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Abstract

An object detector must detect and localize each instance
of the object class of interest in the image. Many recent
detectors adopt a sliding window approach, reducing the
problem to one of deciding whether the detection window
currently contains a valid object instance or background.
Machine learning based discriminants such as SVM and
boosting are typically used for this, often in the form of clas-
sifier cascades to allow more rapid rejection of easy nega-
tives. We argue that “one class” methods – ones that focus
mainly on modelling the range of the positive class – are a
useful alternative to binary discriminants in such applica-
tions, particularly in the early stages of the cascade where
one-class approaches may allow simpler classifiers and
faster rejection. We implement this in the form of a short
cascade of efficient nearest-convex-model one-class classi-
fiers, starting with linear distance-to-affine-hyperplane and
interior-of-hypersphere classifiers and finishing with ker-
nelized hypersphere classifiers. We show that our meth-
ods have very competitive performance on the Faces in the
Wild and ESOGU face detection datasets and state-of-the-
art performance on the INRIA Person dataset. As predicted,
the one-class formulations provide significant reductions in
classifier complexity relative to the corresponding two-class
ones.

1. Introduction
Object class detection is an important computer vision

task in which all instances of a given generic object class
that occur in an image must be recovered and labeled with
their correct image positions and scales. It is difficult ow-
ing to the highly variable shape and appearance of common
object categories, changing scales, view-points and light-
ing conditions, complex backgrounds, occlusion and clut-
ter. The methods that currently dominate the field are based
on scanning the image at multiple scales with window-level
object / non-object classifiers that use machine learning
discriminants such as Support Vector Machines over high-

dimensional visual feature sets [7].
Both the feature set and the classifier are critical for

obtaining good performance. Here we concentrate on the
classifier. We introduce a novel short cascade approach
that uses “one-class” component classifiers based on simple
convex geometric models and graduated nonlinearity. Geo-
metric one-class approaches prioritize the accurate and ef-
ficient approximation of the feature space regions occupied
by the positive object class over the explicit discrimination
of positives from negatives. Particularly in the earlier stages
of the cascade, this simplifies the component classifiers and
allows early rejection of easy negatives. Specifically, our
method combines distance-to-affine-hyperplane, linear hy-
persphere and kernelized hypersphere classifiers.

We also enhance some existing one-class classifica-
tion software to handle large-scale problems and intro-
duce a new face detection dataset. The well-established
MIT+CMU face dataset [21] is somewhat dated in the sense
that it includes only a limited number of images, and that
these are grayscale with relatively low resolutions. The ma-
jority of the faces in the newer Faces in the Wild dataset1 ap-
pear in the middle of the image with similar scales, limiting
its value as a test set for multiscale face detectors (it is prin-
cipally a face recognition dataset, not a face detection one).
We therefore developed ESOGU Faces, a new frontal face
detection dataset containing 285 higher-resolution color im-
ages of complex real-world scenes taken under a wide range
of different illumination conditions.

2. Previous Work

Regarding feature sets, early detectors used raw pixel
values [22], wavelets [19], edges [3], and Gabor filter re-
sponses [23]. More recently, histogram based features have
become very popular owing to their performance and effi-
ciency. Many of these are based on oriented image gradi-
ents, including SIFT [16], SURF [4], Histogram of Oriented
Gradients (HOG) [6], PHOG [26], Generalized Shape Con-
text [5] and Local Edge Orientation Histograms [15]. Oth-

1http://vis-www.cs.umass.edu/lfw



ers are based on local patterns of qualitative graylevel dif-
ferences, including Local Binary Patterns (LBP) [1,28] and
Local Ternary Patterns (LTP) [24]. The best feature set de-
pends on the application and new ones are being developed
all the time. Current detectors often combine several fea-
ture sets for better results, either simply concatenating them
to form an extended feature vector [10], or finding optimal
combination coefficients at the learning stage [26].

Regarding the decision rule, most methods reduce the
detection problem to binary classification, i.e. determining
whether the detector window currently contains a correctly
framed true class instance or something else (background,
a partial or incorrectly framed instance, another class, etc.).
Machine learning classifiers ranging from nearest neighbors
to neural networks, convolution neural networks, proba-
bilistic methods and classification trees have been used, but
two approaches have received much of the attention owing
to their interesting properties: boosting based cascades, and
Support Vector Machines. Viola & Jones [27] produced a
very efficient face detector by using AdaBoost to train a cas-
cade of pattern-rejection classifiers over rectangular wavelet
features. Each stage of the cascade is designed to reject a
considerable fraction of the negative cases that survive to
that stage, so most of the windows that do not contain faces
are rejected early in the cascade with comparatively little
computation. As the cascade progresses, rejection typically
gets harder so the single-stage classifiers grow in complex-
ity.

Although cascades give excellent results for real-time
face detection, Support Vector Machine (SVM) classi-
fiers are currently a more common choice for more gen-
eral object detection under less stringent time constraints
[10,9,6,26,2]. Linear SVM’s are usually preferred for their
simplicity and speed, although it is well-established that
kernel SVM’s typically give higher accuracy at the cost of
greatly increased computational complexity [26]. For this
reason, several state-of-the art methods use short cascades
in which the early stages use linear SVM’s to reject most
of the negative windows quickly while the later stages use
nonlinear SVM’s to make the final decisions [10,26].

Several previous detectors have used one-class formula-
tions such as the Support Vector Data Description (SVDD)
method of Tax and Duin [25], which approximates classes
with hyperballs (the interiors of hyperspheres) in feature
space. Jin et al. [13] use a kernelized hypersphere model
for face detection. However to reduce the computational
complexity, they first divide the putative face window into
9 blocks using heuristic rules such as the eye regions be-
ing darker than the cheeks and the bridge of nose, etc., only
applying the nonlinear classifier if the region passes all of
these tests. Their method thus applies only to face detec-
tion. Mele & Maver [18] use linear hypersphere classifiers
to detect specific shapes in binary segmented images, but

their approach is not applicable to general object detection
in color or grayscale images. In contrast, our method can
be used to detect any more or less rigid object class in nat-
ural images, and it is significantly faster than nonlinear two
class SVM based detectors while maintaining comparable
overall accuracy.

3. Our Approach
In object localization any sample that does not belong to

the object class is considered to be background, so in fea-
ture space, the class samples typically lie in specific regions
surrounded by a diffuse sea of background samples. Given
that such backgrounds are defined negatively (as anything at
all that is not a well-framed class instance), discriminative
training methods typically need to process very large num-
bers of negative training samples to represent them well.
This explains both their need for multiple cycles of search
for hard negatives and retraining [6], and the extremely un-
balanced non-class to class ratios that result from this. We
argue that this is counterproductive, and that (at least in the
early stages of the cascade) it is preferable to concentrate
on modeling the extent of the positive class well, discarding
any sample that does not conform to this model as an ‘easy’
negative and postponing the more nuanced decisions until
later.

To achieve this we treat each stage of the object detec-
tion cascade as a one-class nearest-convex-model classifica-
tion problem, not a two-class discrimination problem. For
each stage of the cascade we would ideally use the posi-
tive training samples alone to learn a convex approximation
to the region occupied by the class in feature space, then
classify samples as possible-class or background by thresh-
olding their feature-space distances to the convex model.
In practice, we find that it is useful to include some back-
ground information from the negative samples in each stage,
while still retaining “one-class” style models and philoso-
phy. Below we will use either affine hyperplanes or bound-
ing spheres for our convex cascade-stage models because it
is very efficient to find distances to these, thus potentially al-
lowing real-time performance. However many other models
are possible at the cost of more expensive distance compu-
tations, including lower-dimensional affine subspaces, con-
vex hulls, hyper-disks and hyper-ellipsoids, etc.

In this paper we will focus on a particular form of cas-
cade in which each stage uses a different kind of nearest
convex model classifier, as illustrated in Fig. 1. Our cas-
cades have three stages graded by the computational com-
plexity of the model. The first stage is a linear classifier that
uses an intersection of affine hyperplanes to approximate
the class. This is computationally efficient and also easy and
fast to train, even for large training sets. Its goal is to reject
as many of the background samples as possible, while still
passing almost all of the class samples to the next stage. The
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Figure 1. (Best viewed in color). An illustration of pruning in our proposed three-stage cascade. (a) Input data: points from the object
(positive) and background (negative) classes are shown respectively as blue triangles and black dots. (b) In the first stage of the cascade,
the positive samples are bounded with a series of hyperplane shaped slabs (the dashed line and its two borders). Samples outside the slabs
are classified as negatives and rejected. The background examples that survived this stage are shown as red dots. (c) The second stage
of the cascade is a linear-space one-class classifier that approximates the object class region with a bounding hypersphere. Most of the
false positives that survive the first stage are discarded here. (d) The final stage of the cascade is a kernelized one-class classifier that
approximates the positive region more accurately and makes the final decision.

second stage is a linear SVDD classifier [25], i.e. one based
on a hypersphere model in the (non-kernelized) input space.
This is equally fast to run, but somewhat more expensive to
train as it uses a maximum-margin formulation rather than
simple linear fitting. It turns out to be complementary to the
first stage, rejecting most of the false positives that stage 1
passes. The third stage of the cascade makes the final deci-
sions, using a kernelized hypersphere model to approximate
the object class. This is slower, but it only needs to test the
small number of positives and difficult negatives passed by
the first two stages. We now present each of these three
stages in detail.

3.1. Linear Hyperplane Approximation

The first stage of our cascade tests the distance of the
sample to a series of affine hyperplanes. Let x be the sam-
ple’s feature vector and let w>1x + b1 = 0 be the equation
of the first hyperplane, where w1 is a unit vector of fea-
ture weights and b1 is a bias. We reject samples for which
|w>1x + b1| > τ1, where τ1 is a threshold determined by
cross-validation. For the surviving samples, we find the or-
thogonal complement x1 = x−w1 (w>1x), and pass it on to
the next hyperplane in the series for testing. This continues
throughout the series, at each stage testing the distance of
the current vector to the current hyperplane and passing on
its orthogonal complement if it survives.

Let X+ and X− be matrices whose rows are the train-
ing samples of respectively the object and background
classes. Let e+ and e− be corresponding column vec-
tors of ones, and for convenience define extended matrices
X̄+ = [X+ e+] and X̄− = [X− e−]. To train the method,
the simplest one-class approach would be to find the best
least-squares fit to the positive data

arg min
w1,b1,‖w1‖=1

‖X+ w1 + e+ b1‖2 = arg min
z

z>G z
‖w1‖2

(1)

where z =
(w1

b1

)
and G = X̄>

+X̄+, passing the orthogonal

complement X+ (I−w1 w>1) to the next stage of the series
as training data. Instead we use a background-sensitive fit
[17], minimizing the regularized Rayleigh quotient

arg min
w1,b1,‖w1‖=1

‖X+ w1 + e+ b1‖2

‖X−w1 + e− b1‖2 + δ (‖w1‖2 + b21)
, (2)

which can be re-expressed as

arg min
z

z>G z
z>H z

(3)

where H = X̄>
− X̄− + δI and δ is a user-set regularization

constant. Again the orthogonal complements of X+ and
X− are passed to the next hyperplane as training data. The
solution of this problem reduces to finding the smallest-λ
eigenvector of the generalized eigenproblem G z = λH z
and renormalizing it to find w1, b1.

3.2. Linear Hypersphere Approximation

The second stage of the cascade consists of a single lin-
ear SVDD classifier [25]. SVDD uses bounding hyper-
spheres to approximate classes. As Fig. 1 suggests, the hy-
persphere classifiers turn out to complement the preceding
hyperplane ones well, rejecting most of the false positives
that survive the first stage.

The bounding hypersphere of a point set {xi|i = 1...n}
is characterized by its center c and radius r. These can be
found by solving the quadratic programming problem

arg min
c, r≥0, ξ≥0

(
r2 + γ

∑
i

ξi

)
s.t. ‖xi − c‖2 ≤ r2 + ξi, i = 1, . . . , n,

(4)



or its dual

arg min
α

∑
i,j

αiαj 〈xi,xj〉 −
∑

i

αi ‖xi‖2


s.t.
∑

i

αi = 1, ∀i 0 ≤ αi ≤ γ,
(5)

where 〈−〉 represents the (possibly kernelized) inner prod-
uct. The αi are Lagrange multipliers and γ ∈ [1/n, 1] is a
ceiling parameter that can be set to a value less than one to
reduce the influence of outliers. The objective function is
convex so a global minimum exists. In the kernelized case,
the dual formulation yields a sparse solution in terms of the
support vectors (the examples lying exactly on the hyper-
sphere), which makes evaluating the model more efficient.

If we are given negative training samples, they can be
used to improve the model by forcing them to lie outside of
the bounding hypersphere. Suppose that we have n1 train-
ing samples from the positive (object) class enumerated by
indices i, j, and n2 from the negative (background) class
enumerated by l,m. The most compact hypersphere that in-
cludes the positive samples and excludes the negative ones
can be found by solving the quadratic programming prob-
lem

arg min
c, r≥0, ξ≥0

(
r2 + γ1

∑
i

ξi + γ2

∑
l

ξl

)
s.t. ‖xi − c‖2 ≤ r2 + ξi, i = 1, . . . , n1

‖xl − c‖2 ≥ r2 − ξl, l = 1, . . . , n2

(6)

or its dual

arg min
α

∑
i,j

αi αj 〈xi,xj〉+
∑
l,m

αl αm 〈xl,xm〉

− 2
∑
l,j

αl αj 〈xl,xj〉+ (
∑

l

αl ‖xl‖2 −
∑

i

αi ‖xi‖2)

s.t.
∑

i

αi −
∑

l

αl = 1, ∀i, j 0≤αi≤γ1, 0≤αl≤γ2.

(7)
This one-class model differs from a classical SVM in that it
finds a closed hypersphere surrounding the object class, not
a linear hyperplane separating it from the background. We
find that the inclusion of negative training samples signifi-
cantly improves the performance of our detection cascades
– particularly in cases where there are relatively few posi-
tive training examples, as in the person detector below – so
we use the formulation (7) above.

Like (5), (7) is a quadratic program with a global min-
imum. Large-scale problems can be solved using Sequen-
tial Minimal Optimization (SMO) [20]. In particular, it is
not necessary to construct the full Hessian matrix: only the
Hessians of the active sets of samples need to be considered

in each iteration. We revised the CMP quadratic program-
ming software2 to allow us to solve problems with millions
of variables in a reasonable time. Given the optimal mul-
tipliers α, the center of the bounding hypersphere can be
computed as

c =
∑

i αi xi −
∑

l αl xl , (8)

after which its radius can be found using the constraints
from (6).

During object detection, we find the distance from the
feature vector of each local window to the center of the hy-
persphere, rejecting the sample as a negative if this distance
is greater than the radius. This can be done very efficiently
as it only requires vector subtraction and norm.

3.3. Nonlinear One-Class Classifier

The third stage of our cascade contains a single ker-
nelized hypersphere classifier that makes the final deci-
sions. Kernelization allows finer discrimination than the
preceding linear stages in return for increased computa-
tion for the few examples that reach this stage. The hy-
persphere model can be kernelized simply by replacing the
inner products 〈xi,xj〉 with kernel evaluations k(xi,xj) =
〈φ(xi), φ(xj)〉 in (7), where φ() is the implicit feature
space mapping implemented by the kernel. Training re-
mains straightforward, but evaluating distances from in-
coming samples x to the center of the bounding hyper-
sphere requires kernel evaluations k(xi,x) against the sup-
port vectors xi. This makes kernelized SVDD significantly
more expensive than its linear counterpart as the number of
support vectors can be considerable (albeit typically much
smaller than the number of training samples). However in
practice we find that our kernelized SVDD classifiers are
an order of magnitude faster than the analogous kernel-
ized SVM’s because they have far fewer support vectors.
The SVM’s typically have many negative support vectors
owing to the need to reject large numbers of hard nega-
tives, whereas the SVDD support vectors come predomi-
nantly from the positive training samples. This makes ker-
nel SVDD more suitable for use in efficient detection cas-
cades than kernel SVM.

4. Face Detection Experiments
We will evaluate our approach3 on face detection and

human detection tasks. First consider face detection. We
tested on two datasets, the 13127 image “Faces in the Wild”
one [11] and ESOGU4, a new frontal face detection dataset
that includes 285 high-resolution color images with 970
annotated frontal faces. The images in Faces in the Wild

2http://cmp.felk.cvut.cz
3For our code, see http://www2.ogu.edu.tr/∼mlcv/softwares.html
4http://mlcvdb.ogu.edu.tr/facedetection.html



Faces in the Wild LBP+HOG LTP+HOG LBP+LTP LBP+LTP+HOG
Method DR FP AP DR FP AP DR FP AP DR FP AP
Cascade I 94.85 2852 95.73 95.81 3217 96.53 83.93 4281 90.34 88.64 837 97.81
Cascade II 96.60 332 98.58 95.84 254 98.62 88.49 920 95.95 95.10 234 98.60
Cascade III 98.36 237 98.80 98.58 265 98.91 93.24 849 98.04 97.20 626 98.67

ESOGU Faces LBP+HOG LTP+HOG LBP+LTP LBP+LTP+HOG
Method DR FP AP DR FP AP DR FP AP DR FP AP
Cascade I 91.24 550 95.67 92.37 406 96.27 87.42 659 91.18 87.20 207 96.37
Cascade II 92.47 18 99.01 91.75 38 98.69 89.28 222 93.05 92.68 35 98.38
Cascade III 92.27 10 98.67 94.02 71 98.72 90.31 136 92.53 94.02 166 97.94

Table 1. % Detection Rates (DR), numbers of False Positives (FP) and % Average Precision (AP) scores for our cascade detectors on
the Faces in the Wild and ESOGU Faces datasets. The ‘Cascade I’ detectors include only the linear hyperplane and hypersphere stages.
The ‘Cascade II’ and ‘Cascade III’ ones respectively add a kernelized hypersphere classifier and a kernelized SVM as the final stage. For
comparison, the OpenCV Viola-Jones detector [27] has DR 95.80%, FP 1074 and AP 98.50% on Faces in the Wild and DR 75.36%, FP
103 and AP 98.60% on ESOGU, and the FDLib detector [14] has DR 59.28% and FP 5393 on Faces in the Wild and DR 63.81% and
FP 344 on ESOGU. (We can not report AP scores for the FDLib detector as it does not return a real-valued confidence measure for its
detections). Note that the Faces in the Wild results are probably biased towards Viola-Jones because a detector of this kind was used to
obtain the initial detections for this dataset [11].
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Figure 2. Precision-Recall curves for LBP+HOG features on the Faces in the Wild (left) and ESOGU Faces (right) datasets.

are somewhat idealized in the sense that they are relatively
small and normalized such that most of the faces appear
near the middle of the image with similar scales. To provide
more realistic testing on images from real world consumer
snapshot collections, we therefore developed the ESOGU
(ESkisehir OsmanGazi University) dataset, whose images
contain faces appearing at a wide range of image positions
and scales, and also complex backgrounds, occlusions and
illumination variations – c.f . Fig. 3 bottom.

Training: Given the limitations of the current publicly
available face detector training datasets, we collected
12 500 subimages of frontal upright faces from the web for
training. Most of these are from real-world images and there
is a high degree of variability in appearance and lighting
conditions. The face images are rescaled and aligned to a
resolution of 35 × 28 (further reductions in resolution re-
duce the performance). For the negative set, we randomly
selected 10 000 windows from face-free regions with com-
plex backgrounds. We tested several visual features includ-
ing LBP [1], LTP [24], HOG [6], and combinations of these.

The combinations gave better results than the individual de-
scriptors. For LBP and LTP, we divided the images into four
non-overlapping quadrants and extracted descriptors from
each region using circular (8,1) neighborhoods. The result-
ing histograms were normalized to sum 1 and concatenated
to produce the final feature vector. For HOG, we used a grid
of 6×6 pixel cells with 9 bins of unsigned gradient orienta-
tion over color images, grouping each cell into overlapping
2× 2 cell blocks for normalization as in [9].

Classifiers trained with the initial samples were used to
scan a set of thousands of images in order to collect both
false negatives and false positives. These hard examples
were added to the training set, increasing the number of
positive examples to about 20k and the number of negative
ones to about 93k, and the methods were retrained. The fi-
nal size of the training set is thus 113k. When scanning an
image the detection window is stepped by 3 pixels horizon-
tally and 4 pixels vertically, and we scan an image pyramid
whose scales are spaced by a factor of 1.15. For nonmaxi-
mum suppression we sort the surviving windows by score,
then iteratively take the first and eliminate all detections



Figure 3. Some examples of the output of our cascade detectors on images from the Faces in the Wild (top) and ESOGU Faces (bottom)
datasets. Most of the faces are correctly detected, but there are a few missed detections and false positives.

overlapping it. To penalize narrow supports, groups with
less than 4 overlapping windows (8 in the linear case) are
suppressed, and otherwise log(# participating windows)/3
is heuristically added to the score.

Detectors: We trained three kinds of cascades. The first
includes only the linear hyperplane and linear hypersphere
stages, with three linear hyperplane classifiers in the first
stage. The second and third cascades are three-stage ones,
respectively with kernelized one-class hypersphere classi-
fiers and kernelized SVM’s in the final stage. For these,
only two linear hyperplane classifiers were included in the
first stage. We used Gaussian RBF kernels as they pro-

duced better results than RBF kernels based on the χ2 his-
togram distance. The kernelized hypersphere classifiers al-
ways had fewer support vectors than the corresponding ker-
nelized SVM’s. For example for LBP+HOG features, the
hypersphere classifier had 2398 support vectors while the
SVM had 15 657 – 6.5 times more. On average, the final
stages of cascades using kernelized hypersphere classifiers
were 8 times faster than ones using kernelized SVM’s.

We compared our results with those of the OpenCV
Viola-Jones cascade [27] and the FDLib detector [14]5, us-
ing the PASCAL VOC criteria [7] to assess detection per-

5http://people.kyb.tuebingen.mpg.de/kienzle/fdlib/fdlib.htm



formance. Briefly, detections are considered to be true pos-
itives if the bounding box R returned by the classifier over-
laps the bounding box Q of the ground truth annotation by
more than 50%, where overlap is measured as Area|Q∩R|

Area|Q∪R| .
We report the Detection Rate (DR) and total number of
False Positives (FP) at the default detector threshold (the
one chosen by the training algorithm), as well as the Av-
erage Precision (AP) (i.e. area under curve) over the whole
Precision-Recall curve. DR is the ratio of the number of
correctly detected faces to the total number of labeled faces
in the test set.

Results: The results are given in Table 1 and Fig. 2, and
Fig. 3 shows some examples of detections on the two face
test sets. For Faces in the Wild, cascades using final ker-
nel SVM’s have slightly higher AP’s than ones using fi-
nal kernel hypersphere classifiers, but this is reversed for
ESOGU and in any case the differences are very small.
For both datasets the Viola-Jones method comes a close
third to the two cascades, while the FDLib detector gives
poor results. The best feature set for Faces in the Wild
is LTP+HOG whereas the best for ESOGU is LBP+HOG,
but for both datasets the feature combinations LBP+HOG,
LTP+HOG and LBP+LTP+HOG all give similar results,
with LBP+LTP and the individual feature sets (not shown)
being weaker. This suggests that HOG manages to cap-
ture useful cues (probably shape information) that LBP and
LTP ignore, and conversely LBP and LTP capture cues
(probably local texture) that HOG ignores. Given that
there is no clear winner among LBP+HOG, LTP+HOG and
LBP+LTP+HOG, we recommend LBP+HOG for this ap-
plication as it has lower computational complexity than the
other combinations. To get an idea of the degree of prun-
ing provided by the cascades, for LBP+HOG features on
the ESOGU dataset, of the 23M windows scanned, 2.9M
(13%) passed the first hyperplane classifier, 0.8M (3.6%)
passed the second hyperplane, 64k (0.28%) passed the lin-
ear hypersphere stage and 21k (0.09%) passed the kernel
hypersphere stage. Nonmaximum suppression then merged
these into 915 detections (an average of 22.7 windows per
detection), of which 897 were correct.

5. Human Detection Experiments

Training: We used the INRIA Person dataset [6] for our hu-
man (“pedestrian”) detection experiments. LBP+HOG fea-
tures were used, with a grid of 8 × 8 pixel cells for HOG
and the detection window divided into a 5× 3 set of rectan-
gular regions for LBP. We artificially enlarged the positive
training set by slightly perturbing the locations provided in
the ground-truth annotations, and randomly sampled 12180
negative windows from the provided negative (person-free)
training images. For each method tested, initial detectors
trained on these examples were used to scan all of the train-

Method Det.Rate False Pos. Ave.Prec.
Cascade I 78.19 497 90.43

Cascade II 75.67 144 93.46

Cascade III 82.83 104 96.03

Dalal&Triggs [6] - - 75.00

Hussain&Triggs [12] - - 84.10

Felzenszwalb et al. [9] - - 86.90

Table 2. % Detection Rates, total numbers of False Positives, and
% Average Precision scores) for our detectors on the INRIA Per-
son dataset.
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Figure 4. Precision-Recall curves for our detectors on the INRIA
Person dataset.

ing images to collect hard examples, followed by retraining.
During detection, the search window was shifted by steps of
4 pixels horizontally and 6 pixels vertically, and the pyramid
scales were spaced by a factor of 1.15. We trained the same
three kinds of cascades as in the face case. The final kernel
hypersphere classifier had 2818 support vectors whereas the
final kernel SVM had 10 times more (28 251).

Results: The Detection Rates and Average Precision scores
for our person detectors are given in Table 2 and the corre-
sponding Precision-Recall curves are given in Figure 4. For
comparison, we also include the published AP’s of Dalal
& Triggs [6] (HOG with linear SVM), Hussain & Triggs
[12] (a two stage linear + quadratic single root latent SVM
classifier using HOG+LBP+LTP) and Felzenszwalb et al.
[9,8] (a linear latent SVM classifier using multiple roots
and parts over HOG). All of our cascades give better re-
sults than these methods, despite the fact that they use only
a single root and no parts. The cascade with the final ker-
nel SVM clearly dominates, giving the best Detection Rate,
False Positives and AP scores and offering about a 9% im-
provement in AP over the previous state-of-art. The cascade
with the final kernel hypersphere classifier comes second,
with its final stage being about 20 times faster than that of
the kernel SVM based one. The two-stage cascade based
on linear classifiers also achieves very respectable results,
which suggests that our strategy of bounding the region oc-
cupied by the positive class more tightly than the simple
linear separator provided by an SVM is bearing fruit.



6. Summary and Conclusions
We have developed sliding window object detectors

based on short cascades of linear and nonlinear nearest-
convex-model classifiers, arguing that the “one-class” na-
ture of the latter provides an attractive combination of ac-
curacy and speed. Our cascades have three stages: a set of
linear distance-to-hyperplane classifiers for fast pruning of
easy negatives; a linear hypersphere classifier for additional
pruning; and finally (and optionally) either a kernelized hy-
persphere classifier or a kernelized SVM. We tested our de-
tectors on two challenging face datasets and the INRIA Per-
son dataset, concluding that the cascade methods are very
promising relative to existing approaches. In particular, the
cascades with final kernelized classifiers achieve high Aver-
age Precisions, with the hypersphere ones having accuracy
similar to or better than the SVM ones on the face datasets
and somewhat lower on the INRIA dataset, but being an or-
der of magnitude faster in both cases because they have far
fewer support vectors. For human detection, the two-stage
linear cascade already gives much better performance than
well-established linear SVM detectors, which suggests that
including multiple stages of linear or hypersphere pruning
may be a useful strategy for improving other existing object
detectors.
Future work: Unlike [8], our current detectors do not in-
corporate multiple roots, parts, and latent position and scale
adjustments during training (although the use of perturbed
training examples partially compensates for the latter). We
are currently working on including these refinements.
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