
ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Computer Vision and Image Understanding 0 0 0 (2017) 1–11

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

Large-scale image retrieval using transductive support vector machines

Hakan Cevikalp

a , ∗, Merve Elmas a , Savas Ozkan

b

a Electrical and Electronics Engineering Department of Eskisehir Osmangazi University, Meselik 26480 Eskisehir, Turkey
b Turkiye Bilimsel ve Teknolojik Arastirma Grubu (TUBITAK) - UZAY, Ankara, Turkey

a r t i c l e i n f o

Article history:

Received 21 February 2017

Revised 16 June 2017

Accepted 20 July 2017

Available online xxx

Keywords:

Image retrieval

Hashing

Transductive support vector machines

Semi-supervised learning

Ramp loss

a b s t r a c t

In this paper, we propose a new method for large-scale image retrieval by using binary hierarchical trees

and transductive support vector machines (TSVMs). We create multiple hierarchical trees based on the

separability of the visual object classes, and TSVM classifier is used to find the hyperplane that best sep-

arates both the labeled and unlabeled data samples at each node of the binary hierarchical trees (BHTs).

Then the separating hyperplanes returned by TSVM are used to create binary codes or to reduce the di-

mension. We propose a novel TSVM method that is more robust to the noisy labels by interchanging the

classical Hinge loss with the robust Ramp loss. Stochastic gradient based solver is used to learn TSVM

classifier to ensure that the method scales well with large-scale data sets. The proposed method signif-

icantly improves the Euclidean distance metric and achieves comparable results to the state-of-the-art

on CIFAR10 and MNIST data sets, and significantly outperforms the state-of-the-art hashing methods on

more challenging ImageCLEF 2013, NUS-WIDE, and CIFAR100 data sets.

© 2017 Elsevier Inc. All rights reserved.

1

t

p

n

s

m

s

h

r

a

s

i

n

v

c

h

s

c

s

a

m

r

C

t

s

s

n

m

a

T

v

f

t

b

n

l

s

s

h

m

m

T

v

l

h

1

. Introduction

Large-scale image retrieval has recently attracted great at-

ention due to the rapid growth of visual data produced by

opularization of digital cameras, web-based services and social

etworks. Clearly, there is an emerging need for a complete visual

earch framework to retrieve relevant visual contents from such

assive data. Despite the great research effort s, visual retrieval is

till a challenging problem since web-scale visual search demands

ighly efficient and accurate retrieval methods. In general, image

etrieval can be defined as follows: Given a query image, finding

nd representing (in an ordered manner) the images depicting the

ame scene or objects in large unordered image collections.

For large-scale image search, the most commonly used method

s the hashing method that enables us to approximate the nearest

eighbor search. Hashing methods convert each image feature

ector in the database into a compact code (typically a binary

ode) and provide constant or sub-linear search time. Most of the

ashing methods rely on Euclidean distances. However, due to the

emantic gap between the low-level features and semantics, Eu-

lidean distances in the feature space do not reflect the semantic

imilarities between the images. Furthermore, the state-of-the-

rt image visual features are typically high-dimensional vectors
∗ Corresponding author.

E-mail addresses: hakan.cevikalp@gmail.com (H. Cevikalp),

erveelmas1@gmail.com (M. Elmas), savas.ozkan@tubitak.gov.tr (S. Ozkan).

a

t

t

a

s

ttp://dx.doi.org/10.1016/j.cviu.2017.07.004

077-3142/© 2017 Elsevier Inc. All rights reserved.

Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
anging from several thousands to millions. As pointed out in

evikalp et al. (2008a), the performance of the nearest-neighbor

echniques using the Euclidean distances in high-dimensional

paces is poor since sparse and irregular distributions of data

amples tend to have many holes (regions that have few or no

earby samples from the same classes), so it is necessary to learn

ore discriminative distance metrics. Our experimental results

t the end also verify these claims. Note that the authors in

orralba et al. (2008) observed that when the data set size grows,

isual similarity approaches to the semantic similarity. This stems

rom the fact that as the number of samples is increased when

he dimensionality of the input space is fixed, the distributions

ecome denser and the holes are filled in mostly with the correct

eighbors. That is why (Torralba et al., 2008) experiment with very

ow-dimensional pixel values or gist features and a large training

et size (80 million tiny images). But the dimensionality of the

tate-of-the-art visual image representations is typically much

igher, e.g., the dimensionality of fisher vectors (FV) is approxi-

ately 64K for moderate sized images, and the training set size

ust be much higher to fill in the holes with correct neighbors.

herefore, relying on Euclidean distances between image feature

ectors for creating binary codes can be misleading. Another prob-

em is that, the most learning algorithms work with only a limited

mount of selected data samples while ignoring most of the

raining samples since these methods do not scale well with large

raining set size. Similarly, some methods use only labeled data

nd ignore any potential information conveyed in unlabeled data

amples.
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
mailto:hakan.cevikalp@gmail.com
mailto:merveelmas1@gmail.com
mailto:savas.ozkan@tubitak.gov.tr
http://dx.doi.org/10.1016/j.cviu.2017.07.004
http://dx.doi.org/10.1016/j.cviu.2017.07.004

2 H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

o

l

r

(

t

t

s

e

o

(

d

d

w

a

l

b

t

l

s

t

W

m

t

o

u

g

g

b

o

I

b

m

m

(

p

A

n

p

m

s

m

a

n

a

a

w

o

m

C

c

m

2

i

m

o

t
Related Work: Majority of the current popular hashing meth-

ods (Gionis et al., 1999; Gong et al., 2013b; Heo et al., 2012; Kulis

and Darrell, 2009; Kulis and Grauman, 2009; Liu et al., 2011a; Ra-

ginsky and Lazebnik, 2009; Salakhutdinov and Hinton, 2009; Weiss

et al., 2008) are unsupervised and they are built on the assumption

that the similar images in the Euclidean space must have simi-

lar binary codes. Among these, Locality Sensitive Hashing (LSH)

(Gionis et al., 1999) chooses random projections so that two closest

image samples in the feature space fall into the same bucket with

a high probability. To solve the challenging semantic gap problem,

the most straightforward solution is to use label information to

improve the distance metric. But, labeling all images in large image

databases is too costly and difficult in practice. In contrast, relevant

feedback given in terms of similar/dissimilar pairs is much easier

to collect. Similarly, for most of the images on the web, some label

tags can be collected at a more reasonable cost by using image file

names or surrounding text. So, both semi-supervised and super-

vised hashing methods utilizing these types of information have

been proposed (He et al., 2008; Hoi et al., 2008; Joly and Buisson,

2011; Liu et al., 2012; Mu et al., 2010; Norouzi and Fleet, 2011;

Wang et al., 2010; Zhang et al., 2012). Majority of these methods

(He et al., 2008; Liu et al., 2012; Norouzi and Fleet, 2011; Wang

et al., 2010; Zhang et al., 2012) use label information during cre-

ating a similarity matrix, and then, projection directions that will

preserve the similarities within the similarity matrix are found.

Finally, these directions are used to produce binary codes. These

methods cannot be applied directly to large-scale image datasets

since they require computing and operating on a very large n × n

sized similarity matrix, where n is the total number of image

samples in the training (gallery) set. Generally, two procedures

are followed to avoid this problem: In the first approach, only

a small number of labeled data samples is used to learn binary

codes and all unlabeled data samples are ignored. In the second

procedure, some representative anchor points are created by ran-

dom selection or clustering, and the similarity matrix of all data is

approximated with much smaller sized similarity matrix of those

anchor points. Both procedures are problematic in the sense that

some potential information that may come from unlabeled data

samples are ignored and propagation of supervised information

from labeled samples to the neighboring unlabeled samples has

not been taken into consideration. 1 Shi et al. (2016) introduced

a new extension of the supervised hashing method proposed in

Liu et al. (2012) by adding an additional regularization term to

the optimization function and with some other minor changes to

improve the model. Cakir and Sclaroff (2015) introduced an online

supervised method for hashing. The methods (Hoi et al., 2008; Joly

and Buisson, 2011; Mu et al., 2010) that are more related to ours

use SVM based large margin classifiers to learn compact binary

codes. Both Mu et al. (2010) and Hoi et al. (2008) use only labeled

data since their methods require to operate on a n × n sized kernel

matrix. Thus, unlabeled data are ignored again, and they do not

contribute to the label propagation. The method proposed in

Joly and Buisson (2011) does not need any supervision, and the

authors randomly select some samples and randomly assign them

positive and negative labels. Then they run SVM algorithm to find

the hyperplanes separating these samples, and finally separating

hyperplanes are used to produce binary codes.

More recently, deep neural networks and CNN (Convolutional

Neural Networks) features have been used for image retrieval

(Gong et al., 2013a; Lai et al., 2015; Lin et al., 2015; Xia et al., 2014;

Zhang et al., 2015; 2016; Zhao et al., 2015). These methods typically
follow the similar structure of classifier networks that use a stack

1 There have been attempts to propagate label information in graph-based metric

learning methods, but these methods (Cevikalp et al., 2008b; Schölkopf et al., 2005)

also do not scale well with large training set size.

l

b

u

S

g

Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
f convolutional layers to produce discriminative features, but the

ast layers use different loss functions that are more suitable for

etrieval applications. For example, Lai et al. (2015) , Zhang et al.

2015) and Gordo et al. (2016) use a triplet ranking loss designed

o characterize one image is more similar to the second image

han the third one whereas some methods use other loss functions

uch as surrogate loss (Zhao et al., 2015), pair-wise ranking (Gong

t al., 2013a; Liu et al., 2016), Wasserstein loss (Frogner et al., 2015),

r weighted approximate ranking (Gong et al., 2013a). Zhang et al.

2016) introduced a new method for speeding up the training of

eep neural networks for supervised hashing. Almost all these

eep neural network methods are trained end-to-end fashion,

hich allows one to optimize the discriminative image features

nd hash functions simultaneously.

Our Contributions: Similar to the hashing methods using

arge-margin based classifiers, we also use SVM classifiers to learn

inary codes, but in contrast to other methods, we incorporate

he unlabeled data during learning process in a transductive

earning setting. Since the labeled data can be noisy in large-

cale image retrieval applications, we introduce a more robust

ransductive SVM (TSVM) method to the noise present in labels.

e use stochastic gradient based solver instead of sequential

inimal optimization (SMO) to solve the optimization problem,

hus our method scales well with large-scale data (to the best of

ur knowledge, it is the second transductive method that can be

sed with more than a million data). We also adopt the method

iven in Cevikalp (2010) for learning class hierarchies based on

raph cut and binary hierarchical trees to ensure the large margin

etween different class samples. As a final contribution, we devel-

ped a new multi-label image retrieval data set using a subset of

mageCLEF 2013 dataset.

Our method has great advantages over recent deep learning

ased and other hashing methods: First of all, we do not need

any labeled data as in deep neural nets. Deep learning based

ethods have many parameters (in terms of millions, e.g. AlexNet

 Krizhevsky et al., 2012) used in our experiments has 60 million

arameters), and they require many labeled data to train a model.

s a second limitation, how to handling multi-labeled data is still

ot a resolved problem for many hashing methods whereas the

roposed method can handle multi-labeled data gracefully. Our

ethod is also more robust to the noisy labels. In contrast, it is

hown in Gordo et al. (2016) that deep neural net based hashing

ethods are very sensitive to the noisy labels. But, the major

dvantage of our proposed method compared to the deep neural

et based hashing methods and other hashing methods is its

bility to use unlabeled data. Preliminary version of this paper

ppeared in Cevikalp et al. (2016) . This paper extends our previous

ork with (1) a more detailed analysis of the recent related work

n image retrieval; (2) a more detailed description of the proposed

ethodology; (3) new experiments on new datasets such as

IFAR100 and newly developed ImageCLEF 2013; and (4) extended

omparisons of the proposed method to some related supervised

ethods.

. Method

Here we consider the scenario where we have many unlabeled

mages with some limited amount of labeled image data. As we

entioned earlier, labels can be gathered from image file names

r nearby text on the web. But, we have to keep in mind that

he labels can be very noisy and there might be more than one

abels attached to an image, e.g., if an image contains people, car,

uildings etc., all these tags can be used to label the image. We

se TSVMs to create binary hash codes. It should be noted that

VM like large-margin based classifiers are widely used for this

oal and it was shown that larger margin between class samples
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 3

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Fig. 1. The illustration of the Ramp loss function, R s (t) = H 1 (t) − H s (t) , where H a (t) = max (0 , a − t) is the classical Hinge loss. Here, we set s = −0 . 20 .

y

2

h

a

i

h

T

C

t

i

w

s

b

t

o

h

2

L

s

s

t

s

f

T

r

s

m

r

e

a

s

w

l

c

d

w

i

s

u

R

m

w

m

f

p

t

o

t

b

m

p

H

T

t

t

R

w

i

f

B

R

c

J

w

J

ields to lower error rates in similarity search (Joly and Buisson,

011; Mu et al., 2010). So, our goal is to find the best separating

yperplanes which will create balanced binary hash codes but

t the same time they will yield to a large margin between the

mage samples of different classes.

In the proposed methodology, we first create image class

ierarchies based on their visual content similarities and labels.

o this end, we use binary hierarchical trees and Normalized

uts clustering. This methodology is much better compared to

he Wordnet based hierarchy used in Fergus et al. (2010) since it

s created based on the separability of the visual classes. Then,

e use TSVM to find the hyperplane that best separates the data

amples (both labeled and unlabeled data) at each node of the

inary hierarchical tree to make sure that the classes are split into

wo clusters with the largest margin possible. We first explain

ur novel TSVM algorithm and then describe how to create binary

ierarchical trees and compact binary codes below.

.1. Robust Transductive Support Vector Machines (RTSVMs)

Suppose that we are given a set of L labeled training samples

 = { (x 1 , y 1) , . . . , (x L , y L) } , x ∈ IR

d , y ∈ { +1 , −1 } and an unlabeled

et of U samples U = { x L +1 , . . . , x L + U } . Our goal is to find the best

eparating hyperplane characterized by θ = (w , b) , where w is

he normal of the hyperplane and b is the bias term. We use

eparating hyperplanes to create binary codes and the sign of the

ollowing decision function defines the binary codes

f θ (x) = w

� x + b. (1)

he main idea of TSVM learning is to find an hyperplane that sepa-

ates the labeled samples with a large margin at the same time en-

ures that the unlabeled samples will be as far as possible from the

argin. So, both the labeled and unlabeled data play a dominant

ole for finding the separating hyperplane. To this end, Collobert

t al. (2006) used the following optimization formulation

rg min

w ,b

1

2

‖

w ‖

2 + C

L ∑

i =1

H 1 (y i (w

� x i + b))

+ C ∗
L + U ∑

i = L +1

SR s (w

� x i + b)

.t.
1

U

L + U ∑

i = L +1

(w

� x i + b) =

1

L

L ∑

i =1

y i . (2)

here the function H 1 (t) = max (0 , 1 − t) is the classical Hinge

oss plotted in Fig. 1 , and C (C ∗) is a user defined parameter that

ontrols the weight of errors associated to the labeled (unlabeled)

ata samples, and SR s is the symmetric Ramp loss defined as

SR s (t) = R s (t) + R s (−t) , (3)
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
here R s (t) = min (1 − s, max (0 , 1 − t)) is the Ramp Loss function

llustrated in Fig. 1 . Here −1 < s ≤ 0 is a parameter that must be

et by the user.

It should be noted that the loss functions for labeled and

nlabeled data are not in the same range. For the symmetric

amp loss used for unlabeled data, a sample can introduce at

ost a limited amount of cost value no matter of its position

ith respect to the margin in the input space (the loss can be

aximum 0.8 when s is set to −0.2). However, there is no bound

or the Hinge loss used for labeled samples, e.g., a single outlying

oint farther from the margin can yield to a large loss. Therefore,

he labeled outlying points – the samples that are misclassified

utside the margin – start to play a dominant role in determining

he separating hyperplane. As we mentioned earlier, labels can

e very noisy in image retrieval applications since the labels are

ostly collected from the surrounding text, which aggravates the

roblem. To ameliorate this drawback, we interchange the convex

inge loss with a more robust non-convex Ramp loss function.

he Ramp loss also bounds the maximum amount of loss similar

o the symmetric Ramp loss function and this helps to suppress

he influence of misclassified examples. The superiority of the

amp loss over the Hinge loss for supervised SVM training is

ell-proven and demonstrated in Ertekin et al. (2011) , so we adopt

t to the transductive learning here.

After these revisions, our robust TSVM method solves the

ollowing problem

arg min

w ,b

1

2

‖

w ‖

2 + C

L ∑

i =1

R s (y i (w

� x i + b))

+ C ∗
L + U ∑

i = L +1

SR s (w

� x i + b)

s.t.
1

U

L + U ∑

i = L +1

(w

� x i + b) =

1

L

L ∑

i =1

y i .

(4)

y using the equations R s (t) = H 1 (t) − H s (t) and SR s (t) =
 s (t) + R s (−t) , the above cost function without the balancing

onstraint can be written as

(θ) = J con v ex (θ) + J conca v e (θ) , (5)

here

 con v ex (θ) =

1

2

‖

w ‖

2 + C

L ∑

i =1

H 1 (y i (w

� x i + b))

+ C ∗
L +2 U ∑

i = L +1

H 1 (y i (w

� x i + b)) , (6)
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

4 H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Algorithm 2 Stochastic Gradient Based Solver with Projection.

Initialize

w 1 , b 1 , T > 0 , λ0 > 0 , ε > 0

Description:

for t ∈ 1 , . . . , T do

λt ← λ0 /t;
for i ∈ randperm (L + 2 U) do

– Compute sub-gradients

g t =

{
−y i C (C

∗) x i + βi y i x i , if y i (w

�
t x i + b t) ≤ 1

βi y i x i , y i (w

�
t x i + b t) > 1 .

h t =

{
−y i C (C

∗) + βi y i , if y i (w

�
t x i + b t) ≤ 1

βi y i , y i (w

�
t x i + b t) > 1 .

– Update hyperplane parameters

˜ w t ← w t − λt
L +2 U (w t + g t)

˜ b t ← b t − λt
L +2 U h t

– Project parameters onto the feasible set imposed by the

constraint

(w t , b t) = P(˜ w t , ˜ b t)

end for

if (t > 2)&(‖ w t − w t−1 ‖ < ε) , break

end for

b

t

r

a

a

f

1

C

w

0

2

i

c

c

r

o

b

t

t

w

t

o

(

i

T

d

t

g

T

u

t

c

i

c

l

t

c

w
and

J conca v e (θ) = −C

L ∑

i =1

H s (y i (w

� x i + b))

−C ∗
L +2 U ∑

i = L +1

H s (y i (w

� x i + b)) . (7)

The above cost function (5) is not convex but it can be decom-

posed into convex (6) and concave (7) parts, so we can apply the

concave-convex procedure (CCCP) (Yullie and Rangarajan, 2002) to

solve the problem. By employing CCCP, the minimization of J (θ)

with respect to θ = (w , b) can be achieved by iteratively updating

the parameter θ by the following rule

θ t+1 = arg min

θ

(J con v ex (θ) + J ′ conca v e (θ
t) θ) , (8)

under the constraint 1
U

∑ L + U
i = L +1 (w

� x i + b) =

1
L

∑ L
i =1 y i .

After some standard derivations given in Appendix A (available

at http://mlcv.ogu.edu.tr/pdf/appendix.pdf) , the resulting final

robust TSVM method can be summarized as in Algorithm 1 . It

Algorithm 1 The Robust Transductive Support Vector Machines

(RTSVM).

Initialize θ0 = (w

0 , b 0) , t = 0 , ε1 > 0 , ε2 > 0

Compute

β0
i

= y i
∂ J conca v e (θ)

∂ f θ (x i)

=

⎧ ⎨

⎩

C , if y i ((w

0) � x i + b

0) < s and 1 ≤ i ≤ L
C

∗, if y i ((w

0) � x i + b

0) < s and L + 1 ≤ i ≤ L + 2 U

0 , otherwise .

while ‖ w t+1 − w t ‖ ≥ ε1 or ‖ βt+1 − βt ‖ ≥ ε2 do

– Solve the following convex minimization problem by using

SG algorithm given in Algorithm 2

arg min
w ,b

1
2 ‖ w ‖ 2 + C

∑ L
i =1 H 1 (y i (w

� x i + b)) +

C ∗
∑ L +2 U

i = L +1 H 1 (y i (w

� x i + b)) +

∑ L +2 U
i =1 βt

i
y i (w

� x i + b)

such that 1
U

∑ L + U
i =1 (w

� x i + b) =

1
L

∑ L
i =1 y i ;

– Set w

t+1 = w , b t+1 = b;

– Compute

βt+1
i

=

⎧ ⎪ ⎨

⎪ ⎩

C , if y i ((w

t+1) � x i + b

t+1) < s and 1 ≤ i ≤ L
C

∗, if y i ((w

t+1) � x i + b

t+1) < s and L
+ 1 ≤ i ≤ L + 2 U

0 , otherwise .

– Set t = t + 1 ;

end while

should be noted that the optimization problem that constitutes

the core of the CCCP is convex. Instead of taking dual of this con-

vex problem and solving it with a dual QP solver as in Collobert

et al. (2006) , we consider the primal problem and use SG algo-

rithm given in Algorithm 2 to solve it. Thus, the proposed method

scales well with large-scale data. To initialize the method, we use

supervised linear SVM trained with labeled data samples only.

The proposed TSVM method is fast and it can scale well

with large scale data since it was proved in Shalev-Shwartz et al.

(2007) that run-time of SG does not depend directly on the size of

the training set. There are only two sets of parameters that must
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
e set by the user in the proposed classifier: C (C ∗) error penalty

erms for labeled (unlabeled) data and step length λ of SG algo-

ithm. Fixing error penalty parameters is very straightforward for

nyone who is familiar with linear SVMs. Since the data samples

re linearly separable because of high-dimensionality of the image

eature vectors, we must set C (C ∗) to moderate values larger than

. We set C = 20 and C ∗ = 5 for Fisher vectors and C = 10 and

∗ = 2 for CNN features for all experiments. For fixing step length,

e test the method on a small validation data for λ∈ {0.1, 0.01,

.0 01, 0.0 0 01}, and set it to the value that yields the best accuracy.

.2. Building class hierarchies

To build class hierarchies, we adopt the method we introduced

n Cevikalp (2010) . This method uses only labeled data to create

lass hierarchies. Assume that we are given some classes and

orresponding labeled samples for each class (these are created by

andom selection of samples from each class or random selection

f classes to create more independent hash functions). We use a

inary hierarchical tree (BHT) that divides the image classes into

wo groups until each group consists of only one image class. In

his setup, the accuracy depends on the tree structure that creates

ell-balanced separable image class groups at each node of the

ree. To this end, we use the Normalized Cuts (NCuts) algorithm

f Shi and Malik (20 0 0) to split image classes into two groups

called positive and negative groups). In our case, we must split

mage classes (not the individual image samples) into two groups.

herefore, we need to replace image data samples with image

ata classes. Next, we must define a distance metric to measure

he similarities between classes. This must be compatible with our

oal, which is grouping classes with the largest margin possible.

herefore, we approximate each class with a convex hull and

se the convex hulls distances between pair-wise image classes

o create a similarity matrix. Convex hull distance between two

lasses can be found by using quadratic programming as described

n Bennett and Bredensteiner (20 0 0) . It should be noted that

onvex hulls are largely used to approximate classes, e.g., the

inear SVM uses convex hull modeling and the margin between

wo classes is equivalent to the geometric distances between

onvex hulls of classes. Thus, this similarity measure is compatible

ith our margin maximization goal, and efficient SVM algorithms
al using transductive support vector machines, Computer Vision

.004

http://mlcv.ogu.edu.tr/pdf/appendix.pdf)
http://dx.doi.org/10.1016/j.cviu.2017.07.004

H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 5

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Fig. 2. Binary hierarchical tree obtained for CIFAR10 dataset using convex hull modeling of the classes. Each image represents an object class where it comes from.

c

T

s

c

w

w

d

k

o

T

o

T

g

L

w

m

t

s

i{

F

v

(

v

a

s

s

h

s

a

e

c

a

s

t

I

t

i

a

p

i

p

l

t

1

a

r

a

s

f

(

u

v

m

(

p

a

w

r

F

o

o

o

h

b

a

w
an also be used to compute the distances between convex hulls.

he distance is equivalent to 2/ ‖ w ‖ , where w is the normal of the

eparating hyperplane returned by linear SVM classifier.

In this setting, the edges, w ij , of the similarity matrix W is

omputed as

 i j =

{
exp (−d(H

con v ex
i

, H

con v ex
j

) /t) , if i
 = j

0 , otherwise
(9)

here H

con v ex
i

represents the convex hull of class i, d (.) is the

istance between convex hulls, and t is the width of the Gaussian

ernel function that must be set by the user. Note that the size

f the similarity matrix is C × C where C is the number of classes.

hus, it is a much smaller sized matrix compared to other meth-

ds (mentioned at Introduction) using individual image samples.

hen, we cluster the image classes into two groups by solving the

eneralized eigenvalue problem

a = λDa , (10)

here L = D − W is the Laplacian matrix and D is a diagonal

atrix whose entries are the column (or row) sums of W . Finally,

he components of the eigenvector a ∗ corresponding to the second

mallest eigenvalue of (10) are thresholded to split image classes

nto two clusters, i.e.,

y i = −1 , if a ∗
i

≥ 0

y i = +1 , if a ∗
i

< 0

(11)

Fig. 2 illustrates the hierarchy obtained for 10-classes of CI-

AR10 dataset. At the top node, it successfully separates man-made

ehicles (airplane, automobile, ship, and truck) from the animals

bird, cat, deer, dog, frog, and horse). It also successfully groups

isually similar objects such as automobile-truck, deer-horse,

nd airplane-ship together. So, our method produces both well-

eparated and well-balanced groups of classes, which is crucial for

uccessful balanced binary hash codes. It should be noted that this

ierarchy is obtained automatically just by using the image feature

amples and their labels, therefore the classes grouped together

re visually similar but not necessarily semantically related. For

xample, cat class is more related to dog class semantically, but
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
at and bird classes are grouped together in the figure since the

ppearances of training examples of cat and bird classes are more

imilar in Cifar10 dataset. Similarly, the dog class is also grouped

ogether with horse and deer classes based on the appearances.

t should be noted that the groupings may change by changing

raining examples. Thus, the hierarchy obtained by using Wordnet

n Fergus et al. (2010) does not guarantee the best separability for

 given specific image data, which is crucial for the success of the

roposed method.

As mentioned earlier, more than one label can be assigned to

mage samples, e.g., assume that an image sample contains both

eople and car . In such cases, we treat the groups with multiple

abels as a new category and manually set the similarities between

he related classes (people and car classes) to the maximum score

. This makes sure that these related classes are grouped together

t the upper nodes. By doing so, we postpone to separate these

elated classes by grouping them as similar classes. So, they appear

t the lower nodes of the class hierarchy where we can do a finer

eparation between them. For separation we use TSVM as before.

There are also methods using one-against-rest (OAR) regime

or creating class hierarchies. For example, Griffin and Perona

2008) , Bengio et al. (2010) , and Bergamo and Torresani (2014) first

se OAR regime to train SVM classifiers and evaluate them on a

alidation set to create a confusion matrix. Then, this confusion

atrix is treated as an affinity matrix and spectral clustering

which uses same principle for clustering as in NCuts) is used to

artition the classes. However, OAR does not guarantee balanced

nd separable groups of classes since the separability of classes

ill decrease as the number of classes is increased when OAR

egime is used for multi-class classification. This is illustrated in

ig. 3 . All pair-wise classes are linearly separable in the figure, and

ur proposed method successfully groups classes A, B and C in

ne group and classes D, E and F in another group at the top node

f the hierarchy by using pair-wise distances based on convex

ull models (this is optimal grouping in terms of both margin and

alance of the groups). However, if OAR regime is used, classes

re not linearly separable anymore and class B will be confused

ith class D. In a similar manner, class A will be confused with
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

6 H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Fig. 3. Comparison of groupings based on OAO and OAR regimes. Using pair-wise

distances between classes achieves the optimal grouping of classes in terms of mar-

gin (separation shown with the solid line), but OAR regime yields to a sub-optimal

group (shown with the dashed line).

e

c

t

n

n

p

t

a

C

w

w

s

d

u

m

T

t

e

c

d

t

i

r

o

l

r

t

a

i

i

c

r

d

p

p

t

p

2

t

f

O

a

p

h

(

c

d

p

p

c

q

p

p

i

S

n

T

t

a

r

f
C and E will be confused with D. Therefore, the methods given in

Griffin and Perona (2008) , Bengio et al. (2010) and Bergamo and

Torresani (2014) will group classes B, D and E in one group and

classes A, C and F in another group, which is not optimal in terms

of the largest margin between the groups. Another disadvantage

of the methods given in Griffin and Perona (2008) , Bengio et al.

(2010) and Bergamo and Torresani (2014) is that the spectral clus-

tering or NCuts requires a symmetric affinity matrix. Our proposed

methodology already returns a symmetric affinity matrix since

the distance between convex hulls of pair-wise classes is same. In

contrast, the confusion matrix is not necessarily symmetric. This

problem is avoided by summing the confusion matrix with its

transpose and dividing by two, i.e., ̃ C = (C + C

�) / 2 . As a result, the

affinity matrix computed from a confusion matrix does not reflect

the true similarities between classes. There are also some methods

(Vural and Dy, 2004; Zhigang et al., 2005) that use class means

to group classes. But, these methods are also not compatible with

margin maximization goal, and they may not yield to balanced

and separable class groups.

2.3. Creating binary hash codes

Once we split image classes into two groups at each node of

the BHT, we run TSVM algorithm by using both labeled and ran-

domly chosen unlabeled data to find the separating hyperplanes.

Then these hyperplanes can be used in two ways to produce hash

codes. In the first place, we can use the following rule to create

hash codes directly

h i (x) =

{
1 when w

�
i

x + b i ≥ 0

0 when w

�
i

x + b i < 0

(12)

where w i s are the returned hyperplane normals and b i s are the

corresponding bias parameters. Each BHT produces C − 1 hash

functions where C is the number of classes used to build a single

BHT. So, the total number of hash bits will be C − 1 times the

number of BHTs. As a second choice, we can use hyperplane nor-

mals to embed the data samples onto a more discriminative space

and then use an Euclidean distance preserving hashing method or

a quantizer (e.g., LSH or Product Quantization of Jegou et al., 2010)

or any other successful hashing method in the embedded space

(this can be seen as metric learning followed by using a hashing

method that approximates the learned distance metric). In the
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
xperiments below, we used hyperplanes directly to create binary

odes when the number of classes is small – smaller than 32 so

hat we can create 32 bits hash codes. But, for some datasets, the

umber of classes is larger than 32, therefore we used hyperplane

ormals to embed the data in such cases. When we use the hyper-

lanes to create binary hash codes directly, the bit size determines

he number of trees. For example, for a 10-class dataset, we need

t least 4 BHTs to create a 32-bit code since each BHT will return

 − 1 = 9 hyperplanes. To determine the number of BHTS that

ill be used for embedding, we simply trained 40 BHTs. Then,

e set the final BHT number to the value for which the accuracy

tarts to saturate. Lastly, we use Hamming distance to find the

istances between hash codes, but weighted Hamming distances

sing hierarchy or classifier margin can be also used for this goal.

We would like to point out that the diversity of BHTs is the

ost important factor for good results as in randomized forests.

herefore, we have to ensure that each BHT is quite different

han the others. Therefore, we do not use all labeled data to train

ach BHT (this is similar to train weak classifiers instead of strong

lassifiers in random forests). For example, using many labeled

ata gave better accuracies for 32 bit hash codes at first, but then

he improvement got easily saturated as the number of bits is

ncreased. In contrast, using less labeled data yielded lower accu-

acies for 32 bits, but achieved the best accuracies as the number

f bits is increased (this is the main reason why we obtained

ower accuracy for 32 bit hash codes on some tested datasets).

Lastly, in the proposed method, we prefer BHT based hierarchy

ather than the one using one-against-one (OAO) regime for

wo reasons: First, BHT provides an additional coarse information

bout the semantic similarity of the visual classes as demonstrated

n Fig. 2 compared to OAO. Second, our proposed strategy used

n BHT returns C − 1 hyperplanes and consequently a single tree

reates C − 1 bit hash codes whereas a single tree using OAO

egime will produce C(C − 1) / 2 bit hash codes. For example, for a

ataset with 100 classes, a single BHT using the proposed strategy

roduces 99 bit hash codes, but a single BHT using OAO will

roduce 4950 bit hash codes. As we mentioned above, we have

o create diverse BHTs for good accuracies. Therefore, it is not

ossible to create small hash codes with OAO regime.

.4. Training complexity

There are basically two computationally demanding steps of

raining phase of the proposed method: creating similarity matrix

or BHTs and training a TSVM classifier at each node of BHTs.

nly labeled data are used for construction of similarity matrix,

nd this requires solving C(C − 1) / 2 quadratic programming (QP)

roblems since we have to compute all possible pair-wise convex

ull distances out of C classes. We use an efficient SVM solver

LIBOCAS - http://cmp.felk.cvut.cz/˜xfrancv/ocas/html/) to compute

onvex hull distances and the complexity is related to O (dn) where

 is the dimensionality and n is the number of training sam-

les. It should be noted that we solve small binary optimization

roblems in this step and this is usually fast if the number of

lasses is not very high. The total number of QP problems grows

uadratically with the number of classes, and hence, may become

rohibitively expensive when C is very large. To solve TSVM

roblem at each node of BHTs, we use SG algorithm. It was shown

n Shalev-Shwartz et al. (2007) that total run time complexity of

G algorithm is given by O (f /(λε)), where f is a bound on the

umber of non-zero features, λ is the regularization parameter.

herefore, the run-time does not directly depend on the size of

he training set. In practice, we scan through all training samples

 few hundred times during SG algorithm, so complexity is again

elated to O (dn) in the worst case. We solve C − 1 TSVM problems

or each BHT, and TSVM classifiers use more data at upper nodes
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 7

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

o

w

s

3

W

d

T

m

A

c

2

(

2

(

e

t

J

t

n

a

m

3

c

a

i

4

W

M

1

d

P

T

w

y

f

8

v

o

a

f

d

b

E

m

i

w

d

(

a

a

b

E

E

C

t

t

Table 1

mAP Scores (%) for Cifar100 dataset using FVs and CNNs.

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT + SDH 13.44 17.00 19.48 21.46

TSVMH-BHT + Sup. Trees 24.86 27.52 29.15 29.43

TSVMH-BHT + ITQ 11.48 13.98 16.24 29.43

SDH 6.33 7.45 8.95 9.81

Supervised Trees 9.08 13.23 17.61 22.66

LSH 5.43 7.34 8.12 10.23

SH 5.55 7.24 8.86 10.07

SHD 3.83 4.57 4.85 4.95

SKLSH 1.82 2.21 2.92 3.76

PCA-ITQ 6.62 8.43 9.84 10.77

PCA-RR 6.50 8.24 9.52 10.46

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT + SDH 51.23 58.58 61.13 63.53

TSVMH-BHT + Sup. Trees 69.88 71.67 72.39 72.35

TSVMH-BHT + ITQ 46.56 60.68 66.18 68.02

SDH 49.26 58.48 60.83 62.16

Supervised Trees 66.93 69.30 71.76 72.12

LSH 42.31 47.65 48.13 49.21

SH 28.86 39.55 45.10 48.54

SHD 30.64 40.67 42.93 42.91

SKLSH 9.40 12.48 26.18 33.75

PCA-ITQ 46.30 57.86 62.90 63.77

PCA-RR 42.42 51.48 56.94 57.99

Fig. 4. Some image samples from ImageCLEF 2013 dataset.

u

T

T

p

i

m

3

I

i
f BHTs and less data at the lower nodes. As an important note,

e should be kept in mind that BHTs can be learned in parallel

ince each BHT is learned independent of others.

. Experiments

Here, we conduct image retrieval experiments on five datasets.

e compared the proposed hashing method, TSVMH-BHT (Trans-

uctive Support Vector Machine Hashing using Binary Hierarchical

ree), 2 with both the supervised and unsupervised hashing

ethods: LSH (Gionis et al., 1999), PCA-RR (Principal Component

nalysis - Random Rotations) (Gong et al., 2013b), PCA-ITQ (Prin-

ipal Component Analysis - Iterative Quantization) (Gong et al.,

013b), SKLSH (Shift-Invariant Kernel Locality Sensitive Hashing)

 Raginsky and Lazebnik, 2009), SH (Spectral Hashing) (Weiss et al.,

008), SHD (Spherical Hamming Distance) (Heo et al., 2012), SDH

Supervised Hashing) (Liu et al., 2012), and Supervised Trees of Lin

t al. (2014) . In addition to these hashing methods we also report

he results obtained using PQ (Product Quantization) method of

egou et al. (2010) as a baseline. For some datasets, we also give

he best reported accuracies of recent hashing methods using deep

eural networks. All accuracies are given in terms of mAP (mean

verage precision) scores which is the most common accuracy

easure for image retrieval.

.1. Experiments on cifar100 dataset

Cifar100 dataset (available at http://www.cs.toronto.edu/ ∼kriz/

ifar.html) includes 50K 32 × 32 small images of 100 classes. There

re 500 samples per class in the training set, and the test set

ncludes 10K samples. We used both Fisher vectors (FVs) and

096-dimensional Convolutional Neural Network (CNN) features.

e used a similar setup as in Sanchez et al. (2013) to extract FVs.

ore precisely, we extracted many descriptors per image from

2 × 12 patches on a regular grid every one pixel at 3 scales. The

imensionality of the tested descriptors is reduced to 80 by using

CA, and 128 components are used in Gaussian mixture model.

o extract CNN features, all images are resized to 256 × 256 and

e applied fine-tuning since direct training with available data

ielded lower accuracies than fine-tuning. Pre-trained Caffe model

or ILSVRC 2012 dataset is used to initialize the weights. We used

0% of the full training data for training and the remaining 20% for

alidation to train the CNN classifier with fine-tuning. The number

f iterations is set to 180K. We trained 15 hierarchical trees for FVs

nd 17 trees for CNNs, and we randomly selected 300 labeled data

or each class and used the remaining 200 samples as unlabeled

ata for each BHT.

Accuracies are given in Table 1 . The mAP scores are obtained

y using top 500 returned images as a function of code size.

uclidean distance in the original input space yields to 11.66%

AP for FVs and 51.50% for CNNs. Note that the number of classes

s 100 so a single tree will yield to a 99-bit hash code. Therefore,

e used the hyperplane normals returned by TSVM to embed the

ata onto 1485 (15 × 99)-dimensional space for FVs and onto 1683

17 × 99)-dimensional space for CNNs. Then, we applied ITQ, SDH

nd Supervised Trees to the embedded data to create 32, 64, 128

nd 256-bit hash codes (these methods are respectively denoted

y BHDT+ITQ, BHDT+SDH and BHDT+Supervised Trees in Table 1).

mbedding the data to this lower dimensional space improves the

uclidean distance accuracy to 17.26% mAP for FVs and 58.80% for

NNs, which clearly shows that the proposed method improves

he Euclidean distance metric. The best accuracies are obtained by

he hashing methods applied to the embedded data learned by
2 Our code is available at http://mlcv.ogu.edu.tr/softwarelsir.html .

2

i

s

Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
sing the proposed method for all cases. TSVMH-BHT+Supervised

rees method dominates the results for both FVs and CNNs.

SVMH-BHT+Supervised Trees improves the accuracies over Su-

ervised Trees up to 15.78% for FVs and 2.95% for CNNs. The

mprovement brought by the proposed method in accuracy is

ore significant when FVs are used as features.

.2. Experiments on ImageCLEF 2013 Dataset

We created a new multi-label image retrieval dataset by using

mageCLEF 2013 dataset (http://imageclef.org/2013). This dataset

ncludes approximately 26 million images (we could download

3,415,941 images), where there are very noisy tags for 250K

mages collected by using search engine information and the text

urrounding the images. Some images are shown in Fig. 4 . Only
al using transductive support vector machines, Computer Vision

.004

http://www.cs.toronto.edu/~kriz/cifar.html)
http://mlcv.ogu.edu.tr/softwarelsir.html
http://dx.doi.org/10.1016/j.cviu.2017.07.004

8 H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Table 2

mAP Scores (%) for ImageCLEF 2013 dataset using FVs and CNNs.

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT + SDH 24.46 26.49 28.00 29.10

TSVMH-BHT + Sup. Trees 22.73 28.28 32.97 37.27

TSVMH-BHT + ITQ 20.96 22.63 24.14 25.10

SDH 23.21 25.09 26.50 27.33

Supervised Trees 19.70 23.32 28.66 33.53

LSH 16.67 18.23 19.45 20.54

SH 19.08 19.69 20.70 21.44

SHD 19.83 21.06 21.24 21.70

SKLSH 11.93 12.78 14.32 15.47

PCA-ITQ 20.57 22.01 22.93 23.68

PCA-RR 20.25 21.45 22.72 23.41

PQ 20.75 21.54 23.72 23.87

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT + SDH 40.31 43.10 44.83 45.80

TSVMH-BHT + Sup. Trees 31.55 38.02 43.16 46.38

TSVMH-BHT + ITQ 41.48 44.30 45.69 46.09

SDH 40.21 42.18 44.74 45.10

Supervised Trees 32.45 40.64 44.40 46.78

LSH 36.42 38.67 40.43 41.20

SH 25.46 30.73 33.93 34.43

SHD 29.10 32.74 34.17 34.44

SKLSH 14.11 15.98 19.86 23.84

PCA-ITQ 40.94 43.92 45.29 45.79

PCA-RR 38.42 41.41 43.36 44.07

PQ 38.67 40.61 44.25 44.87

t

T

o

e

f

fi

c

b

t

t

t

m

d

N

l

t

I

p

s

a

t

c

d

6

o

m

a

b

b

r

T

t

m

3

j

a
a small amount of images (30 0 0 images) are hand-labeled. The

main goal of ImageCLEF challenge is to improve image annotation.

In our study, to be able to use ImageCLEF dataset as an image

retrieval data set, three graduate students went through noisy

labels and corrected the noisy tags of 120,741 images in four

months. These images included 1662 different labels (classes), and

each image may contain multiple labels to represent the image

content. In our experiments, we used the images associated to the

most frequent 100 labels. Therefore, the final size of the training

images is 76,138 and the test set size is 25816. In addition, we also

added randomly selected 50K unlabeled images to the training set

to train TSVM classifiers and other unsupervised methods.

We again used fisher vectors (FVs) and 4096 dimensional CNN

features to represent images. We used the same set up as in the

previous experiment to extract FVs. To extract CNN features, we

tried several things: First, we trained a CNN classifier network by

using images with a single label following the same network struc-

ture described by Krizhevsky et al. (2012) . Second, we directly used

a pre-trained Caffe model trained for ILSVRC 2012 classification.

CNN features obtained by both methods yield to lower accuracies

than FVs. Therefore, we finally applied fine-tuning to the images

with single labels, and a pre-trained Caffe model for ILSVRC 2012

dataset has been used to initialize the weights. We used 80% of the

full training data for training and the remaining 20% as validation

during fine-tuning. This procedure achieved better accuracies than

FVs, so we report the results obtained by this setting. Since this is

a multi-label dataset, two images are considered as a true match

if they share at least one common label as in Lai et al. (2015) , Xia

et al. (2014) , Zhang et al. (2016) and Liu et al. (2011b). It should be

noted that the total training set size is large, and the supervised

hashing methods and unsupervised hashing methods that build

dense similarity (or kernel) matrix cannot be used directly. There-

fore, randomly chosen anchor points are used in SDH (Liu et al.,

2012). The default value for the number of anchor points is 300

for SDH, but we increased it to 500 for better accuracies. For the

proposed method, we trained 35 hierarchical trees for FVs and 25

trees for CNNs and we randomly selected at most 1500 labeled ex-

amples per class and 50K unlabeled samples for each hierarchical

tree. Test samples are not used as unlabeled data during training.

Results are given in Table 2 . The mAP scores are obtained

by using top 500 returned images as a function of code size.

Euclidean distance in the original input space yields to 24.54%

mAP for FVs and 36.26% for CNNs. Note that the number of classes

is 100 so a single tree will yield to a 99-bit hash code. Thus,

we used the hyperplane normals returned by TSVM to embed

the data onto 3465 (35 × 99)-dimensional space for FVs and onto

2475-dimensional space for CNNs. Then, we applied ITQ, SDH

and Supervised Trees to the embedded data to create 32, 64, 128

and 256-bit hash codes as in the previous experiment. The best

accuracies are obtained by the hashing methods applied to the

embedded data learned by using the proposed method for all

cases except 256 bit hash codes when CNNs are used as visual

features. For FVs, TSVMH-BHT+Supervised Trees method dominates

the results whereas TSVMH-BHT+ITQ achieves the better results

for CNNs. The improvement brought by the proposed method in

accuracy is more significant when FVs are used as features as in

the first experiment.

3.3. Experiments on NUS-WIDE dataset

The NUS-WIDE dataset has approximately 270K images col-

lected from Flickr. Each image is annotated with one or multi

labels in 81 semantic classes. To compare our results to the liter-

ature, we follow the setting in Lai et al. (2015) , Xia et al. (2014) ,

Zhang et al. (2016) and Liu et al. (2011b) and we use the images

associated with the 21 most frequent labels. The number of final
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
raining images is 96,638 and the number of test images is 64704.

wo images are considered as a true match if they share at least

ne common label as in Lai et al. (2015) , Xia et al. (2014) , Zhang

t al. (2016) and Liu et al. (2011b). We used both FVs and CNN

eature vectors for representing images. To obtain CNN features we

rst resized images to 256 × 256 as before and we trained a CNN

lassifier network by using the same network structure described

y Krizhevsky et al. (2012) . Note that this is a multi-label dataset,

hus we selected images with non-overlapping unique labels to

rain the classifier network. But, results were very low compared

o the ones obtained for FVs. We believe that the results were low

ainly because the loss function is not designed for multi-label

ata. The noisy labels was another reason for the low accuracy.

ote that there are recent attempts (Gong et al., 2013a) to design

oss functions suitable for multi-label data but this topic is beyond

he scope of our study. Thus, we used pre-trained Caffe model of

LSVRC 2012 to extract 4096-dimensional CNN features, and this

rocedure yielded better results than FVs.

Results are given in Table 3 . We used at most 70 0 0 labeled

amples per class and 20K unlabeled samples to train each hier-

rchical tree. Test samples are not used as unlabeled samples in

raining phase. The separating hyperplanes returned by the TSVM

lassifiers are directly used to create hash codes. Using Euclidean

istance with full features yields to 52.20% mAP for FVs and

9.65% for CNN features. As in the previous case, hashing codes

btained for CNN features yield to better accuracies. The proposed

ethod achieves the best accuracies in all cases except for 32 bits

nd significantly improves the Euclidean distance metric for 64

its and above. Our results are even better than the ones obtained

y recent deep neural networks. To the best our knowledge, our

esults are the best published mAP scores for NUS-WIDE dataset.

he performance difference is very significant for FVs. We believe

hat our better accuracies compared to the other state-of-the-art

ethods are due to using the robust Ramp loss for noisy labels.

.4. Experiments on CIFAR10 dataset

Cifar10 dataset includes 60K 32 × 32 small images of 10 ob-

ects: airplane, automobile, bird, cat, deer, dog, frog, horse, ship

nd truck. 50K samples are used as training and they are split
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 9

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Table 3

mAP Scores (%) for NUS-WIDE dataset using FVs and CNN features.

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 53.97 57.73 61.76 63.99

SDH 54.20 56.41 58.14 58.93

Supervised Trees 46.14 51.87 57.13 60.89

LSH 30.25 36.27 39.50 43.20

SH 46.31 45.97 47.60 48.51

SHD 47.08 50.09 52.41 52.89

SKLSH 33.24 35.25 36.50 37.68

PCA-ITQ 50.41 51.95 52.63 53.17

PCA-RR 49.89 51.17 52.09 52.95

PQ 30.75 31.74 33.49 40.19

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 68.58 72.90 74.64 76.21

SDH 69.09 72.41 73.71 74.75

Supervised Trees 62.98 67.90 71.09 73.44

LSH 66.78 68.91 69.47 69.50

SH 58.03 60.08 61.31 64.41

SHD 61.60 64.23 64.83 64.66

SKLSH 39.65 43.37 47.47 53.65

PCA-ITQ 68.62 70.91 72.48 73.55

PCA-RR 65.82 68.27 70.57 71.60

PQ 71.07 71.93 72.20 72.17

Lai et al. (2015) 71.30 – – –

Xia et al. (2014) 62.90 – – –

Zhang et al. (2015) 62.64 63.82 – –

Zhang et al. (2016) ≈ 52.0 ≈ 52.5 ≈ 54.0 –

12 bits 24 bits 36 bits 48 bits

Liu et al. (2016) 54.80 55.10 55.80 56.20

i

t

d

i

e

e

c

s

t

n

f

H

a

b

u

s

r

i

t

a

s

o

s

s

i

d

s

b

a

p

S

m

t

u

h

s

Table 4

mAP Scores (%) for CIFAR 10 dataset using FVs and CNN features.

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 46.74 51.37 53.94 55.10

SDH 31.66 33.52 34.62 35.36

Supervised Trees 44.61 48.73 51.84 53.78

LSH 19.43 20.57 20.53 21.57

SH 19.60 20.43 21.44 21.86

SHD 19.47 21.91 24.09 25.77

SKLSH 11.10 11.38 11.93 12.68

PCA-ITQ 24.59 26.03 27.34 28.05

PCA-RR 23.07 24.53 25.83 36.76

PQ 24.30 23.80 22.90 22.00

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 79.97 81.89 82.45 82.79

SDH 83.05 83.59 83.77 83.83

Supervised Trees 84.62 84.89 85.07 85.17

LSH 73.98 74.87 75.56 76.40

SH 65.74 67.15 65.04 60.52

SHD 65.41 66.38 64.83 64.21

SKLSH 40.79 56.33 64.17 67.85

PCA-ITQ 80.78 81.27 81.86 82.05

PCA-RR 74.19 77.15 78.46 79.15

PQ 79.88 80.30 80.40 80.65

Lai et al. (2015) 55.80 – – –

Xia et al. (2014) 52.10 – – –

Zhang et al. (2015) 62.53 62.81 – –

Zhang et al. (2016) ≈ 86.0 ≈ 86.0 ≈ 86.0 –

12 bits 24 bits 36 bits 48 bits

Liu et al. (2016) 61.60 65.10 66.10 67.60

w

w

g

e

t

b

h

l

p

9

S

T

8

u

t

w

t

p

s

h

o

5

r

w

3

s

a

r

d

s

c

s

3 available at http://yann.lecun.com/exdb/mnist/ .
nto 5 batches whereas the remaining 10K samples are used for

esting. We used 16,384 dimensional fisher vectors (FVs) and 4096

imensional CNN features as before. To extract CNN features, all

mages are first resized to 256 × 256 and then we used Caffe (Jia

t al., 2014) implementation of the CNN described by Krizhevsky

t al. (2012) by using the identical setting used for ILSVRC 2012

lassification with the exception that the base learning rate was

et to 0.001. We used 80% of the full training data for training and

he remaining 20% as validation to train the CNN classifier. The

umber of iterations is set to 120K.

For all methods, we used the full training data to create hash

unctions, but we use only the samples in each batch to find the

amming distances from the test samples. So, the results are

verages over the results of 5 trials obtained for each training

atch. We used randomly chosen 600 labeled samples and 900

nlabeled samples from each class to train our method and the

eparating hyperplanes returned by the TSVM classifiers are di-

ectly used to create hash codes. Both the labeled and unlabeled

mages are chosen only from the training set. The default value for

he number of anchor points is set to 500 for SDH.

The mAP (mean Average Precision) scores using class labels

s ground truth are given in Table 4 and Fig. 5 illustrates Preci-

ion curves obtained for different bit sizes. The mAP scores are

btained by using top 500 returned images as a function of code

ize as in Gong et al. (2013b). Gong et al. (2013b) also reports mAP

cores using the Euclidean distances as ground truth, but this

s wrong in our opinion since the performance of the Euclidean

istance is very poor: Euclidean Distance in the original input

pace yields to 28.22% mAP for FVs and 76.90% for CNNs. As can

e seen in Table 4 , supervised hashing methods (TSVMH-BHT, SDH

nd Supervised Trees) always outperform unsupervised ones. The

roposed method achieves the best accuracy for FVs whereas

upervised Trees produces the best results for CNNs. For FVs, the

AP score of the proposed method is approximately 20% better

han the third best method SDH when 256 bits are used, which

ndoubtedly shows that the proposed method is better suited for

igh-dimensional visual image representations. Table 4 also shows

ome recently reported accuracies obtained using deep neural net-
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
orks in the literature. It should be noted that the CNN features

e extracted are different than the ones obtained by the methods

iven under PQ method in Table 4 since these methods are trained

nd-to-end fashion. Yet our proposed method outperforms all of

hem except the one given in Zhang et al. (2016) . Supervised Trees

eats our proposed method, but it should be noted that creating

ash codes of a single test example in Supervised Trees takes a

ot of time since the hash codes are not created by simple dot

roducts as in the proposed method, e.g., it takes approximately

 s to create a 32-bit hash code of a single test image for FVs with

upervised Trees, and it takes 3 s to create a hash code for CNNs.

he unsupervised PCA-ITQ also works well. Lin et al. (2015) reports

9.4% mAP accuracy for Cifar10 dataset. We verified this result by

sing their pre-trained models. But, their training files show that

hey used test data as validation data to train the CNN network,

hich is a violation of a fair testing procedure. Thus, we omitted

his result in our table.

As mentioned in Section 2.3 , the diversity of BHTs is an im-

ortant factor for good accuracies. When we used 800 labeled

amples instead of 600, we obtained an accuracy of 48.7% which is

igher than 46.7% for 32 bit hash codes. However, as the number

f bits increased, we obtained accuracies of 50.3%, 52.1% and

2.7% for 64, 128 and 256 bit hash codes respectively. These

esults show that we need more diverse BHTs and correspondingly

eaker classifiers for better accuracies.

.5. Experiments on MNIST dataset

The MNIST 3 digit dataset consists of 70K hand-written digit

amples, each of size 28 × 28 pixels. For this dataset, 60K samples

re allocated for training and the remaining 10K samples are

eserved for test. We use gray-scale values as visual features, thus

imensionality of the sample space is 784. We use randomly cho-

en 50 0 0 labeled samples and 800 unlabeled samples from each

lass to train the proposed method. It should be noted that test

amples are not used as unlabeled samples during training. Results
al using transductive support vector machines, Computer Vision

.004

http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1016/j.cviu.2017.07.004

10 H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

Fig. 5. Comparisons of the hashing methods on CIFAR10 dataset using labels as ground truth.

Table 5

mAP Scores (%) for MNIST Digit dataset.

Methods 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 87.68 89.15 89.07 89.13

SDH 81.29 85.37 86.10 86.26

Supervised Trees 95.96 96.32 96.52 96.70

LSH 72.15 74.40 79.30 82.43

SH 70.44 72.28 73.87 74.15

SHD 67.86 74.06 75.98 76.58

SKLSH 31.36 47.12 63.04 74.08

PCA-ITQ 79.55 83.37 85.50 86.23

PCA-RR 67.91 75.38 79.16 83.05

PQ 85.40 85.40 85.20 85.40

n

s

a

v

p

c

d

h

v

4

i

h

f

d

u

m

r

s

r

d

p

o

W

n

u

p

d

o

t

m
are given in Table 5 . Euclidean Distance in the original input space

yields to 85.95% mAP score which is quite satisfactory. Yet, our pro-

posed method gives better accuracies than NN for all bit sizes. The

best accuracies are obtained by Supervised Trees followed by the

proposed method and the performance difference is quite signifi-

cant. This shows that the decision boundaries are not linear, thus

one needs to use kernel functions for better accuracies. Although

Supervised Trees achieves the best accuracies, the testing time is

very slow. For example, it takes respectively 3.0, 5.9, 10.9 and 15.0 s

to build the hash code of a single digit image with the Supervised

Trees whereas it takes around 4 ms to build a 256-bit hash code

with the proposed method and the other tested hashing methods

since these methods use a simple dot product to create the codes.

PQ approximates NN using the original Euclidean space well and it

achieves similar accuracies. However, due to the lack of semantic

information, increasing code size does not effect the accuracy.

We also would like to point out that the Supervised Trees

method is not suitable for very high-dimensional data as claimed

in Lin et al. (2014) . Note that, this method is proposed to achieve

non-linearity in hashing and it is used to approximate nonlinear

kernels such as high-order polynomial functions or Gaussian ker-
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
els. In high-dimensional datasets, e.g. data sets using FV repre-

entations, image classes are already separable with large margin

nd there is no need to use nonlinear kernels. As a result, Super-

ised Trees mostly failed to produce good results compared to the

roposed method as demonstrated in our previous experiments. In

ontrast, Supervised Trees are more suitable for lower-dimensional

ata sets where the image classes cannot be separated with linear

yperplanes. This is also clear in these experiments where Super-

ised Trees significantly outperformed all other hashing methods.

. Conclusion

In this study, we discussed the fact that the Euclidean distances

n the high-dimensional feature spaces can be misleading, thus

ashing methods approximating the Euclidean distances may per-

orm poorly. To counter this, we proposed a hashing method that

oes both metric learning and fast image search. To this end, we

sed binary hierarchical trees and TSVM classifier. We proposed a

ore robust TSVM method which is designed for especially image

etrieval applications. Using TSVM is extremely important here

ince it also exploits the unlabeled data that is neglected by many

elated hashing and distance metric learning methods.

We tested the proposed method on five image retrieval

atasets. The results with high-dimensional FV features were

articularly promising: Our method significantly outperformed all

ther tested hashing methods with FVs with a few exceptions.

e also obtained state-of-the-art results using CNN features on

oisy labeled NUS-WIDE dataset which shows the importance of

sing our robust Ramp loss function. In addition, we compared the

roposed method to the recently published hashing methods using

eep neural networks. These methods emphasize the importance

f simultaneous learning of image features and binary codes, yet

he results prove that this issue has not been resolved yet since

ajority of these deep neural networks methods yield very low
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.1016/j.cviu.2017.07.004

H. Cevikalp et al. / Computer Vision and Image Understanding 0 0 0 (2017) 1–11 11

ARTICLE IN PRESS

JID: YCVIU [m5G; July 25, 2017;9:7]

a

i

T

c

u

s

m

a

p

b

A

l

T

R

B

B

B

C

C

C

C

C

C

E

F

F

G

G

G

G

G

H

H

H

J

J

J

K

K

K

L

L

L

L

L

L
L

M

N

R

S

S

S

S

S

S

T

V

W

W

X

Y

Z

Z

Z

Z

Z
ccuracies compared to our method which learns hash codes

ndependently from the pre-computed CNN features.

Lastly, we can directly use hyperplane normals returned by

SVM classifiers to create binary hash codes when the number of

lasses is not very large. If the number of classes is large, we can

se hyperplane normals to embed data onto a lower-dimensional

pace that reflects semantic relations, and a different hashing

ethod can be applied to the embedded data. We tested ITQ, SDH

nd Supervised Trees methods on embedded data obtained by the

roposed method, and Supervised Trees typically produced the

est results.

cknowledgment

This work has been supported by the Scientific and Techno-

ogical Research Council of Turkey (TUB ̇ITAK) under Grant number

UBITAK- 113E118 .

eferences

engio, S. , Weston, J. , Grangier, D. , 2010. Label embedding trees for large multi-class

tasks. NIPS .
ennett, K.P. , Bredensteiner, E.J. , 20 0 0. Duality and geometry in svm classifiers. In:

International Conference on Machine Learning .
ergamo, A. , Torresani, L. , 2014. Classemes and other classifier-based features

for efficient object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36,

1988–2001 .
akir, F. , Sclaroff, S. , 2015. Adaptive hashing for fast similarity search. In: Interna-

tional Conference on Computer Vision .
evikalp, H. , 2010. New clustering algorithms for the support vector machine based

hierarchical classification. Pattern Recognit. Lett. 31, 1285–1291 .
evikalp, H. , Elmas, M. , Ozkan, S. , 2016. Towards category based large-scale image

retrieval using transductive support vector machines. In: European Conference

on Computer Vision Workshops .
evikalp, H. , Triggs, B. , Polikar, R. , 2008. Nearest hyperdisk methods for high-dimen-

sional classification. ICML .
evikalp, H. , Verbeek, J. , Jurie, F. , Klaser, A. , 2008. Semi-supervised dimensionality

reduction using pairwise equivalence constraints. In: International Conference
on Computer Vision Theory and Applications .

ollobert, R. , Sinz, F. , Weston, J. , Bottou, L. , 2006. Large scale transductive svms. J.

Mach. Learn. Res. 7, 1687–1712 .
rtekin, S. , Bottou, L. , Giles, C.L. , 2011. Nonconvex online support vector machines.

IEEE Trans. Pattern Anal. Mach. Intell. 33, 368–381 .
ergus, R. , Bernal, H. , Weiss, Y. , Torralba, A. , 2010. Semantic label sharing for learn-

ing with many categories. ECCV .
rogner, C. , Zhang, C. , Mobahi, H. , Araya-Polo, M. , Poggio, T. , 2015. Learning with a

wasserstein loss. NIPS .

ionis, A. , Indyk, P. , Motwani, R. , 1999. Similarity search in high dimensions via
hashing. In: International Conference on Very Large Databases .

ong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S., 2013. Deep convolutional ranking for
multilabel image annotation. arXiv: 1312.4894 .

ong, Y. , Lazebnik, S. , Gordo, A. , Perronnin, F. , 2013. Iterative quantization: a pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE

Trans. PAMI 35, 2916–2929 .

ordo, A. , Almazan, J. , Revaud, J. , Larlus, D. , 2016. Deep image retrieval: learning
global representations for image search. In: European Conference on Computer

Vision .
riffin, G. , Perona, P. , 2008. Learning and using taxonomies for fast visual catego-

rization. CVPR .
e, X. , Cai, D. , Han, J. , 2008. Learning a maximum margin subspace for image re-

trieval. IEEE Trans. Knowl. Data Eng. 20, 189–201 .
eo, J.-P. , Lee, Y. , He, J. , Chang, S.-F. , Yoon, S.-E. , 2012. Spherical hashing. CVPR .
Please cite this article as: H. Cevikalp et al., Large-scale image retriev

and Image Understanding (2017), http://dx.doi.org/10.1016/j.cviu.2017.07
oi, S.C.H. , Jin, R. , Zhu, J. , Lyu, M.R. , 2008. Semi-supervised svm batch mode active
learning for image retrieval. CVPR .

egou, H. , Douze, M. , Schmid, C. , 2010. Product quantization for nearest neighbor
search. IEEE Trans. PAMI 33, 117–128 .

ia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T., 2014. Caffe: convolutional architecture for fast feature embedding.

arXiv: 1408.5093 arXiv preprint.
oly, A. , Buisson, O. , 2011. Random maximum margin hashing. CVPR .

rizhevsky, A. , Sutskever, I. , Hinton, G.E. , 2012. Imagenet classification with deep

convolutional neural networks. NIPS .
ulis, B. , Darrell, T. , 2009. Learning to hash with binary reconstructive embeddings.

NIPS .
ulis, B. , Grauman, K. , 2009. Kernelized locality-sensitive hashing for scalable image

search. ICCV .
ai, H. , Pan, Y. , Yan, S. , 2015. Simultaneous feature learning and hash coding with

deep neural networks. CVPR .

in, G. , Shen, C. , Shi, Q. , van den Hengel, A. , Suter, D. , 2014. Fast supervised hashing
with decision trees for high-dimensional data. CVPR .

in, K. , Yang, H.-F. , Hsiao, J.-H. , Chen, C.-S. , 2015. Deep learning of binary hash codes
for fast image retrieval. In: IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW) .
iu, H. , Wang, R. , Shan, S. , Chen, X. , 2016. Deep supervised hashing for fast image

retrieval. CVPR .

iu, W. , Wang, J. , Ji, R. , Jiang, Y.-G. , Chang, S.-F. , 2012. Supervised hashing with ker-
nels. CVPR .

iu, W. , Wang, J. , Kumar, S. , Chang, S.-F. , 2011. Hashing with graphs. ICML .
iu, W. , Wang, J. , Kumar, S. , Chang, S.-F. , 2011. Hashing with graphs. In: International

Conference on Machine Learning .
u, Y. , Shen, J. , Yan, S. , 2010. Weakly-supervised hashing in kernel space. CVPR .

orouzi, M. , Fleet, D.J. , 2011. Minimal loss hashing for compact binary codes. ICML .

aginsky, M. , Lazebnik, S. , 2009. Locality-sensitive binary codes from shift-invariant
kernels. ICCV .

alakhutdinov, R. , Hinton, G. , 2009. Semantic hashing. Int. J. Approximate Reasoning
50 (12), 969–978 .

anchez, J. , Perronnin, F. , Mensink, T. , Verbeek, J. , 2013. Image classification with the
fisher vector: theory and practice. Int. J. Comput. Vis. 34, 1704–1716 .

chölkopf, B. , Zhou, D. , Huang, J. , 2005. Learning from labeled and unlabeled data

on a directed graphs. ICML .
halev-Shwartz, S. , Singer, Y. , Srebro, N. , 2007. Pegasos: Primal estimated subgradi-

ent solver for svm. ICML .
hi, J. , Malik, J. , 20 0 0. Normalized cuts and image segmentation. IEEE Trans. PAMI

22, 888–905 .
hi, X. , Xing, F. , Cai, J. , Zhang, Z. , Xie, Y. , Yang, L. , 2016. Kernel-based supervised dis-

crete hashing for image retrieval. In: European Conference on Computer Vision .

orralba, A. , Fergus, R. , Freeman, W.T. , 2008. 80 million tiny images: a large
data set for nonparametric object and scene recognition. IEEE Trans. PAMI 30,

1958–1970 .
ural, V. , Dy, J.G. , 2004. A hierarchical method for multi-class support vector ma-

chines. ICML .
ang, J. , Kumar, S. , Chang, S.F. , 2010. Semi-supervised hashing for scalable image

retrieval. CVPR .
eiss, Y. , Torralba, A. , Fergus, R. , 2008. Spectral hashing. NIPS .

ia, R. , Pan, Y. , Lai, H. , Liu, C. , Yan, S. , 2014. Supervised hashing for image retrieval

via image representation learning. In: Proceedings of the 28 AAAI Conference
on Artificial Intelligence .

ullie, A.L. , Rangarajan, A. , 2002. The concave-convex procedure (cccp). Neural In-
formation Processing Systems .

hang, L. , Wang, L. , Lin, W. , 2012. Semi-supervised biased maximum margin analysis
for interactive image retrieval. IEEE Trans. Image Process. 21, 2294–2308 .

hang, R. , L.Lin , Zhang, R. , Zuo, W. , Zhang, L. , 2015. Bit-scalable deep hashing with

regularized similarity learning for image retrieval and person re-identification.
IEEE Trans. Image Process. 24, 4766–4779 .

hang, Z. , Chen, Y. , Saligrama, V. , 2016. Efficient training of very deep neural net-
works for supervised hashing. CVPR .

hao, F. , Huang, Y. , Wang, L. , Tan, T. , 2015. Deep semantic ranking based hashing for
multi-label image retrieval. CVPR .

higang, L. , Wenzhong, S. , Qianqing, Q. , Xiaowen, L. , Donghu, X. , 2005. Hierachical

support vector machines. Geoscience and Remote Sensing Symposium .
al using transductive support vector machines, Computer Vision

.004

http://dx.doi.org/10.13039/501100004410
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0001
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0001
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0001
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0001
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0002
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0002
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0002
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0003
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0003
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0003
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0004
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0004
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0004
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0005
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0005
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0006
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0006
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0006
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0006
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0007
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0007
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0007
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0007
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0008
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0008
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0008
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0008
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0008
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0009
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0009
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0009
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0009
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0009
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0010
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0010
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0010
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0010
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0011
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0011
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0011
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0011
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0011
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0012
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0013
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0013
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0013
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0013
http://arxiv.org/abs/1312.4894
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0015
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0015
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0015
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0015
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0015
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0016
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0016
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0016
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0016
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0016
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0017
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0017
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0017
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0018
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0018
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0018
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0018
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0019
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0020
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0020
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0020
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0020
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0020
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0021
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0021
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0021
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0021
http://arxiv.org/abs/1408.5093
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0022
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0022
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0022
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0023
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0023
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0023
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0023
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0024
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0024
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0024
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0025
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0025
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0025
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0026
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0026
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0026
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0026
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0027
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0028
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0028
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0028
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0028
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0028
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0029
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0029
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0029
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0029
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0029
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0030
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0031
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0031
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0031
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0031
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0031
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0032
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0032
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0032
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0032
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0032
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0033
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0033
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0033
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0033
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0034
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0034
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0034
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0035
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0035
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0035
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0036
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0036
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0036
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0037
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0037
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0037
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0037
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0037
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0038
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0038
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0038
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0038
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0039
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0039
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0039
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0039
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0040
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0040
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0040
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0041
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0042
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0042
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0042
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0042
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0043
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0043
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0043
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0044
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0044
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0044
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0044
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0045
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0045
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0045
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0045
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0046
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0047
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0047
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0047
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0048
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0048
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0048
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0048
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0049
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0050
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0050
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0050
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0050
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0051
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0051
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0051
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0051
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0051
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://refhub.elsevier.com/S1077-3142(17)30136-4/sbref0052
http://dx.doi.org/10.1016/j.cviu.2017.07.004

	Large-scale image retrieval using transductive support vector machines
	1 Introduction
	2 Method
	2.1 Robust Transductive Support Vector Machines (RTSVMs)
	2.2 Building class hierarchies
	2.3 Creating binary hash codes
	2.4 Training complexity

	3 Experiments
	3.1 Experiments on cifar100 dataset
	3.2 Experiments on ImageCLEF 2013 Dataset
	3.3 Experiments on NUS-WIDE dataset
	3.4 Experiments on CIFAR10 dataset
	3.5 Experiments on MNIST dataset

	4 Conclusion
	 Acknowledgment
	 References

