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Abstract

We propose a family of quasi-linear discriminants that
outperform current large-margin methods in sliding win-
dow visual object detection and open set recognition tasks.
In these tasks the classification problems are both numeri-
cally imbalanced – positive (object class) training and test
windows are much rarer than negative (non-class) ones –
and geometrically asymmetric – the positive samples typ-
ically form compact, visually-coherent groups while nega-
tives are much more diverse, including anything at all that
is not a well-centred sample from the target class. It is
difficult to cover such negative classes using training sam-
ples, and doubly so in ‘open set’ applications where run-
time negatives may stem from classes that were not seen at
all during training. So there is a need for discriminants
whose decision regions focus on tightly circumscribing the
positive class, while still taking account of negatives in
zones where the two classes overlap. This paper introduces
a family of quasi-linear “polyhedral conic” discriminants
whose positive regions are distorted L1 balls. The meth-
ods have properties and run-time complexities comparable
to linear Support Vector Machines (SVMs), and they can be
trained from either binary or positive-only samples using
constrained quadratic programs related to SVMs. Our ex-
periments show that they significantly outperform both lin-
ear SVMs and existing one-class discriminants on a wide
range of object detection, open set recognition and conven-
tional closed-set classification tasks.

1. Introduction
Conventional machine learning classifiers such as large-

margin discriminants [6,9,4] are intended for “closed set”
scenarios [29] in which the class labels are mutually ex-
clusive and exhaustive and every class seen at test time is
known during training. These methods try to attribute each
test sample to a class even when it has little resemblance to
the training samples of any known one – a semantics that is
fragile because it ignores the possibility that outliers (sam-

ples with no meaningful class) and novel classes (ones not
foreseen during training) may occur at test time. In con-
trast, “open set” methods [29] try to handle these issues by
rejecting test samples that do not appear to belong to any of
the known training classes. To do this they need to estimate
some kind of inlier or validation region for each target class
in addition to the conventional inter-class decision bound-
aries.

Visual object detection should also benefit from dis-
criminants that tightly constrain the positive class. In
sliding-window detection, the discrimination problem is
highly asymmetric because the positive samples (windows
that correctly frame instances of the target class) form a
variable-but-coherent appearance class, whereas the neg-
atives (anything at all that is not a well framed object
instance) are much more diverse. Moreover the data is
highly imbalanced in that there are many more negative
(non-object) training and test windows than positive (ob-
ject) ones. For both reasons it is useful for the discriminant
to focus on tightly bounding the positive class whereas con-
ventional discriminants such as Support Vector Machines
(SVMs) treat the two classes as though they were equal,
interchangeable alternatives. Owing to the many ways in
which a window can fail to be a positive most of the SVM
support vectors turn out to be ‘hard negatives’ and with ex-
isting feature sets it is not unusual to find that these com-
pletely surround the positives in feature space (c.f . the scat-
ter plots of projected class densities in [15,28]).

In both applications there is a need for reliable, scalable,
asymmetric discriminants that focus on modeling the posi-
tive class as a compact, coherent set surrounded by a dis-
parate sea of negatives. The pitfalls of not doing so are
illustrated in Fig. 1. This is for a recognition problem in
which unforeseen classes occur at run time, but object de-
tectors face similar issues with unforeseen kinds of hard
negatives. This paper introduces a new family of quasi-
linear discriminants that achieve these goals by using poly-
hedral decision boundaries based on linear sections through
L1 cones. By supplying tighter bounds on the positive class,
this geometry systematically outperforms half-space based
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Figure 1. A decision hyperplane returned by an SVM successfully
separates its training classes, dogs (positive) and people (negative).
However it also assigns instances of novel classes such as cats,
horses, fish and chairs to the dog class, sometimes with higher
confidence scores than for dogs themselves. The problem is the
over-large acceptance region – SVM only tries to separate dogs
and people, not to bound the dog class. A tighter (e.g. polyhe-
dral or ellipsoidal) decision boundary improves this localization,
reducing mis-classifications caused by unforeseen classes and out-
liers.

decision rules such as linear SVMs in both open set recogni-
tion problems and detection problems with unforeseen hard
negatives. In fact it often improves the performance even
in conventional closed set problems. Training is formulated
as an efficient convex program as for linear SVM, and run
times are also similar to linear SVM.

Related Work: Several recent works have introduced dis-
criminants or detectors that abandon the symmetrical binary
classification framework and adopt loss functions designed
to provide tighter modeling of the positive class. These are
often called “one class” approaches because most of them
can learn a class from positive samples alone, although neg-
atives (if available) can usually be incorporated to help re-
fine the decision boundary1. For example, Support Vector
Data Description (SVDD) [31] aims to find a closed com-
pact hypersphere that includes the majority of the positive
class samples, whereas the Generalized Eigenvalue Proxi-
mal Support Vector Machine (GEPSVM) [23] finds a hy-
perplane that best fits the positive class while avoiding the
negatives as far as possible. Other forms of best-fitting-
hyperplane classifier are proposed in [18,5,2]. Cevikalp
and Triggs [3] use a cascade of convex model based clas-

1The name “one class” emphasizes the methods’ origins in density
modeling, but it is a misnomer in that negative samples usually can be,
often are, and in some formulations must be included during training.

sifiers to progressively cut out a compact, coherent posi-
tive region from a broad sea of negative examples for face
and person detection. Other approaches such as Additive
Kernels [32] and Random features [26] try to approximate
kernel classifiers in a fixed-complexity setting by explicitly
mapping samples to higher-dimensional spaces that provide
nonlinear class separation circumscribing the positive class
region.

Another strategy is exemplified by the colorectal cancer
detector of Dundar et al. [8], which learns polyhedral ac-
ceptance regions by jointly optimizing a set of hyperplane
classifiers, each designed to classify positives against a sub-
group of the negative samples. However the required parti-
tioning of the negative set is both expensive for large-scale
problems and problematic if the negatives do not naturally
separate into well defined clusters, particularly as the over-
all performance turns out to be sensitive to both the num-
ber and the detailed form of the partitions. There are sev-
eral other methods for constructing polyhedra that approx-
imately bound a positive class [13,14,1,21,24], but again
these either scale poorly with training set size, suffer from
local optima or over-fitting, or need ancillary clustering or
labeling which makes them unsuitable for large-scale appli-
cations. In contrast, our methods have a convex formula-
tion that ensures globally optimal solutions, they scale effi-
ciently to large problems, they do not require negative sam-
ples to be clustered, and they resist over-fitting by using a
robust margin-based cost function.

2. Polyhedral Conic Classifiers
Our classifiers use the polyhedral conic functions of [13]

– essentially projections of hyperplane sections through L1

cones – to define their acceptance regions for positives. This
choice provides a convenient family of compact and convex
(for suitable weights) region shapes for discriminating rela-
tively well localized positive classes from broader negative
ones. It naturally allows robust margin-based learning, and
the number of free parameters remains modest, thus con-
trolling both over-fitting and run times.

The Polyhedral Conic Functions and Extended Polyhe-
dral Conic Functions respectively have the forms

fw,γ,c,b(x) = w>(x− c) + γ ‖x− c‖1 − b (PCF) (1)
fw,γ,c,b(x) = w>(x− c) + γ>|x− c| − b (EPCF) (2)

Here x ∈ IRd is a test point, c ∈ IRd is the cone vertex, w ∈
IRd is a weight vector and b is an offset. For PCF, ‖u‖1 =∑d
i=1 |ui| denotes the vector L1 norm and γ is a corre-

sponding weight, while for EPCF, |u| = (|u1|, ..., |ud|)>
denotes the component-wise modulus and γ ∈ IRd is a cor-
responding weight vector.

Our polyhedral conic classifiers use functions of these
forms, with decision regions f(x)< 0 for positives and



Figure 2. Top: For polyhedral conic classifiers, the positive accep-
tance regions are “kite-like” axis-aligned octahedroids containing
the points for which a linear form lies above (within) an L1 cone.
Bottom: Typical acceptance regions for 2D classifiers based on
(left) PCF and (right) EPCF decision functions.

f(x)> 0 for negatives. Similarly, our margin based training
methods enforce f(x) ≤ −1 for positives and f(x) ≥ +1
for negatives. In both cases the positive region is essen-
tially a hyperplane-section through an L1 cone centred at
c, specifically the region x ∈ IRd in which the hyperplane
z = w>(x− c)− b lies above the L1 cone z = γ‖x− c‖1
(PCF) or the diagonally-scaled L1 cone z = γ>|x − c| =
‖diag(γ) (x− c)‖1 (EPCF). See Fig. 2.

Note that for PCF with b > 0, γ > 0, ‖w‖∞ < γ (where
‖u‖∞ = maxdi=1 |ui| is the∞ norm) and any τ , the region
f(x) < τ is convex and compact in IRd and it contains the
vertex c. Analogously, for EPCF with b > 0, γ > 0, |wi| <
γi, i = 1, ..., d, and any τ , the region f(x) < τ is again
convex and compact and it again contains c. It would be
straightforward to enforce these inequalities during learning
but at present we simply leave the decision regions free to
adapt to the training data: compact positive classes naturally
tend to produce compact acceptance regions in any case.

Geometrically, under the above constraints the result-
ing regions are bounded octahedroids with 2d vertices, one
along each positive and negative coordinate half-axis start-
ing from c. The lines joining opposite vertices thus intersect
at c, giving the region a deformed but still axis-aligned oc-
tahedral “kite” shape with overall size governed by b. In
EPCF the region widths can be scaled independently along
each axis, while in PCF they are coupled together but a more
limited form of anisotropy is still possible.

To define margin-based classifiers over input feature vec-
tors x from this, for PCF we augment the feature vec-
tor to x̃ ≡

(
x−c
‖x−c‖1

)
∈ IRd+1 and the weight vector to

w̃ ≡
(−w
−γ
)
∈ IRd+1, and let b̃ = b. Then the PCF decision

function takes the familiar linear SVM form w̃>x̃ + b̃ > 0
for positives and < 0 for negatives. Similarly, for EPCF we
augment the feature vector to x̃ ≡

(
x−c
|x−c|

)
∈ IR2d and the

weight vector to w̃ ≡
(−w
−γ
)
∈ IR2d and again let b̃ = b,

again giving the SVM form w̃>x̃ + b̃ > 0 for positives,
but now in 2d dimensions. The above ∓1 margins for PCF
and EPCF translate to the familiar±1 SVM margins, allow-
ing us to use standard SVM software for maximum margin
training2. It thus suffices to run the familiar SVM quadratic
program on the augmented feature vectors:

argmin w̃,b̃
1
2w̃
>w̃ + C+

∑
i ξi + C−

∑
j ξj

s.t. w̃>x̃i + b̃+ ξi ≥ +1, i ∈ I+,
w̃>x̃j + b̃− ξj ≤ −1, j ∈ I−,
ξi, ξj ≥ 0,

(3)

where the I± are indexing sets for the positive and negative
training samples, the ξ’s are slack variables for the samples’
margin constraint violations, and the C± are corresponding
penalty weights.

Inserting the PCF and EPCF feature vectors into the
above training procedure respectively gives our Polyhedral
Conic Classifier (PCC) and Extended Polyhedral Conic
Classifier (EPCC) methods. Note that despite their ostensi-
bly linear symmetric form, these classifiers are intrinsically
asymmetric: they force the positives to lie inside, and the
negatives to lie outside, polyhedral conic regions that are
typically compact and centred on the positives. Our for-
mulation is robust to overfitting and it scales well because
standard SVM technology such as cutting plane methods
[12] and fast primal space solvers (e.g. [30]) can be used.

The above procedure does not attempt to optimize the
position c of the cone vertex as that would lead to a non-
convex problem. It would be possible to optimize for c at
least locally, but here we simply set it to a pre-specified po-
sition in the positive training set. The mean, medoid, or
coordinate-wise median of the training positives can all be
used for this with good results. In our experiments we used
the mean. Note that the classifier assigns its highest positive
confidence scores to the samples near the cone vertex.

2.1. One-Class EPCC (OC-EPCC)

EPCC usually outperforms both linear SVM and PCC
owing to its flexibility, but its positive acceptance regions
are bounded and convex only when |wi| < γi for all i –
i.e. when the hyperplane section has a shallower slope than
every facet of the L1 cone. This sometimes fails to hold for
feature space dimensions along which the negatives do not
surround the positives on all sides. Even though such EPCC
acceptance regions are typically still much smaller than the
corresponding linear SVM ones, to ensure tighter bounding
we would like to enforce |wi| < γi, i = 1, . . . , d. More-
over, in EPCC the ∓1 margin is the only thing that fixes the

2This only holds if we agree to ignore the optional compact-convex-
region constraints ‖w‖∞ < γ (PCC) or |wi| < γi, i = 1, ..., d (EPCC).



Algorithm 1 Stochastic Gradient Based Solver for One-Class EPCC

Initialize
w1, γ1, T > 0, α0 > 0, εw > 0, εγ > 0, n+ is the number of positive examples, n− is the number of negative examples,
n = n+ + n−
Description:

for t ∈ 1, ..., T do
αt ← α0/t;
wt−1 = wt; γt−1 = γt;
for i ∈ randperm(n) do

– Compute sub-gradients

gtw =


λw
n

+ xi
n+
, if yi = 1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1) ≥ 0
λw
n
− xi

n−
, if yi = −1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1− ρt) ≥ 0
λw
n
, otherwise.

gtγ =


xi
n+
− s

n
, if yi = 1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1) ≥ 0

− xi
n−
− s

n
, if yi = −1 & yi(w

>
t (xi − c) + γ>

t |xi − c| − 1− ρt) ≥ 0

− s
n
, otherwise.

– Update polyhedral cone parameters
wt ← wt − αtgtw
γt ← γt − αtgtγ

end for
if ‖wt −wt−1‖ < εw &

∥∥γt − γt−1
∥∥ < εγ , break

end for

overall weight scale and hence prevents a degenerate solu-
tion, and negative data is essential for this. To ensure that
EPCC works well for open set problems and ones with only
positive samples, we need to force its acceptance regions
to stay bounded and compact. The acceptance region has
width O(b/γi) along axis i, so we need to ensure that the γi
can not shrink to zero. The easiest way to achieve this is to
replace the ±1 margin scaling with a b = 1 offset scaling
and include negative cost penalties on the γi and on the ge-
ometric width of the new positive-negative margin [0, 1] so
that these quantities will tend to increase and hence keep the
acceptance region widths small and the sets well separated.
This leads to the following “One-Class EPCC” formulation:

argmin
w,γ

λ
2w
>w + 1

n+

∑
i ξi +

1
n−

∑
j ξj − s>γ

s.t. w>(xi − c) + γ>|xi − c| − 1 ≤ ξi, i ∈ I+,
w>(xi − c) + γ>|xi − c| − 1 ≥ 1− ξj , j ∈ I−,
ξi, ξj ≥ 0. (OC-EPCC)

(4)
Here λ is a regularization weight for w and s > 0 is a
user-supplied vector of cost penalties for increasing γ. At
present we use the simple stochastic gradient (SG) method
given in Algorithm 1 to solve this optimization problem.

3. Experiments

We tested the proposed polyhedral conic classifiers3 on
both synthetic and real datasets for object detection, open
set recognition and classical closed-set multiclass discrim-
ination. For comparison we report results for several other
linear and quasi-linear methods including SVM, the 1-
Sided Best Fitting Hyperplane Classifier (1S-BFHC) of [5],
GEPSVM [23], one-class SVM (SVDD) [31], and Additive
Kernels method of [32]. In addition, we tested Kernel SVM
(KSVM) using a 2nd order polynomial kernel function. For
open set recognition problems, we also compared the pro-
posed methods to 1-vs-Set Machine method of [29]. We
could not test against the polyhedral classifier of [8] as this
software is not available.

We emphasize out that our polyhedral classifiers are best
viewed as drop-in replacements for linear SVM, which they
systematically outperform in the tests below regardless of
the application and the features used, with only modest in-
creases in memory usage and run time. Kernel SVMs and
similar instance-based methods will typically have even bet-
ter absolute accuracy but they are usually much too slow for
practical use in applications of these kinds, except perhaps
as the final stages of classifier cascades with faster early
stages such as our methods. This applies to training too:
in the face detection study below the final training set size
is about 250k and kernel SVM algorithms like Sequential

3Our code is available at http://mlcv.ogu.edu.tr/softwarepcc.html.



Method AP Score (%)
Bayes Optimal 90.89
EPCC 86.62
OC-EPCC 84.87
PCC 79.90
Additive Kernels 76.80
SVDD 71.14
GEPSVM 44.25
SVM 22.85

Table 1. Average Precision (%) on the 2D synthetic dataset.

Minimal Optimization [25] struggle to handle datasets of
this scale. For this reason it was not practical to include
results for kernelized methods in the object detection tests.
But, we tested Additive Kernels method of [32] that approx-
imates the kernelized methods. To assess performance we
report classification rates or PASCAL VOC style Average
Precision (AP) scores [10]. For multi-class problems we
used the one-against-rest (OAR) formulation as this worked
best for all methods.

3.1. Illustration on Synthetic Data

Fig. 3 illustrates the proposed conic classifiers on a syn-
thetic 2D dataset consisting of random points with the pos-
itive class being Gaussian with mean ( 3

3 ) and axis-aligned
standard deviation ( 0.1

0.9 ), while the negative class is a mix-
ture of Gaussians with the same standard deviation and sev-
eral means surrounding the positive one. Quantitatively, Ta-
ble 1 gives empirical Average Precisions for a 250 positive /
750 negative test set sampled from these distributions. The
best accuracy is obtained by the statistically-optimal Bayes
classifier followed by EPCC. One-class EPCC (OC-EPCC)
also does very well even though the version tested here was
trained using positive samples alone. Linear SVM fares
poorly because the problem is not linearly separable. An
Additive Kernel method that explicitly maps the data to an
18-D feature space does better, but not as well as our meth-
ods which only use 3 or 4 dimensional embeddings.

3.2. Object Detection Experiments

3.2.1 Face Detection Experiments

To allow a direct comparison of methods we trained sev-
eral sliding window face detectors that were identical ex-
cept for the (quasi-)linear classifiers used, testing the pro-
posed PCC and EPCC methods, the 1S-BFHC hyperplane-
fitting classifier of [5], linear SVM, and Additive Kernels.
For training we used 20 000 frontal upright faces from im-
ages collected on the web. For the negative set we ran-
domly sampled 10 000 windows from face-free regions of
the same images with complex backgrounds. The subim-
ages were rescaled and cropped to size 35×28 then repre-

(a) (b)

(c) (d)

Figure 3. 2D synthetic data set (a) and the decision boundaries
returned by (b) PCC, (c) EPCC, (d) OC-EPCC. Brighter pixels
correspond to higher scores.

sented as 620-D LBP+HOG feature vectors. Note that as is
often the case in face detection, there are many more posi-
tive training samples than feature dimensions.

To allow for partial profile pose variation we used spec-
tral clustering to partition the positive training set into three
groups and trained a separate classifier of the given type on
each group. Each initial detector was used to scan a set
of thousands of images to collect additional hard negatives,
and the classifiers were retrained to create the final detec-
tor. The final size of the training sets is around 250k. The
standard sliding window approach of [11] was used for test-
ing, stepping the detector window by 3 pixels horizontally, 4
vertically, and 1.15 in scale and using greedy non-maximum
suppression.

We tested the resulting detectors on two datasets, the
2845 image Face Detection Data set and Benchmark
(FDDB) [17], and ESOGU Faces4, which includes 667
high-resolution color images with 2042 annotated frontal
faces. Both include faces at a wide range of image positions
and scales, complex backgrounds, occlusions and illumina-
tion variations.

Table 2 gives Average Precision scores for the above de-
tectors and three publicly available ones: the boosted frontal
face detector of Kalal et al. [20], the short cascade of Ce-
vikalp & Triggs [3], and the OpenCV Viola-Jones detector

4http://mlcvdb.ogu.edu.tr/facedetection.html



Method FDDB ESOGU
EPCC 71.9 89.1
PCC 67.2 78.8
SVM 37.6 47.7
Additive Kernels 55.7 78.7
1S-BFHC 70.5 80.0

Cevikalp-Triggs [3] 74.1 87.4
Kalal et al. [20] 66.3 79.7
Viola-Jones [33] 67.6 76.2

Table 2. Average Precision (%) for various face detectors on the
FDDB and ESOGU Faces datasets.

[33]. The scores of the latter detectors are not strictly com-
parable because they used different non-publicly-available
training sets and multi-stage cascades with nonlinear final
stages whereas our detectors used only a single linear stage.
Nevertheless, the proposed EPCC method still achieved the
best result on ESOGU and the second best on FDDB after
the method of Cevikalp & Triggs, which also came sec-
ond on ESOGU. Of the remaining single-stage methods,
1S-BFHC came third on both datasets, PCC followed, and
SVM came a poor last, suggesting that simple half-space
acceptance regions are inadequate here and that the posi-
tive classes need to be bounded more tightly for good re-
sults. (EPCC, PCC and 1S-BFHC all constrain them to fi-
nite regions). Using Additive Kernels to provide nonlinear
decision boundaries is a significant improvement over lin-
ear SVM, but its accuracy remains lower than the proposed
methods and 1S-BFHC, suggesting that it does not manage
to constrain the positive region as well as they do.

3.2.2 Pedestrian Detection Experiments

We trained and tested an analogous series of detectors on
the INRIA Person dataset [7], again testing linear EPCC,
PCC, 1S-BFHC, SVM, and Additive Kernels with identical
settings for each. We used the latent training methodology
of Felzenszwalb et al. [11], training one symmetric pair of
roots without parts. The roots were initialized by applying
K-Means clustering to mirror-image pairs. We used HOG
features as in [11]: 8 × 8 pixel cells with window steps of
8 pixels and pyramid scales spaced by a factor of 1.07. For
comparison we cite the published results of Felzenszwalb
et al. [11] (linear latent SVM over HOG, using one sym-
metric pair of roots, each with 8 parts – 18 filters in to-
tal, and bounding box prediction), Hussain & Triggs [16]
(a two stage, linear then quadratic cascade based on single
root latent SVM over HOG+LBP+LTP), and Dalal & Triggs
[7] (simple linear SVM over HOG without latency, multiple
roots or parts).

Table 3 shows the resulting accuracies and testing times
per image. The EPCC detector achieves the best results

Method AP Score (%) Run Time (s)
EPCC 85.6 1.8
PCC 83.6 1.8
SVM 80.4 1.6
Additive Kernels 80.9 19.1
1S-BFHC 78.5 1.6

Felzenszwalb [11] 86.9 3.5
Hussain-Triggs [16] 84.1 –
Dalal-Triggs [7] 75.0 –

Table 3. Average Precision (%) on the INRIA Person dataset.

among those trained. Owing to its lack of parts it does not
quite match the score of the Felzenszwalb multi-root, multi-
part detector, but it does outperform the Hussain & Triggs
method despite the latter’s better features and two stages.
PCC also performs well here. Note that despite their gains
in accuracy, the run times for EPCC and PCC are very sim-
ilar to those for SVM (and half of those for [11]), so EPCC
is a promising drop-in replacement for linear SVM here. In
contrast to the face detection results, Additive Kernels pro-
vides little improvement in accuracy over linear SVM even
though it is the slowest method tested.

3.3. Visual Object Classification Experiments

3.3.1 Experiments on PASCAL VOC 2007 Dataset

We ran tests on the PASCAL 2007 Visual Object Classifica-
tion dataset using a popular Convolutional Neural Net fea-
ture set. We ran the pre-trained ILSVRC2012 Caffe imple-
mentation [19] of the Krizhevsky et al. [22] CNN on images
resized to 256×256, producing 4096-dimensional feature
vectors for each of the methods shown. For comparability
with the literature we used stock ILSVRC features with-
out fine-tuning them on the PASCAL dataset. The results
are given in Table 4, as PASCAL VOC Average Precision
scores. The proposed methods along with Additive Kernels
and KSVM achieve the best accuracies for all classes. The
best performer is OC-EPCC, trained with samples of both
positive and negative classes. It significantly out-performs
a linear SVM over the same features, gaining about 4% on
average and more than 5% on the classes bottle, bus, chair,
dining table, dog, potted-plant, sofa and tv monitor. Addi-
tive Kernels improves results over linear SVM, but it uses
a three-times larger feature space. GEPSVM was the worst
performer here.

3.3.2 Experiments on Multi-Class Classification
Datasets

We tested our methods on three conventional closed-set
multiclass discrimination problems: Caltech-256 visual ob-
ject classification, the Letter Recognition (LR) and Multi-
ple Features (MF) pixel value datasets from the UCI repos-
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OC-EPCC 85.1 79.7 82.9 81.3 36.4 69.5 83.2 80.7 57.7 61.6 70.0 79.9 83.2 74.0 90.4 51.0 73.4 58.6 84.5 66.7 72.5
EPCC 87.2 80.0 83.3 80.9 35.9 66.5 83.4 80.9 56.5 59.4 68.7 78.5 82.6 73.8 90.1 49.7 71.3 57.1 86.5 66.6 72.0
PCC 86.3 79.0 83.0 80.5 35.3 65.8 83.4 80.2 56.1 60.3 68.0 77.2 81.8 73.3 89.8 47.9 70.8 55.6 85.9 66.4 71.3
SVM 87.0 75.7 81.7 80.4 31.2 63.6 80.4 79.1 47.1 58.1 64.2 74.0 81.0 73.0 87.4 41.3 68.5 50.6 86.3 61.4 68.6
KSVM 83.9 77.3 82.2 81.8 38.7 69.5 81.9 79.6 57.5 60.2 69.8 79.2 79.1 71.2 89.0 52.6 73.8 59.3 84.8 69.7 72.1
Additive Kernels 86.6 78.5 83.0 81.2 35.6 68.0 82.0 81.5 51.0 63.1 65.5 76.2 82.7 74.9 88.7 47.3 72.7 54.0 86.7 64.2 71.2
1S-BFHC 85.9 74.0 79.9 77.4 30.3 63.0 78.5 78.0 46.2 56.6 62.0 72.0 79.7 71.9 83.2 39.2 63.1 51.0 84.4 59.5 66.8
GEPSVM 36.2 21.9 45.1 26.4 10.3 27.0 34.1 21.9 29.0 39.9 32.0 22.2 32.0 19.6 53.9 15.4 27.2 14.3 39.0 25.8 28.7
SVDD 65.5 32.4 25.0 26.0 21.5 31.2 37.1 48.7 28.3 23.1 17.7 25.5 39.3 31.8 58.8 12.3 21.2 18.5 59.2 25.5 32.4

Table 4. Average Precision scores (%) on PASCAL VOC 2007 classification datasets.

itory. The LR dataset includes 26 classes and 20K sam-
ples whereas MF includes 10 classes and 2000 samples.
For Caltech-256 we followed the standard protocol, pick-
ing 30 training and 30 test images from each class and also
testing with reversed test and training roles. Fisher Vector
(FV) features were used with the setup of [27]. Specifically,
we extracted approximately 10K descriptors per image from
24×24 patches sampled on a regular grid every four pixels,
at 5 image scales. The descriptor dimension was reduced
to 80 using Principal Component Analysis (PCA). We used
6 × 106 descriptors to learn the PCA projections and the
256-component Gaussian mixture model (GMM) compo-
nents, leading to a final FV image descriptor dimension of
about 164k. For the LR and MF datasets we used 10-fold
cross-validation to evaluate the performance.

The results are summarized in Table 5, in terms of sim-
ple classification accuracies. The proposed EPCC method
achieved the best accuracy on MF whereas the Additive
Kernels and KSVM methods gave the best accuracies on
Caltech-256 and LR. However note that Additive Kernels
used significantly longer feature vectors than EPCC: 3 times
the original input space dimension for Caltech-256, and
5 times for LR and MF. In a similar manner the dimen-
sionality of the new sample space is

(
d+2−1

2

)
when a 2nd

order polynomial kernel function is used. Although they
were beaten by Additive Kernels and KSVM on these two
datasets, the proposed methods did significantly outperform
the remaining (quasi-)linear classifiers that were tested. The
differences were especially large for LR, where EPCC had
an error rate 16% lower than SVM, the best existing linear
method tested. Also note that for Caltech-256, PCC signif-
icantly outperforms SVM even though it has just one addi-
tional feature (of 164k). This shows that it is the positive-
class-bounding polyhedral cone geometry that is providing
the improvement here, not the features used, and also that
our training methods can gracefully handle very large fea-
ture vectors.

Method Caltech-256 LR MF
EPCC 40.1± 0.6 76.0± 1.2 96.3± 1.2

PCC 40.4± 0.7 65.5± 0.9 94.5± 1.4

SVM 37.6± 0.7 59.8± 1.7 93.9± 1.1

KSVM 38.8± 0.7 89.3± 0.9 95.9± 0.7

Additive Kernels 42.6± 0.7 81.9± 1.5 95.4± 1.4

1S-BFHC 38.3± 1.0 25.3± 0.8 93.8± 1.5

GEPSVM 13.3± 0.6 30.5± 1.1 53.8± 4.0

SVDD 9.9± 0.2 37.5± 1.6 80.1± 3.5

Table 5. Classification rates (%) for the closed-set multi-class dis-
crimination experiments.

Method/Class Leopard Face Airplane Chandelier
OC-EPCC 76.6± 2.9 70.0± 2.8 13.6± 1.5 6.0± 1.2

EPCC 69.8± 7.9 69.7± 2.8 15.5± 2.8 5.6± 0.6

PCC 65.3± 7.6 68.1± 3.3 15.7± 3.2 5.4± 0.8

1-vs-Set Machine 76.5± 6.8 60.2± 3.8 12.0± 0.9 4.9± 1.1

1S-BFHC 62.6± 12.7 59.1± 3.1 12.4± 1.8 4.8± 0.7

SVM 63.2± 13.1 61.5± 4.3 12.0± 1.6 4.8± 0.5

KSVM 68.7± 5.8 63.0± 2.2 9.3± 1.1 7.2± 0.9

GEPSVM 2.0± 1.0 8.4± 7.8 6.8± 1.1 2.6± 0.5

SVDD 3.6± 0.8 2.0± 0.4 3.6± 0.5 3.3± 0.7

Table 6. AP scores (%) for the open set visual object classification
experiment.

3.4. Experiments on Open Set Recognition

3.4.1 Open Set Visual Object Classification

Here we use the 212 class open set recognition dataset
and protocol from [29]. This setting reflects real-world
classification tasks in which the test set may include sam-
ples from classes not present during training. Images from
both Caltech-2565 and ImageNet6 were used to create the

5http://www.vision.caltech.edu/Image Datasets/Caltech256
6http://www.image-net.org



data. The images are represented using HOG and LBP-
like features. For each positive class, a training set is cre-
ated from Caltech-256 images by randomly selecting 30
positive samples from the class and 30 negative samples
from other classes (5 samples each from 6 randomly cho-
sen other classes). For testing, 30 new images are selected
from the positive class and 6330 negative ones are selected
from the six classes used during training and from 206 ran-
dom classes chosen from ImageNet (see [29] for details).
This procedure is repeated 5 times, with the final accura-
cies being averages over the 5 trials. In our experiments we
only used 4 positive classes: leopards, faces, airplanes and
chandelier. (These are the only classes for which the best-
performing methods achieve AP greater than 5% with the
features provided). For all methods including OC-EPCC,
the training used both positive and negative samples.

The results are given in Table 6. We report AP scores
computed from Precision-Recall curves instead of the Clas-
sification Rates used in [29] because we believe that the lat-
ter may not reflect the attainable recognition performance
in open set scenarios. Moreover, open set methods are
expected to reject samples from unknown classes and the
thresholds for this are most easily obtained from Precision-
Recall curves. As can be seen, both PCC and EPCC out-
perform SVM and 1S-BFHC, and one-class EPCC (OC-
EPCC) further improves the accuracy except for the air-
plane class. The difference is especially large for the leop-
ard class: OC-EPCC has AP nearly 7% higher than the
EPCC. It should be noted that the proposed methods signifi-
cantly outperform even KSVM except for Chandelier class.
1-vs-Set Machine achieves a very high accuracy (similar
to OC-EPCC) for Leopard class, but its accuracies are low
compared to the best computed accuracies for the remain-
ing classes. GEPSVM and SVDD are the worst performing
methods.

3.4.2 Open Set USPS Digit Recognition

Next we give results for an open set recognition experi-
ment based on the USPS Digits dataset. This contains 9298
16×16 gray-scale images of hand-written digits, with 7291
for training and validation and the remaining 2007 for test-
ing. To make the problem harder we use the raw gray-
scale pixel values as features without any pre-processing or
feature extraction. For open set recognition we randomly
choose three classes and train the methods on the training
samples from these classes alone. In contrast, testing uses
samples from all 10 classes. We compute AP scores from
the Precision-Recall curves for the 3 classes, take the aver-
age of these, repeat the whole procedure over 10 trials, and
report the final averaged average AP score. The results are
given in Table 7. The OC-EPCC classifier again achieves
the best results, followed by EPCC, KSVM and PCC. All of

Method AP Score (%)
OC-EPCC 82.2

EPCC 80.6

PCC 76.2

1-vs-Set Machine 64.5

1S-BFHC 66.0

SVM 61.9

KSVM 76.4

GEPSVM 40.5

SVDD 11.3

Table 7. AP Scores (%) for the open set USPS experiment.

the proposed methods significantly outperform linear SVM,
while SVDD is again the worst performer.

4. Summary and Conclusions
This study argues that in open set object recognition and

sliding window object detection problems, it is advanta-
geous to use asymmetric classifiers that focus on produc-
ing compact, well-constrained decision regions for the pos-
itive (target object) class. To this end we introduced PCC,
EPCC and OC-EPCC, a family of robust scalable maximum
margin learning methods whose positive acceptance regions
are planar sections through L1 cones. For appropriate pa-
rameter settings these methods give compact, convex ac-
ceptance regions that tightly constrain the extent of the pos-
itive class. A feature vector augmentation allows PCC and
EPCC to be trained using standard linear SVM software,
while OC-EPCC is currently trained using an analogous
stochastic gradient descent method. We tested these meth-
ods with good results on a range of object detection, open
set recognition and classical closed-set discrimination tasks.
The detection and open set recognition results were particu-
larly promising, giving significant improvements across the
board against comparable (quasi-)linear classifiers includ-
ing SVMs and several one-class approaches. Overall, we
believe that our methods will prove to be useful drop-in re-
placements for linear discriminants such as SVMs in many
current visual object detection and classification tasks.

As future work, we note that our formulation is not lim-
ited to polyhedral acceptance regions. Any other norm – or
even an arbitrary convex function – could be used in place
of the L1 norm. For example, using the unsquared L2 norm
‖ · ‖ to construct the augmented vector, x̃ ≡

(
x−c
||x−c||

)
∈

IRd+1, would give a PCC-style classifier that returned el-
lipsoidal decision regions and that was distinct from, and
probably more robust than, existing “one-class ‖ · ‖2 meth-
ods” such as SVDD.
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(TUBİTAK) under Grant number EEEAG-116E080.



References
[1] A. Bagirov, J. Ugon, and D. Webb. An efficient algorithm for

the incremental construction of piece-wise linear classifier.
Information Systems, 36:782–790, 2011.

[2] H. Cevikalp. Best fitting hyperplanes for classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
pages 1–14 DOI:10.1109/TPAMI.2016.2587647, 2017.

[3] H. Cevikalp and B. Triggs. Efficient object detection using
cascades of nearest convex model classifiers. In CVPR, 2012.

[4] H. Cevikalp and B. Triggs. Hyperdisk based large margin
classifier. Pattern Recognition, 46:1523–1531, 2013.

[5] H. Cevikalp, B. Triggs, and V. Franc. Face and landmark
detection by using cascade of classifiers. In IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion, 2013.

[6] C. Cortes and V. Vapnik. Support vector networks. Machine
Learning, 20:273–297, 1995.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[8] M. M. Dundar, M. Wolf, S. Lakare, M. Salganicoff, and V. C.
Raykar. Polyhedral classifier for target detection: A case
study: Colorectal cancer. In International Conference on
Machine Learning, 2008.

[9] S. Ertekin, L. Bottou, and C. L. Giles. Nonconvex on-
line support vector machines. IEEE Transactions on PAMI,
33:368–381, 2011.

[10] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge. Int. J. Computer Vision, 88(2):303–338, 2010.

[11] P. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE T-PAMI, 32(9), Sept. 2010.

[12] V. Franc and S. Sonnenburg. Optimized cutting plane al-
gorithm for large-scale risk minimization. The Journal of
Machine Learning Research, 10:2157–2192, 2009.

[13] R. N. Gasimov and G. Ozturk. Separation via polyhe-
dral conic functions. Optimization Methods and Software,
21:527–540, 2006.

[14] M. K. H. Tenmoto and M. Shimbo. Piecewise linear clas-
sifiers with an appropriate number of hyperplanes. Pattern
Recognition, 31:1627–1634, 1998.

[15] S. Hussain. Machine learning methods for visual object de-
tection. PhD thesis, Laboratoire Jean Kuntzmann, 2011.

[16] S. Hussain and B. Triggs. Feature sets and dimensionality
reduction for visual object detection. In BMVC, 2010.

[17] V. Jain and E. Learned-Miller. Fddb: A benchmark for face
detection in unconstrained settings. Technical Report UM-
CS-2010-009, University of Massachusetts, Amherst, 2010.

[18] Jayadeva, R. Khemchandani, and S. Chandra. Twin sup-
port vector machines for pattern classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelliegence,
29:905–910, 2007.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[20] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling
for large-scale boosting. In BMVC, 2008.

[21] A. Kantchelian, M. C. Tschantz, L. Huang, P. L. Barlett,
A. D. Joseph, and J. D. Tygar. Large-margin convex poly-
tope machine. In NIPS, 2014.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[23] O. L. Mangasarian and E. W. Wild. Multisurface proximal
support vcetor machine classification via generalized eigen-
values. IEEE Transactions on Pattern Analysis and Machine
Intelliegence, 28:69–74, 2006.

[24] N. Manwani and P. S. Sastry. Learning polyhedral classi-
fiers using logistic function. In Asian Conference on Ma-
chine Learning, 2010.

[25] J. C. Platt. Fast training of support vector machines using se-
quential minimal optimization, 1998. Advances in Kernel
Methods-Support Vector Learning, Cambridge, MA, MIT
Press.

[26] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, 2007.

[27] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-
age classification with the fisher vector: Theory and prac-
tice. International Journal of Computer Vision, 34:1704–
1716, 2013.

[28] A. Satpathy, X. Jiang, and H. L. Eng. Human detection
by quadratic classification on subspace of extended his-
togram of gradients. IEEE Transactions on Image Process-
ing, 23:287–297, 2014.

[29] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. To-
wards open set recognition. IEEE Transactions on PAMI,
35:1757–1772, 2013.

[30] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-grdient solver for SVM. In International
Conference on Machine Learning, 2007.

[31] D. M. J. Tax and R. P. W. Duin. Support vector data descrip-
tion. Machine Learning, 54:45–66, 2004.

[32] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34:480–492, 2012.

[33] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 57(2):137–154, 2004.


