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Abstract. In this study, we use transductive learning and binary hierar-
chical trees to create compact binary hashing codes for large-scale image
retrieval applications. We create multiple hierarchical trees based on
the separability of the visual object classes by random selection, and
the transductive support vector machine (TSVM) classifier is used to
separate both the labeled and unlabeled data samples at each node of
the binary hierarchical trees (BHTs). Then the separating hyperplanes
returned by TSVM are used to create binary codes. We propose a novel
TSVM method that is more robust to the noisy labels by interchanging
the classical Hinge loss with the robust Ramp loss. Stochastic gradient
based solver is used to learn TSVM classifier to ensure that the method
scales well with large-scale data sets. The proposed method improves the
Euclidean distance metric and achieves comparable results to the state-
of-art on CIFAR10 and MNIST data sets and significantly outperforms
the state-of-art hashing methods on NUS-WIDE dataset.

Keywords: Image retrieval · Transductive support vector machines ·
Semi-supervised learning · Ramp loss

1 Introduction

Large-scale image retrieval has recently attracted great attention due to the
rapid growth of visual data brought by Internet. Image retrieval can be defined
as follows: Given a query image, finding and representing (in an ordered man-
ner) the images depicting the same scene or objects in large unordered image
collections. Despite the great research efforts, image retrieval is still a challeng-
ing problem since large-scale image search demands highly efficient and accurate
retrieval methods.

For large scale image search, the most commonly used method is the hashing
method that enables us to approximate the nearest neighbor search. Hashing
methods convert each image feature vector in the database into a compact code
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(typically a binary code) and provide constant or sub-linear search time. Most
of the current popular hashing methods [6,7,10,17,18,22,26,27,31] are unsuper-
vised methods and they are built on the assumption that the similar images in
the Euclidean space must have similar binary codes. Among these, Locality Sen-
sitive Hashing (LSH) [6] chooses random projections so that two closest image
samples in the feature space falls into the same bucket with a high probability.
However, due to the semantic gap between the low-level features and semantics,
Euclidean distances in the feature space do not reflect the semantic similari-
ties between the images. Furthermore, the state-of-art image visual features are
typically high-dimensional vectors ranging from several thousands to millions.
As pointed out in [1], the performance of nearest-neighbor techniques using the
Euclidean distances in high-dimensional spaces is poor since sparse and irregular
distributions of data samples tend to have many holes (regions that have few
or no nearby samples from the same classes), so it is necessary to learn more
discriminative distance metrics. Therefore, relying Euclidean distances between
image feature vectors for creating binary hash codes can be misleading. Our
experimental results at the end also verify these claims.

To solve the challenging semantic gap problem, the most straightforward
solution is to use label information. But, labeling all images in large image data-
bases is too costly and difficult in practice. In contrast, relevant feedback given
in terms of similar/dissimilar pairs is much easier to collect. Similarly, for most
images on the web, some label tags can be collected at a more reasonable cost
by using image file names or surrounding text. So, both semi-supervised and
supervised hashing methods utilizing these types of information have been pro-
posed [9,11,15,21,23,24,30,34]. Majority of these methods [9,21,24,30,34] use
label information during creating similarity matrix and then projection direc-
tions that will preserve the similarities within the similarity matrix are found.
Finally, these directions are used to produce binary codes. These methods cannot
be applied directly to large-scale image datasets since they require computing
and operating on a very large n × n sized similarity matrix, where n is the total
number of image samples in the training (gallery) set. Generally, two procedures
are followed to avoid this problem: In the first approach, only a small number of
labeled data samples is used to learn binary codes and all unlabeled data sam-
ples are ignored. In the second procedure, some representative anchor points are
created by random selection or clustering, and the similarity matrix of all data is
approximated with much smaller sized similarity matrix of those anchor points.
Both procedures are problematic in the sense that some potential information
that may come from unlabeled data samples are ignored and propagation of
supervised information from labeled samples to neighboring unlabeled samples
has not been taken into consideration. The methods [11,15,23] that are more
related to ours use SVM based large margin classifiers to learn compact binary
codes. Both [11] and [23] use only labeled data since their methods require to
operate on n×n sized kernel matrix. Thus, unlabeled data are ignored again and
they do not contribute to label propagation. [15] does not need any supervision
and the authors randomly select some samples and randomly assign them posi-
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tive and negative labels. Then they run SVM algorithm to find the hyperplanes
separating these samples and finally separating hyperplanes are used to produce
binary codes. More recently, deep neural networks and CNN (Convolutional
Neural Networks) features have been used for image retrieval [8,19,20,32,35–
37]. These methods typically follow the similar structure of classifier networks
that use a stack of convolutional layers to produce discriminative features, but
the last layers use different loss functions that are more suitable for retrieval
applications. For example, [19,35] use a triplet ranking loss designed to charac-
terize one image is more similar to the second image than the third one whereas
some methods use other loss functions such as surrogate loss [37], pair-wise
ranking [8], or weighted approximate ranking [8]. Almost all these deep neural
network methods are trained end-to-end fashion, which allows one to optimize
the discriminative image features and hash functions simultaneously.

Similar to the hashing methods using large-margin based classifiers, we also
use SVM classifiers to learn binary codes, but in contrast to other methods,
we incorporate the unlabeled data during learning process in a transductive
learning setting. Since the labeled data can be noisy in large-scale image retrieval
applications, we introduce a more robust transductive SVM (TSVM) method to
the noise present in labels. We use stochastic gradient based solver instead of
sequential minimal optimization (SMO), thus our method scales well with large-
scale data (to the best of our knowledge, it is the only transductive method
that can be used with more than a million data). Finally, we introduce a novel
method to learn class hierarchies based on graph cut and binary hierarchical
trees to ensure the large margin between class samples.

2 Method

Here we consider the scenario where we have many unlabeled images with some
limited amount of labeled image data. As we mentioned earlier, labels can be
gathered from image file names or nearby text on the web. But, we have to keep
in mind that the labels can be very noisy and there might be more than one
labels attached to an image, e.g., if an image contains people, car, buildings etc.,
all these tags can be used to label the image. We use TSVMs to create binary
hash codes. It should be noted that SVM like large-margin based classifiers are
widely used for this goal and it was shown that larger margin between class
samples yields to lower error rates in similarity search [15,23]. So, our goal is to
find separating hyperplanes which will create balanced binary hash codes but at
the same time they will yield to a large margin between the image samples of
different classes.

In the proposed methodology, we first create image class hierarchies based
on their visual content similarities and labels. To this end, we use binary hierar-
chical trees and Normalized Cuts clustering. This methodology is much better
compared to the Wordnet based hierarchy used in [5] since it is created based on
the separability of the visual classes. Then, we use TSVM to find the hyperlane
that best separates the data samples (both labeled and unlabeled data) at each
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node of the binary hierarchical tree to make sure that the classes are split into
two clusters with the largest margin possible. We first explain our novel TSVM
algorithm and then describe how to create binary hierarchical trees and compact
binary codes below.

2.1 Robust Transductive Support Vector Machines (RTSVMs)

Suppose that we are given a set of L labeled training samples L =
{(x1, y1), . . . , (xL, yL)}, x ∈ IRd, y ∈ {+1,−1} and an unlabeled set of U vectors
U = {xL+1, . . . ,xL+U}. Our goal is to find the best separating hyperplane char-
acterized by θ = (w, b), where w is the normal of the hyperplane and b is the
bias term. We use separating hyperplanes to create binary codes and the sign of
the following decision function defines the binary codes

fθ(x) = w�x + b. (1)

The main idea of TSVM learning is to find an hyperplane that separates the
labeled samples with a large margin at the same time ensures that the unlabeled
samples will be as far as possible from the margin. So, both the labeled and
unlabeled data play a dominant role for finding the separating hyperplane. To
this end, earlier methods [2,14] used the following optimization formulation

arg min
w,b

1
2

‖w‖2 + C

L∑

i=1

H1(yi(w�xi + b)) + C∗
L+U∑

i=L+1

H1(
∣∣w�xi + b

∣∣), (2)

where the function H1(t) = max(0, 1 − t) is the classical Hinge loss plotted
in Fig. 1, and C(C∗) is a user defined parameter that controls the weight of
errors associated to the labeled (unlabeled) data samples. The loss function for
unlabeled data is shown in Fig. 2(a). It turned out the TSVM formulation given
in (2) has the potential to assign all unlabeled samples to only one of the classes
with a very large margin, which yields a poor classification accuracy. In order to
solve this problem, a balancing constraint that enforces the unlabeled data to
be assigned to both classes based on the same fraction of labeled data samples
is introduced in [14]. Chapelle and Zien [2] used the following relaxed balancing
constraint, which we also use in this study to create balanced binary hash codes

1
U

L+U∑

i=L+1

(w�xi + b) =
1
L

L∑

i=1

yi. (3)

Collobert et al. [3] replaced the symmetric Hinge loss of unalabeled points
with the symmetric Ramp loss defined as

SRs(t) = Rs(t) + Rs(−t), (4)

where Rs(t) = min(1 − s,max(0, 1 − t)) is the Ramp Loss function illustrated
in Fig. 1. Here −1 < s ≤ 0 is a parameter that must be set by the user.



Towards Category Based Large-Scale Image Retrieval 625

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

Rs(t) = H1(t) − Hs(t) H1(t) = max(0, 1 − t) −Hs(t) = −max(0, s − t)

Fig. 1. The illustration of the Ramp loss function, Rs(t) = H1(t) − Hs(t), where
Ha(t) = max(0, a − t) is the classical Hinge loss. Here, we set s = −0.20.

It should be noted that the loss functions for labeled and unlabeled data are
not in the same range as shown in Figs. 1 and 2. For the symmetric Ramp loss
used for unlabeled data, a sample can introduce at most a limited amount of
cost value no matter of its position with respect to margin in the input space
(the loss can be maximum 0.8 when s is set to −0.2). However, there is no
bound for the Hinge loss used for labeled samples, e.g., a single outlying point
farther from the margin can yield to a large loss. Therefore, the labeled outlying
points – the samples that are misclassified outside the margin – start to play
a dominant role in determining the separating hyperplane. As we mentioned
earlier, labels can be very noisy in image retrieval applications, which aggravates
the problem. To ameliorate this drawback, we interchange the convex Hinge loss
with a more robust non-convex Ramp loss function. The Ramp loss also bounds
the maximum amount of loss similar to the symmetric Ramp loss function and
this helps to suppress the influence of misclassified examples. The superiority of
the Ramp loss over the Hinge loss for supervised SVM training is well-proven
and demonstrated in [4], so we adopt it to transductive learning here.

After these revisions, our robust TSVM method solves the following problem

arg min
w,b

1
2

‖w‖2 + C

L∑

i=1

Rs(yi(w�xi + b)) + C∗
L+U∑

i=L+1

SRs(w�xi + b)

s.t.
1
U

L+U∑

i=L+1

(w�xi + b) =
1
L

L∑

i=1

yi.

(5)

To use the symmetric Ramp loss function defined for unlabeled data samples,
each unlabeled sample appears as two examples labeled with both negative and
positive classes. More precisely, we create the new samples as follows

yi = + 1, i ∈ [L + 1, . . . , L + U ] ,
yi = − 1, i ∈ [L + U + 1, . . . , L + 2U ] ,
xi = xi−U , i ∈ [L + U + 1, . . . , L + 2U ] . (6)
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Fig. 2. Loss functions used for unlabeled data: (a) H1(|t|) = max(0, 1 − |t|), (b) The
symmetric Ramp loss, SRs(t) = Rs(t) + Rs(−t). Here, we set s = −0.20.

Then, by using the equations Rs(t) = H1(t)−Hs(t) and SRs(t) = Rs(t)+Rs(−t),
the above cost function without constraint can be written as

J(θ) = Jconvex(θ) + Jconcave(θ), (7)

where

Jconvex(θ) =
1
2

‖w‖2 + C

L∑

i=1

H1(yi(w�xi + b)) + C∗
L+2U∑

i=L+1

H1(yi(w�xi + b)),

(8)

and

Jconcave(θ) = −C

L∑

i=1

Hs(yi(w�xi + b)) − C∗
L+2U∑

i=L+1

Hs(yi(w�xi + b)). (9)

The above cost function (7) is not convex but it can be decomposed into
a convex (8) and concave (9) part, so we can apply concave-convex procedure
(CCCP) [33] to solve the problem. By employing CCCP, the minimization of
J(θ) with respect to θ = (w, b) can be achieved by iteratively updating the
parameter θ by the following rule

θt+1 = arg min
θ

(Jconvex(θ) + J ′
concave(θ

t)θ), (10)

under the constraint 1
U

∑L+U
i=L+1(w

�xi + b) = 1
L

∑L
i=1 yi.

After some standard derivations given in Appendix (available at http://mlcv.
ogu.edu.tr/pdf/appendix.pdf), the resulting final robust TSVM method can be
summarized as in Algorithm 1. It should be noted that the optimization problem
that constitutes the core of the CCCP is convex. Instead of taking dual of this
convex problem and solving it with a dual QP solver as in [3], we consider the
primal problem and use SG algorithm given in Algorithm 2 to solve it. Thus,
the proposed method scales well with large-scale data. To initialize the method,
we use supervised linear SVM trained with labeled data samples only.

http://mlcv.ogu.edu.tr/pdf/appendix.pdf
http://mlcv.ogu.edu.tr/pdf/appendix.pdf
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Algorithm 1. The Robust Transductive Support Vector Machines (RTSVM)

Initialize θ0 = (w0, b0), t = 0, ε1 > 0, ε2 > 0
Compute

β0
i = yi

∂Jconcave(θ)
∂fθ(xi)

=

⎧
⎨

⎩

C, if yi((w
0)�xi + b0) < s and 1 ≤ i ≤ L

C∗, if yi((w
0)�xi + b0) < s and L + 1 ≤ i ≤ L + 2U

0, otherwise.

while ||wt+1 − wt|| ≥ ε1 or ||βt+1 − βt|| ≥ ε2 do

– Solve the following convex minimization problem by using SG algorithm given
in Algorithm 2

arg min
w,b

1
2

‖w‖2 + C
∑L

i=1 H1(yi(w
�xi + b)) + C∗∑L+2U

i=L+1 H1(yi(w
�xi + b)) +

∑L+2U
i=1 βt

iyi(w
�xi + b)

such that 1
U

∑L+U
i=1 (w�xi + b) = 1

L

∑L
i=1 yi ;

– Set wt+1 = w, bt+1 = b;

– Compute

βt+1
i =

⎧
⎨

⎩

C, if yi((w
t+1)�xi + bt+1) < s and 1 ≤ i ≤ L

C∗, if yi((w
t+1)�xi + bt+1) < s and L + 1 ≤ i ≤ L + 2U

0, otherwise.

– Set t = t + 1;

end while

2.2 Building Class Hierarchies

We use only labeled data to create class hierarchies. Assume that we are given
some classes and corresponding labeled samples for each class (these are created
by random selection of samples from each class or random selection of classes
to create more independent hash functions). We use a binary hierarchical tree
(BHT) that divides the image classes into two groups until each group consists of
only one image class. In this setup, accuracy depends on the tree structure that
creates well-balanced separable image class groups at each node of the tree. To
this end, we use the Normalized Cuts (NCuts) algorithm of Shi and Malik [29]
to split image classes into two groups (called positive and negative groups) since
NCuts clustering algorithm maps the data samples into an infinite-dimensional
feature space and cuts through the data by passing an hyperplane through the
maximum gap in the mapped space [25]. In other words, it clusters the data
into two balanced groups such that the margin between them is maximized. In
our case, we must split image classes (not the individual image samples) into
two groups. Therefore, we need to replace image data samples with image data
classes. So, we approximate each class with a convex hull and use the convex
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Algorithm 2. Stochastic Gradient Based Solver with Projection

Initialize
w1, b1, T > 0, λ0 > 0, ε > 0
Description:

for t ∈ 1, ..., T do
λt ← λ0/t;
for i ∈ randperm(L + 2U) do

– Compute sub-gradients

gt =

{−yiC(C∗)xi + βiyixi, if yi(w
�
t xi + bt) ≤ 1

βiyixi, yi(w
�
t xi + bt) > 1.

ht =

{−yiC(C∗) + βiyi, if yi(w
�
t xi + bt) ≤ 1

βiyi, yi(w
�
t xi + bt) > 1.

– Update hyperplane parameters
w̃t ← wt − λt

L+2U
(wt + gt)

b̃t ← bt − λt
L+2U

ht

– Project parameters onto the feasible set imposed by the constraint
(wt, bt) = P(w̃t, b̃t)

end for
if (t > 2) & (‖wt − wt−1‖ < ε), break

end for

hulls distances between image classes to create similarity matrix. It should be
noted that convex hulls are largely used to approximate classes, e.g., the linear
SVM uses convex hull modeling. In this setting, the edges, wij , of the similarity
matrix W is computed as

wij =

{
exp(−d(Hconvex

i ,Hconvex
j )/t), if i �= j

0, otherwise
(11)

where t is the width of the Gaussian kernel function, and it must be set by the
user. Note that the size of the similarity matrix is C ×C where C is the number
of classes. Thus, it is a much smaller sized matrix compared to other methods
(mentioned at Introduction) using individual image samples. Then, we cluster
the image classes into two groups by solving the generalized eigenvalue problem

L = λDa, (12)

where L = D − W is the Laplacian matrix and D is a diagonal matrix whose
entries are the column (or row) sums of W. Finally, the components of the eigen-
vector a∗ corresponding to the second smallest eigenvalue of (12) are thresholded
to split image classes into two clusters, i.e.,

{
yi = −1, if a∗

i ≥ 0
yi = +1, if a∗

i < 0
(13)

Figure 3 illustrates the hierarchy obtained for 10-classes of CIFAR10 dataset. At
the top node, it successfully separates man made vehicles (airplane, automobile,
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14

Fig. 3. Binary Hierarchical Tree obtained for CIFAR10 dataset using convex hull mod-
eling of the classes. Each image represents an object class where it comes from.

ship, and truck) from the animals (bird, cat, deer, dog, frog, and horse). It also
successfully groups visually similar groups such as automobile-truck, deer-horse,
and airplane-ship together. So, our method produces both well-separated and
well-balanced groups of classes, which is crucial for successful balanced binary
hash codes. It should be noted this hierarchy is obtained automatically just by
using the image feature samples and their labels. As mentioned earlier, more than
one label can be assigned to image samples, e.g., assume that an image sample
contains both people and car. In such cases, we treat groups with multiple labels
as a new category and manually set the similarities between the related classes
(people and car classes) to maximum. By doing so, we postpone to separate
these related classes by grouping them as similar classes. So, they appear at the
lower nodes of the class hierarchy where we can do a finer separation between
them.

2.3 Creating Binary Hash Codes

Once we split image classes into two groups at each node of the BHT, we run
TSVM algorithm by using both labeled and randomly chosen unlabeled data
to find the separating hyperplanes. Then these hyperplanes can be used in two
ways to produce hash codes. In the first place, we can use the following rule to
create hash codes

hi(x) =

{
1 when w�

i x + bi ≥ 0
0 when w�

i x + bi < 0
(14)

where wis are the returned hyperplane normals and bis are the corresponding
bias parameters. Each BHT produces C−1 hash functions where C is the number
of classes used to build BHT. So, the total number of hash bits will be C − 1
times the number of BHTs. As a second choice, we can use hyperplane normals
to embed the data samples onto a more discriminative space and then use an
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Euclidean distance preserving hashing method (e.g., LSH) in the embedded space
(this can be seen as metric learning followed by using a hashing method that
approximates the learned distance metric). Lastly, we use Hamming distance to
find the distances between hash codes, but weighted Hamming distances using
hierarchy or margin can be also be used for this goal.

3 Experiments

Here, we conduct image retrieval experiments on three datasets. We compared
the proposed hashing method, TSVMH-BHT (Transductive Support Vector
Machine Hashing using Binary Hierarchical Tree), with both the supervised
and unsupervised hashing methods: LSH [6], PCA-RR (Principal Component
Analysis – Random Rotations) [7], PCA-ITQ (Principal Component Analysis
– Iterative Quantization) [7], SKLSH (Shift-Invariant Kernel Locality Sensitive
Hashing) [26], SH (Spectral Hashing) [31], SHD (Spherical Hamming Distance)
[10], and SDH (Supervised Hashing) [21]. In addition to these hashing methods
we also report the results obtained using PQ (Product Quantization) method
of Jegou et al. [12] as a baseline. We also give the best reported accuracies of
recent hashing methods using deep neural networks.

3.1 Experiments on CIFAR10 Dataset

Cifar10 dataset (available at http://www.cs.toronto.edu/∼kriz/cifar.html)
includes 60 K 32 × 32 small images of 10 objects: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck. 50 K samples are used as training
and they are split into 5 batches whereas the remaining 10 K samples are used
for testing. We first used gray-scale GIST descriptors computed at three dif-
ferent scales (8,8,4), resulting in 320-dimensional image feature vectors as in
[7]. But, the nearest-neighbor accuracy of this primitive feature representation
was too small so we also used 16384 dimensional fisher vectors (FVs) and 4096
dimensional CNN features which significantly outperformed GIST descriptors
in our experiments. We used a similar setup as in [28] to extract FVs. More
precisely, we extracted many descriptors per image from 12 × 12 patches on
a regular grid every two pixels at 3 scales. The dimensionality of the tested
descriptors is reduced to 80 by using Principal Component Analysis (PCA), and
128-component Gaussian mixture model (GMM) components are used to obtain
FVs. To extract CNN features, all images are first resized to 256 × 256 and then
we used Caffe [13] implementation of the CNN described by Krizhevsky et al.
[16] by using the identical setting used for ILSVRC 2012 classification with the
exception that the base learning rate was set to 0.001. We used 80 % of the full
training data for training and the remaining 20 % as validation to train the CNN
classifier. The number of iterations is set to 120 K.

For all methods, we used the full training data to create hash functions, but
we use only the samples in each batch to find the Hamming distances from the
test samples. So, the results are averages over the results of 5 trials obtained

http://www.cs.toronto.edu/~kriz/cifar.html
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Table 1. mAP Scores (%) for CIFAR 10 dataset using GIST and FVs

GIST 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 37.20 39.67 41.27 41.78

SDH 34.51 36.64 37.88 38.59

LSH 23.10 24.57 26.25 26.38

SH 19.45 19.69 19.54 19.19

SHD 21.81 24.02 25.82 27.14

SKLSH 15.23 17.29 19.43 21.26

PCA-ITQ 24.51 26.08 27.10 28.05

PCA-RR 16.70 18.77 20.08 21.73

PQ 27.10 27.60 28.10 28.50

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 46.74 51.37 53.94 55.10

SDH 31.66 33.52 34.62 35.36

LSH 19.43 20.57 20.53 21.57

SH 19.60 20.43 21.44 21.86

SHD 19.47 21.91 24.09 25.77

SKLSH 11.10 11.38 11.93 12.68

PCA-ITQ 24.59 26.03 27.34 28.05

PCA-RR 23.07 24.53 25.83 36.76

PQ 24.30 23.80 22.90 22.00

Table 2. mAP Scores (%) for CIFAR 10 dataset using CNN features

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 79.97 81.89 82.45 82.79

SDH 83.05 83.59 83.77 83.83

LSH 73.98 74.87 75.56 76.40

SH 65.74 67.15 65.04 60.52

SHD 65.41 66.38 64.83 64.21

SKLSH 40.79 56.33 64.17 67.85

PCA-ITQ 80.78 81.27 81.86 82.05

PCA-RR 74.19 77.15 78.46 79.15

PQ 79.88 80.30 80.40 80.65

[19] 55.80 – – – – – –

[32] 52.10 – – – – – –

[35] 62.53 62.81 – – – –

[36] ≈86.0 ≈86.0 ≈86.0 – –
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for each training batch. We used randomly chosen 600 labeled samples and 900
unlabeled samples from each class to train our method. It should be noted the
total training set size is 15 K and supervised hashing methods and unsupervised
hashing methods that build dense similarity (or kernel) matrix cannot be used
directly even for this moderate sized dataset. Therefore, randomly chosen anchor
points are used in SDH [21]. The default value for the number of anchor points
is 300 for SDH, but we increased it to 500 for better accuracies.

The mAP (mean Average Precision) scores using class labels as ground truth
are given in Table 1 and Fig. 4 illustrates Precision curves obtained for different
bit sizes. The mAP scores are obtained by using top 500 returned images as a
function of code size as in [7]. [7] also reports mAP scores using the Euclidean
distances as ground truth, but this is wrong in our opinion since the performance
of the Euclidean distance is very poor: Euclidean Distance in the original input
space yields to 27.15 % mAP for GIST, 28.22 % for FVs and 76.90 % for CNNs.
As can be seen in Table 1, both supervised methods SDH and TSVMH-BHT
dominate other unsupervised methods for GIST and FVs and our proposed
method TSVMH-BHT achieves the best accuracies. The difference between the
accuracies of these two methods is small for GIST but our proposed method
significantly outperforms SDH for FVs. The mAP score for the proposed method
is approximately 20 % better than the second best method SDH when 256 bits
are used, which undoubtedly shows that the proposed method is better suited
for high-dimensional visual image representations.

Table 2 shows the accuracies obtained using CNN features and some recently
reported accuracies obtained using deep neural networks in the literature. It
should be noted that the CNN features we extracted are different than the
ones obtained by the methods given under PQ method in Table 2 since these
methods are trained end-to-end fashion. Yet our proposed method outperforms
all of them except the one given in [36]. SDH slightly beats our proposed method.
The unsupervised PCA-ITQ also works well. [20] reports 89.4 % mAP accuracy
for Cifar10 dataset. We verified this result by using their pre-trained models.
But, their training files show that they used test data as validation data to train
the CNN network, which is a violation of a fair testing procedure. Thus, we
omitted this result in our table.

3.2 Experiments on NUS-WIDE Dataset

The NUS-Wide dataset has approximately 270 K images collected from Flickr.
Each image is annotated with one or multi labels in 81 semantic classes. To
comapre our results to the literature, we follow the settings in [19,22,32,36] and
we use the images associated with the 21 most frequent labels. The number of
final training images is 96638 and the number of test images is 64704. Two images
are considered as a true match if they share at least one common label as in [19,
22,32,36]. We used both FVs and CNN feature vectors for representing images.
To obtain CNN feaures we first resized images to 256×256 as before and used the
same setting we used in Cifar10. Note that this is a multi-label dataset, thus we
selected images with non-overlapping unique labels to train the classifier network.
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(a) Prec. for GIST @64 bits (b) Prec. for GIST @128 bits (c) Prec. for GIST @256 bits

(d) Prec. for FVs @64 bits (e) Prec. for FVs @128 bits (f) Prec. for FVs @256 bits

(g) Prec. for CNN @64 bits (h) Prec. for CNN @128 bits (i) Prec. for CNN @256 bits

Fig. 4. Comparisons of the hashing methods on CIFAR10 dataset using labels as
ground truth.

But, results were very low compared to the ones obtained for FVs. We believe
that the results were low mainly because the loss function is not designed for
multi-label data. The noisy labels was another reason for the low accuracy. Thus,
we used pre-trained Caffe model of ILSVRC 2012 to extract 4096-dimensional
CNN features. Results are given in Table 3. Using Euclidean distance with full
features yields to 52.20 % mAP for FVs and 69.65 % for CNN features. As in the
previous case, hashing codes obtained CNN features yield to better accuracies.
The proposed method achieves the best accuracies in all cases except for 32 bits
and improves the Euclidean distance metric for 64 bits and above. The reported
results for the best performing method [36] on Cifar10 are very low for NUS-
WIDE. To the best our knowledge, our results are the best published mAP scores
for NUS-WIDE dataset. As before, the performance difference is very significant
for FVs. We believe that our better accuracies compared to the other state-of-art
methods are due to the using robust Ramp loss for noisy labels.

3.3 Experiments on MNIST Dataset

The MNIST1 digit dataset consists of 70 K hand-written digit samples, each of
size 28 × 28 pixels. For this dataset, 60 K samples are allocated for training and
1 Available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Table 3. mAP Scores (%) for NUS-WIDE dataset using FVs and CNN features

FVs 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 53.97 57.73 61.76 63.99

SDH 54.20 56.41 58.14 58.93

LSH 30.25 36.27 39.50 43.20

SH 46.31 45.97 47.60 48.51

SHD 47.08 50.09 52.41 52.89

SKLSH 33.24 35.25 36.50 37.68

PCA-ITQ 50.41 51.95 52.63 53.17

PCA-RR 49.89 51.17 52.09 52.95

PQ 30.75 31.74 33.49 40.19

CNN 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 68.58 72.90 74.64 76.21

SDH 69.09 72.41 73.71 74.75

LSH 66.78 68.91 69.47 69.50

H 58.03 60.08 61.31 64.41

SHD 61.60 64.23 64.83 64.66

SKLSH 39.65 43.37 47.47 53.65

PCA-ITQ 68.62 70.91 72.48 73.55

PCA-RR 65.82 68.27 70.57 71.60

PQ 71.07 71.93 72.20 72.17

[19] 71.30 – – – – – –

[32] 62.90 – – – – – –

[35] 62.64 63.82 – – – –

[36] ≈52.0 ≈52.5 ≈54.0 – –

Table 4. mAP Scores (%) for MNIST Digit dataset

Methods 32 bits 64 bits 128 bits 256 bits

TSVMH-BHT 87.68 89.15 89.07 89.13

SDH 81.29 85.37 86.10 86.26

LSH 72.15 74.40 79.30 82.43

SH 70.44 72.28 73.87 74.15

SHD 67.86 74.06 75.98 76.58

SKLSH 31.36 47.12 63.04 74.08

PCA-ITQ 79.55 83.37 85.50 86.23

PCA-RR 67.91 75.38 79.16 83.05

PQ 85.40 85.40 85.20 85.40
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the remaining 10 K samples are reserved for test. We use gray-scale values as
visual features, thus dimensionality of the sample space is 784. We use randomly
chosen 5000 labeled samples and 800 unlabeled samples from each class to train
the proposed method. It should be noted that test samples are not used as unla-
beled samples during training. Results are given in Table 4. Euclidean Distance
in the original input space yields to 85.95 % mAP score which is quite satisfac-
tory. Yet, our proposed method gives better accuracies than NN for all bit sizes.
SDH is the second best performing method and it can improve NN accuracy
only for 128 bits and above.

4 Conclusion

In this study, we discussed the fact that the Euclidean distances in the high-
dimensional feature spaces can be misleading, thus hashing methods approximat-
ing the Euclidean distances may perform poorly. To counter this, we proposed
a hashing method that does both metric learning and fast image search. To this
end, we used binary hierarchical trees and TSVM classifier. We proposed a more
robust TSVM method designed for especially image retrieval applications. Using
TSVM is extremely important here since it also exploits the unlabeled data that
is neglected by many related hashing and distance metric learning methods.

We tested the proposed method on three image retrieval datasets. The results
with high-dimensional FV features were particularly promising: Our method
significantly outperformed all other tested hashing methods with FVs. We also
obtained state-of-art results using CNN features on noisy labeled NUS-WIDE
dataset which shows the importance of using our robust Ramp loss function. We
also compared the proposed method to the recently published hashing methods
using deep neural networks. These methods emphasize the importance of simul-
taneous learning of image features and binary codes, yet the results prove that
this issue has not been resolved yet since majority of these deep neural networks
methods yield very low accuracies compared to our method which learns hash
codes independently from the pre-computed CNN features.
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