVM classification algorithms using linear or polynomial316

kernels either did not converge to a solution or the classification performances317

were too low since the selected kernels failed to approximate the class de-318

cision boundaries correctly. Thus, such results were omitted and only the319

results for kernels yielding good classification accuracies were reported. The320

distances between samples were computed using the Euclidean distance, and321

the heat kernel function was used for weighting the edges of the adjacency322

matrix of the graph during clustering for the BHDT method using the pro-323

posed sample based clustering. However, for the BHDT method using the324

proposed class based clustering, the selected kernel function (linear, poly-325

nomial, or the Gaussian) was used for computing the distances between the326

convex hulls of classes. Subsequently, the heat kernel function was again used327

to weight the edges as usual.328

2All programs can be downloaded at http://www2.ogu.edu.tr/∼mlcv/softwarelink.htm
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The shape of the decision boundaries and the distances between the sam-329

ples or classes significantly affect the optimal values of the design parameters,330

the kernel width t, and α. In other words, choosing the best design parame-331

ters is data dependent. Therefore, randomly created training and validation332

sets were used to fix these parameters. The best values of the design param-333

eters were determined using a global coarse-to-fine search. Specifically, the334

minimum and maximum values of design parameters that produce acceptable335

classification rates were first determined by coarsely searching over a wide336

range of the parameter space. Subsequently, a coarse grid was constructed337

over the unknown parameters using these computed values and finally a local338

search was performed near the parameters that yield the best classification339

rate for determining the final best values. All experiments were conducted340

in Matlab environment using a 3-GHz machine with 3 GB of RAM.341

3.1. Experiments on Synthetic Data342

Here we illustrate some properties of the methods on two simple synthetic343

data sets. For the first database, 3-dimensional samples drawn from normal344

distributions were used with means [µ µ µ]> where the value of µ is changed345

between −50 and 48 to create 100 classes. The classes were close to being346

linearly separable with having small overlaps between them. Thus, it was347

assumed that k-means based clustering should work well in this case. For348

each class, we used 20 samples for training and 20 samples for testing.349

For the second database we used 2-dimenional samples drawn from two-350

component mixture models which are typically used in XOR problem. By351

shifting centers of mixture components, 50 classes were created, each having352

40 samples. The first six classes are plotted in Fig. 3. It can be observed353
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that the classes are not linearly separable in this case, and k-means based354

clustering would not work well since the overall means are near the origin for355

all classes. A total of 40 samples per class were used for both training and356

testing.

-4 -3 -2 -1 0 1 2 3 4
-4
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-2

-1

0

1

2

3

4

 

Figure 3: The first six classes having two mixture components from the second synthetic

database. The mean of each class is the origin.

357

The classification rates for the different kernels on the first and the second358

synthetic databases are given in Tables 1- 3. The Proposed Method1 refers to359

the BHDT classifier using the modified NCuts clustering, and the Proposed360

Method2 denotes the BHDT classifier using the class based NCuts clustering.361

The design parameters were set by repeating the above described procedures362

5 times and the final reported classification accuracies are averages over 10363

repetitions. Asterisks in the table indicate the performance differences that364

are statistically significant at 5% level between the given method and the365

corresponding best result indicated in bold (statistical significany tests are366

determined based on the two-sample t test procedure (Devore, 2004) for all367
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Table 1: Classification Rates(%) for the Linear Kernel on the First Synthetic Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 87.27± 1.4 12.27

Proposed Method2 87.25± 1.3 1.73

BHDT of (Vural and Dy, 2004) 87.25± 1.3 1.76

DAG SVM 87.38± 1.3 28.48

OAO SVM 87.24± 1.3 1280.00

OAR SVM NA NA

experiments), and the testing time indicates the time consumed for classifying368

all test points. It should be noted that the testing time for a single sample is369

fixed for multi-class SVMs using the OAO and OAR approaches; however, it370

changes for BHDTs and DDAGs. An exact number of C − 1 classifiers must371

be evaluated in order to label a test sample for DDAGs. For BHTDs, the372

best case occurs if the predicted class is found at the first node, and the worst373

case occurs if the predicted class is found after applying all C − 1 decision374

functions.375

For the first database, only linear and the Gaussian kernels produced sat-376

isfactory results where the Gaussian kernel yielded better results than the377

linear kernel. For both kernels, the classification rates of all tested methods378

are very similar except for OAR SVM, which yields a very poor classification379

accuracy with respect to the other methods for the Gaussian kernel and does380

not converge to a solution for the linear kernel (it is because all pairwise381
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Table 2: Classification Rates(%) for the Gaussian Kernel on the First Synthetic Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 90.23± 0.4 14.84

Proposed Method2 90.21± 0.4 2.08

BHDT of (Vural and Dy, 2004) 90.26± 0.5 2.10

DAG SVM 90.23± 0.4 33.67

OAO SVM 90.30± 0.5 1489.80

OAR SVM 71.88∗ ± 0.4 37.97

classes are close to being linearly separable, but classes are no longer linearly382

separable when the OAR scheme is used). It can be found that BHDTs383

using the proposed class based clustering and BHDTs using k-means clus-384

tering offer the best performance in terms of testing time for both kernels,385

and the BHDT classifier using the proposed class based large margin cluster-386

ing is considerably faster than the one using the proposed modified NCuts387

clustering.388

For the second database it was found that only the Gaussian kernel389

worked well since the decision boundaries between classes are nonlinear and390

highly complex. For all other tested kernels, either the SVM classification391

algorithm did not converge to a solution or the classification accuracies were392

too low. For the Gaussian kernel, the BHDT classifier using the proposed393

class based clustering achieved the best performance in terms of testing time394

among all the tested methods. Both of our proposed methods, DAG and395
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Table 3: Classification Rates (%) for the Gaussian Kernel on the Second Synthetic

Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 96.98± 0.4 17.53

Proposed Method2 96.97± 0.4 1.81

BHDT of (Vural and Dy, 2004) 73.73∗ ± 6.3 2.67

DAG SVM 96.74± 0.9 16.82

OAO SVM 96.95± 0.4 373.66

OAR SVM 94.12∗ ± 2.8 15.92

OAO SVMs yield the best classification accuracies where the BHDT classi-396

fier using modified NCuts clustering wins with a slight edge. As expected,397

the BHDT classifier using k-means clustering has the worst performance in398

terms of classification accuracy; its testing time is also low as compared to the399

second proposed method. This is because all class means are near the origin400

and k-means based clustering fails to measure the actual similarities among401

classes, and thus it becomes very difficult to separate the resulting classes402

using the SVM classifier. As in the first synthetic database, the BHDT clas-403

sifier using the class based clustering is much faster than the one using the404

modified NCuts clustering.405
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3.2. Experiments on Coil-100 Object Database406

Here we test methods on the Coil-100 objects database3. The Coil-100407

database includes 72 view-images of 100 different objects taken at 5-degree-408

apart orientations. The size of each image is 128 × 128. All images were409

converted to gray scale and Principal Component Analysis (PCA) was ap-410

plied to reduce the dimensionality to 100. A total of 36 samples were used411

from each class for training, and the remaining 36 samples were used for412

testing. The design parameters were set using 5 random training/test splits413

and the final reported classification accuracies were averages over 10 random414

training/test splits. Data outliers in the training sets were removed using415

the SVDD method prior to the application of the classifiers.416

Table 4: Classification Rates (%) for Polynomial Kernel with p = 2 on Coil-100 Objects

Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 93.93∗ ± 0.6 17.29

Proposed Method2 94.32± 0.4 15.75

BHDT of (Vural and Dy, 2004) 94.26± 0.4 17.90

DAG SVM 94.14± 0.5 64.24

OAO SVM 94.15± 0.5 2710.02

OAR SVM 94.50± 0.5 122.72

3Available at http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Table 5: Classification Rates (%) for Polynomial Kernel with p = 3 on Coil-100 Objects

Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 89.21∗ ± 0.4 28.71

Proposed Method2 89.70∗ ± 0.3 25.32

BHDT of (Vural and Dy, 2004) 89.70∗ ± 0.4 25.67

DAG SVM 88.82∗ ± 0.3 64.89

OAO SVM 88.80∗ ± 0.3 2698.90

OAR SVM 91.86± 0.2 650.96

The results for different kernels are given in Tables 4- 6. It can be seen417

from the tables that the BHDT classifier using the proposed class based418

clustering is the most efficient method in terms of testing time in all cases.419

However, its classification rate is slightly lower than some other traditional420

multi-class SVMs. Nevertheless, the classification performance of the pro-421

posed method is still satisfactory for most of the cases. It is found that the422

BHDT of (Vural and Dy, 2004) using k-means clustering has worse perfor-423

mance than the second proposed method in terms of classification accuracy424

for polynomial kernel with degree 2 whereas it has better performance for the425

Gaussian kernel. Overall the best classification accuracies are obtained using426

the Gaussian kernels, and the worst results are obtained for the polynomial427

kernel with degree 3.428

22



Table 6: Classification Rates (%) for the Gaussian Kernel on Coil-100 Objects Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 94.97∗ ± 0.2 104.69

Proposed Method2 96.45∗ ± 0.3 58.03

BHDT of (Vural and Dy, 2004) 96.97∗ ± 0.3 77.78

DAG SVM 97.39± 0.3 209.96

OAO SVM 97.33± 0.3 9819.70

OAR SVM 96.28∗ ± 0.3 515.26

3.3. Experiments on the AR Face Database429

The AR face database includes 26 frontal images with different facial430

expressions, illuminations conditions, and occlusions for 126 subjects. Images431

were recorded in two different sessions 14 days apart. Thirteen images were432

recorded under controlled circumstances in each session. The size of the433

images is 768 × 576. A total of 50 individuals (30 males and 20 females)434

were randomly selected for experiment. The images were aligned and scaled435

so that the centers of the two eyes always fall on fixed coordinates. The436

pre-processed images of a person are illustrated in Fig. 4. As in the previous437

experiment, PCA was applied and the dimensionality was decreased to 200.438

A total of 20 samples were randomly selected for training for each individual439

while keeping the remaining six for testing. This process was repeated 10440

times and the final classification rates were obtained by averaging the results441

obtained in each run.442
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Figure 4: Some pre-processed images from the AR face database.

The results for the different kernels are given in Tables 7- 9. It can be seen443

that the best classification accuracies are obtained using the linear kernel444

for all methods except OAR SVM, which achieves the best classification445

accuracy for the polynomial kernel with degree 2. For the linear kernel, the446

best classification accuracy is obtained using DAG SVM and OAO SVM,447

with DAG SVM being more successful owing to a slight advantage. It can be448

seen that both of these methods significantly outperform the other methods.449

It is found that the BHDT of (Vural and Dy, 2004) is the fastest in terms450

of testing time followed by the Proposed Method2. For both the polynomial451

and the Gaussian kernels, the best classification accuracy is obtained by OAR452

SVM. The BHDT classifier using the proposed class based clustering and the453

BHDT of (Vural and Dy, 2004) are the most efficient methods in terms454

of testing time for the polynomial and Gaussian kernel functions whereas455

the Proposed Method2 outperforms the BHDT of (Vural and Dy, 2004) in456

terms of classification accuracy. The Proposed Method1 also outperforms457

the BHDT of (Vural and Dy, 2004) for the Gaussian kernel; however, its458

classification accuracy is slightly lower for the polynomial kernel.459
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Table 7: Classification Rates (%) for Linear Kernel on AR Face Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 96.87∗ ± 1.0 1.58

Proposed Method2 97.47∗ ± 0.7 0.65

BHDT of (Vural and Dy, 2004) 96.47∗ ± 0.9 0.53

DAG SVM 99.20± 0.4 2.95

OAO SVM 99.17± 0.3 64.37

OAR SVM 97.10∗ ± 0.5 5.01

4. Summary and Conclusion460

In this study, two new clustering algorithms were proposed for the par-461

tition of data samples for SVM based BHDTs. The proposed methods have462

two major advantages over the traditional clustering algorithms used for this463

purpose. Firstly, the proposed methods are suitable when SVMs are used464

as the base classifier. On the other hand, the most commonly employed k-465

means clustering algorithm may not be compatible with the SVM classifier as466

demonstrated in the synthetic database experiments. It must be noted that467

the k-means clustering is based on the assumption that the class densities are468

Gaussian and isotropic. However, in general, this assumption is not true for469

most of the classification problems in the real world, and k-means clustering470

algorithm might produce clusters that are difficult to separate using the SVM471

classifier. Secondly, the proposed methods allow the use of kernel functions as472

opposed to the other clustering algorithms such as Kullback-Leibler distance473

25



Table 8: Classification Rates (%) for Polynomial Kernel with p = 2 on AR Face Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 90.67∗ ± 1.2 12.14

Proposed Method2 91.12∗ ± 1.5 2.74

BHDT of (Vural and Dy, 2004) 90.83∗ ± 1.5 2.74

DAG SVM 93.00∗ ± 1.6 3.68

OAO SVM 93.00∗ ± 1.6 67.96

OAR SVM 99.14± 0.2 65.52

based clustering or the k-means algorithm. This is a significant advantage474

since the use of different kernel functions in SVM can significantly change475

the decision boundaries.476

In the proposed methods, the most important design parameter is the477

width of the heat kernel function. Selection of the best value of this param-478

eter is data dependent since the distances between the convex class sets or479

data samples significantly affect the optimal values of the parameter. More-480

over, for unbalanced data sets it must be specially fixed so that the larger481

classes will be separated at the upper levels of the hierarchical tree. Thus, it482

is better to fix this parameter based on a cross-validation scheme as done in483

the present study. The use of the proposed clustering algorithms with well-484

chosen parameters in BHDTs will generate well-balanced separable clusters485

at each internal node of the decision tree, which is crucial for a reliable and486

efficient classification. Although both of the proposed clustering methods487
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Table 9: Classification Rates (%) for the Gaussian kernel on the AR Face Database.

Methods Classification Rate Testing Time (secs)

Proposed Method1 92.00∗ ± 1.6 15.36

Proposed Method2 91.90∗ ± 1.2 6.07

BHDT of (Vural and Dy, 2004) 90.87∗ ± 1.5 6.45

DAG SVM 94.83∗ ± 1.5 16.97

OAO SVM 94.90∗ ± 1.4 408.17

OAR SVM 97.93± 0.8 102.05

worked well in the experiments, the proposed class based NCuts clustering488

method seemed to be more efficient than the proposed sample based cluster-489

ing method. The average testing time for labeling an unseen sample using490

the proposed methods is O(log2C). Thus, it can be concluded that the pro-491

posed methods can considerably increase the speed of classification with a492

small decrease in the classification accuracies when the number of classes is493

large.494
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