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Abstract

We introduce a large margin linear binary classification framework that approximates each class with a hyperdisk –
the intersection of the affine support and the bounding hypersphere of its training samples in feature space – and then
finds the linear classifier that maximizes the margin separating the two hyperdisks. We contrast this with Support
Vector Machines (SVMs), which find the maximum-margin separator of the pointwise convex hulls of the training
samples, arguing that replacing convex hulls with looser convex class models such as hyperdisks provides safer margin
estimates that improve the accuracy on some problems. Both the hyperdisks and their separators are found by solving
simple quadratic programs. The method is extended to nonlinear feature spaces using the kernel trick, and multi-class
problems are dealt with by combining binary classifiers in the same ways as for SVMs. Experiments on a range of
data sets show that the method compares favorably with other popular large margin classifiers.

Keywords: Large margin classifier, classification, convex approximation, hyperdisk, kernel method, Support Vector
Machine.

1. Introduction

Large margin classifiers are successful in many fields
including computer vision, text analysis, biometrics and
bioinformatics [10, 18, 7, 11]. The prototypical method
of this kind, the Support Vector Machine (SVM) [11],
finds a linear hyperplane in feature space that maxi-
mizes the “margin” – the Euclidean distance between
the hyperplane and the closest training samples of each
class. This can be formulated as a quadratic program
and solved efficiently by various methods [36, 20, 15,
47]. The solution is sparse in the sense that once the
closest points have been found it depends only on them.
Owing to the fact that they try to ensure the widest
possible margin for error, the resulting classifiers of-
ten have very good practical performance, especially in
cases where the classes are in fact linearly separable. If
not, the separation can often be improved by making the
classifier nonlinear using the kernel trick.

However SVM’s are not perfect. Roughly speaking,
the setting for which they were designed is one in which
the classes can be modeled as non-overlapping convex
clouds in a (possibly kernelized) feature space, which
can thus be separated using affine hyperplanes. If the
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clouds overlap significantly, statistically based classi-
fiers are likely to be more appropriate than geometric
ones such as SVM. But even if there is no overlap, train-
ing SVMs from samples is problematic in that it can
seriously underestimate the true extent of the classes in-
volved. SVM is equivalent to approximating each class
with the convex hull of its training samples (the tightest
possible convex approximation), then finding the best
linear separator of the resulting convex hulls [3, 12].
Unfortunately, in high-dimensional spaces, the convex
hull of any sub-exponential number of training samples
from a convex set typically has a volume that is expo-
nentially smaller than that of the parent set. For exam-
ple, this is the case for the simplex spanning any set of
d+1 points sampled from an ellipsoid or box in d dimen-
sions: the overwhelming majority of the set lies outside
the given simplex, and a new sample from it will almost
surely lie well outside the simplex in some direction.
Similarly, for Gaussians, the convex hull of any proba-
ble placement of a sub-exponential number of samples
contains exponentially little of the probability mass.

To limit the effects of this endemic underestimation
of class boundaries, it seems useful to develop max-
imum margin classifiers that are based on somewhat
looser convex approximations. Here we focus on a par-
ticular example of this: classifiers based on the mini-
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mal bounding hyperdisks of the classes. By minimal
bounding hyperdisk we mean the disk-shaped set that is
produced by intersecting the affine hull of the training
samples (the smallest affine subspace containing them)
and their bounding hyperball (the smallest-volume hy-
persphere containing them). Fig. 1 illustrates the hoped-
for gains. We will argue that hyperdisks have properties
that make them particularly well-suited to approximat-
ing classes in high dimensional feature spaces: they are
relatively simple models that are easy to estimate and
that have compact parametrizations; they provide com-
paratively tight bounds on the extents of the classes that
remain close to the spirit of SVM; distance computa-
tions are efficient so the final classifiers are easy to find;
and being Euclidean constructs it is straightforward to
kernelize them.

Other simple convex class models that could be used
include affine hulls, bounding hyperspheres, and bound-
ing hyper-ellipsoids. The maximum margin affine hull
case is studied in [10]. Despite the looseness of its class
approximations, it turns out to give surprisingly good
performance in many high-dimensional problems. It is
also a special case of the Least Squares [43] and Prox-
imal [16] SVM’s (i.e. of linear least squares regression
of the y = ±1 class labels from the feature vectors),
in which the classes lie in disjoint affine hulls and the
weight regularization is deactivated so that y is predicted
perfectly on the training set. Bounding hyperspheres
are used in the one-class SVM [45] and its variants.
They are useful models but again their approximations
are quite loose. Bounding hyper-ellipsoids are poten-
tially tighter models than bounding hyperdisks, but they
have many more parameters owing to the need to rep-
resent the full covariance matrix. The Minimax Proba-
bility Machine [25] and its variants [13] are alternative
approaches that use covariance estimates to find maxi-
mum margin linear separators. Although such models
are very powerful in low dimensions, in high dimen-
sional problems they typically lead to overfitting owing
to the number of free parameters. Here we will focus
on hyperdisks because we believe that they offer a good
compromise between complexity and tightness of ap-
proximation.

A related stream of work studies nearest neighbour
classifiers based on distances to convex class models
[50, 24, 9, 17]. For example, distance to affine hull mod-
els have been proposed for isolated word and hand writ-
ten digit classification [17, 19, 24]. The distance to hy-
perdisk model is studied in [8]. Distance to hypersphere
based models have been constructed by [27] (using
the distance for probability estimation) and [21] (using
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Figure 1: In high dimensions, the convex hull of the training sam-
ples is typically a significant underestimate of the true extent of the
class. This often causes the corresponding maximum margin classi-
fier (SVM) to overestimate the margin and misestimate the separation
direction. Hyperdisk classifiers adopt looser class models, so they
sometimes provide better estimates of the true separators and margins.

SVDD projection for distance calculation). Distance-
based methods can also be localized – by constructing
the model on the fly from the k nearest neighbours of the
test sample, c.f . [50] in the affine/convex case – and ker-
nelized, c.f . [9]. In general, the relative ranking found
for the different distance-based models reflects that ad-
vocated here for the corresponding margin based ones
[8]: hypersphere models tend to be too loose, giving
poor performance; affine hull models give good results
in some cases but not all; the intersection of affine hulls
and hyperspheres, hyperdisks, gives uniformly good re-
sults; and convex hulls give good results as well, but are
often outperformed by hyperdisks.

Although nearest convex model methods perform
well in many applications, their philosophy is somewhat
different from the margin-based one advocated here.
Each class is modeled independently, making it easy
to update the model to include new samples, but the
classifiers are not precompiled so distance-to-convex-
model computations are required for each test example
at run time. Moreover, distance-based classifiers typi-
cally generate piecewise polynomial inter-class separa-
tors, so they may be more sensitive to noise than the
corresponding large margin approaches which use lin-
ear separators. For example, the nearest-hyperdisk rule
implicitly separates classes by piecewise quartic hyper-
surfaces, and a nearest convex hull one by piecewise
quadratic ones.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the proposed method, giving two ap-
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proaches for the important task of finding the maximum
margin separator of two hyperdisks. Section 3 discusses
the issue of sparsity. Section 4 presents our experimen-
tal results and Section 5 concludes the paper. An early
version of the work presented here appeared in [6].

2. Method

2.1. Motivation and Problem Setting

Consider a binary classification problem with train-
ing data {xi, yi}, i = 1, ..., n, yi ∈ {−1,+1}, xi ∈ IRd. As
mentioned above, SVM can be viewed as a method that
first approximates each class with the convex hull of its
training samples, then finds the hyperplane that maxi-
mizes the separation (margin) between the two hulls [3].
The convex hull consists of all points that can be ex-
pressed as convex combinations of the training samples
(i.e. linear combinations with nonnegative coefficients
summing to 1). If {xci}i=1,...,nc

are the samples for class
c, the convex hull is

Hconvex
c =

{
x =

∑nc
i=1αixci

∣∣∑nc
i=1αi = 1, αi ≥ 0

}
. (1)

Given the hulls, their separating hyperplane can be de-
termined by finding a pair of points, one in each hull,
that minimizes the distance between the hulls and tak-
ing the orthogonal bisector of the line segment joining
them [3, 12].

The convex hull is the smallest convex set contain-
ing the samples. Our method is based on a somewhat
looser convex approximation, the minimal bounding hy-
perdisk, which is the intersection of the samples’ affine
hull and their minimal bounding hypersphere in the in-
put space. Equivalently, it is their minimum bounding
hypersphere within the subspace spanned by their affine
hull. The affine hull – the smallest affine subspace con-
taining the samples – is found by relaxing the positivity
constraint in (1):

Haffine
c =

{
x =

∑nc
i=1αixci

∣∣∑nc
i=1αi = 1

}
. (2)

Although affine hulls are unbounded and hence nec-
essarily rather loose models of the classes, large mar-
gin classifiers based on separating them work surpris-
ingly well in many high-dimensional problems with
limited numbers of samples – often better than SVMs
[50, 10, 7]. This is one indication that convex hull based
methods may be too tight to be realistic. Nevertheless,
it seems useful to tighten the affine hull approximation
if we can do so without adding too many parameters to
the model. The hyperdisk is our way of doing this. By
restricting the model to be the bounding hypersphere

Class region Bounding hyperdisk

of training samples

Affine hull of training samplesBounding hypersphere

Figure 2: Hyperdisk model of a class is the intersection of affine hull
and bounding hypersphere of class samples.

of the training samples within the affine hull, we pro-
vide better localization of the class within the affine hull
without losing the simplicity and stability of the affine
approach. The resulting model may both underestimate
and overestimate the true extent of the (convex) class
– see Fig. 2 – but it often does so less severely than
the convex hull, especially in high dimensions. Hy-
persphere models are useful for outlier detection [45].
They have also been proposed as nearest-convex-model
type classifiers [21, 27, 34, 53], but our previous studies
show that in such applications they are outperformed by
other convex models such as convex hulls, affine hulls
and hyperdisks [8]. This is why we use hyperdisks not
simply hyperspheres here.

The minimal bounding hyperdisk of a class can be
written as

Hdisk
c =

{
x =

∑nc
i=1αixci

∣∣∑nc
i=1αi = 1, ‖x − sc‖ ≤ rc

}
.

(3)
where sc is the center of the hyperdisk and rc is its ra-
dius. These parameters can be found robustly by solving
the quadratic program [45]

min
sc,rc,ξi

(
r2

c + γ
∑

i ξi
)

s.t. ||xci − sc||
2 ≤ r2

c + ξi, ξi ≥ 0, i = 1, ..., nc

(4)

or its dual

min
α

(∑
i, j αiα j

〈
xci, xc j

〉
−
∑

i αi 〈xci, xci〉

)
s.t.

∑
i

αi = 1, ∀i 0 ≤ αi ≤ γ, i, j = 1, ..., nc,
(5)

where 〈−〉 denotes the inner product between samples.
Here, the αi are Lagrange multipliers for the center sc =∑

i αixci and γ ∈ [1/nc, 1] is a ceiling parameter that can
be set to a finite value to eliminate overdistant points as
outliers. The corresponding radius is rc = ||xci − sc|| for
any xci for which 0 < αi < γ. In d dimensions, at most
d + 1 of the αi are typically nonzero.

To find the maximum margin separator between two
(non-intersecting) hyperdisks, we find a closest pair of
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points between them (one in each disk) and take the or-
thogonal bisector of the line segment joining them. If
the points are x+ and x−, the bisector is 〈w, x〉 + b = 0
where

w =
x+ − x−
‖x+ − x−‖

(6)

b = − 〈w, (x+ + x−)/2 〉 . (7)

We propose two methods for finding such points. The
first [7] adopts a linear parametrization and reduces the
problem to 2D Newton root-finding, the second formu-
lates it as a quadratically constrained quadratic convex
program.

2.2. Closest Points Using Newton Root Finding
We begin by rewriting the affine hull of each class c

as {x = Ucvc + µc | vc ∈ IRl}, where µc = 1
nc

∑
i xci is

the mean of the samples (or any other reference point
in the hull) and Uc is an orthonormal basis for the di-
rections spanned by the affine subspace. The vector vc

contains the reduced coordinates of the point within the
subspace, expressed with respect to the basis Uc. For
example, if we estimate the hull using orthogonal least
squares, the U-matrix of the thin Singular Value De-
composition (SVD) of [xc1 − µc, ..., xcnc − µc] can be
used as Uc, where ‘thin’ means that we take only the
columns of U corresponding to “significantly non-zero”
singular values λk. l is the number of these singular
values. Discarding the near-zero singular values corre-
sponds to disregarding directions that appear to be pre-
dominantly “noise”. If the data may be polluted with
outliers, the hull can be estimated with a robust proce-
dure such as the L1 norm methods of [14, 22], but a
Uc,µc parametrization still exists.

Given the center and the radius of the bounding hy-
persphere of each class from (5), we find the closest
point pair v+, v− between the disks by minimizing the
inter-point distance

min
v+,v−
‖(U+ v+ + s+) − (U− v− + s−)‖2 (8)

subject to the within-disk constraints ‖v+‖
2 ≤ r2

+ and
‖v−‖2 ≤ r2

−. Introducing Lagrange multipliers λ+−1 and
λ−−1 for the two inequality constraints, this reduces to
solving the linear system(

λ+ I −U>+U−
−U>−U+ λ− I

)(
v+

v−

)
=

(
−U>+
U>−

)
(s+−s−) (9)

subject to λ+ ≥ 1, λ− ≥ 1. (We have added one to the
Lagrange multipliers to account for the U>± U± = I terms
on the diagonal of the matrix). We can find (λ+, λ−) ≥ 1

such that ‖v±‖2 ≤ r2
± efficiently with a 2D Newton root-

finding process analogous to the 1D one used by eigen-
value finders. First, note that by changing coordinates to
the principal angle basis between the supporting affine
subspaces of the hyperdisks, and hence diagonalizing
the off-diagonal blocks of the matrix, the linear system
can be reduced to a set of decoupled 2×2 subsystems.
The SVD of U>+ U− gives the necessary linear bases,
with the singular values being the cosines of the cor-
responding principal angles. (In cases where there is
no principal angle or the angle is 90 degrees, the equa-
tions separate further to sets of two 1×1 ones). For any
given (λ+, λ−), we can solve these equations componen-
twise in closed form to find (v+, v−). To find (λ+, λ−),
we therefore run a Newton root finding iteration on the
2D equation (‖v+‖

2, ‖v−‖2) = (r2
+, r

2
−) with (v+, v−) as

functions of (λ+, λ−). This holds for (λ+, λ−) > 1. If
either λ+ or λ− becomes 1 (indicating that the solu-
tion is interior to the corresponding disk so that the
norm constraint on v is inactive), we use the Newton
method to solve the corresponding 1D equation for the
remaining variable. In either case the process converges
rapidly and reliably, usually within 3-5 iterations. MAT-
LAB code for this is available from the authors. Given
the optimal v±, we reconstruct the corresponding points
x± = U±v± + s± to find the separating hyperplane.

2.2.1. Kernelization
The above method can be kernelized simply by in-

troducing explicit orthogonal coordinates in a suitable
kernel feature space and running the Euclidean affine
hull, hyperdisk and separator finding algorithms in these
coordinates. The feature space must include the train-
ing samples of both classes as the separator depends on
both. Test samples can be classified by mapping them
into this space, which allows the equivalent kernelized
classification rule to be obtained in the input space.

The construction is similar to KPCA [39]. Let φ(·)
be the implicit feature space embedding and k(xi, x j) =〈
φ(xi),φ(x j)

〉
be the corresponding kernel function.

Suppose that we want to project points x onto the affine
hull of a given set of samples {xi}i=1,...,n. Let Φ =

[φ(x1), ...,φ(xn)] be their implicit feature space embed-
ding matrix, K = Φ>Φ = [k(xi, x j)] be their n×n kernel
matrix and kx = Φ>φ(x) = [k(xi, x)] be the n × 1 kernel
vector of x against the samples. The feature space mean
of the samples is µ = 1

nΦ 1n (where 1n is an n-vector
of 1’s). So the matrix of centered sample features is
[φ(x1) − µ, ...,φ(xn) − µ] = ΦΠ, where Π = I − 1

n 1n 1>n
is the orthogonal projection in sample space that imple-
ments subtraction of the mean on Φ. If φ were an ex-
plicit embedding, the thin SVD UDV> of ΦΠ would
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yield an orthogonal basis U = ΦΠV D−1 = ΦA> for the
affine subspace, where A = D−1 V>Π. (D is invertible
because we use a thin SVD containing only the signifi-
cantly non-zero singular values). Although we can not
calculate this SVD explicitly, we can get the same result
by taking the corresponding thin eigendecomposition
VΛV> of the centered kernel matrix K̃ = (ΦΠ)>(ΦΠ) =

ΠKΠ and defining D = Λ1/2, i.e., A = Λ−1/2 V>Π. The
projection of a new sample x onto U coordinates in the
affine hull is simply U>φ(x) = A kx, so the kernelized
classification rule is w>A kx + b > 0. It is also possible
to work in terms of linear spans rather than affine ones,
explicitly subtracting the mean after reduction to U co-
ordinates. The same formulae apply with Π omitted.

2.3. Closest Points Using Quadratically Constrained
Quadratic Programming

We now give an alternative approach to finding the
closest points on the hyperdisks, by solving a quadrat-
ically constrained quadratic program (QCQP). Let X+

and X− denote matrices whose columns are respectively
the positive and negative training samples. As before,
we first compute the hypersphere centers and radii for
both classes. Then, finding the closest points x± on
the two hyperdisks can be written as the following op-
timization problem, where α± are vectors of expansion
weights for x± = X± α±

min
α+,α−

||X+α+ − X−α−||2

s.t.
∑n+

i=1α+i = 1,
∑n−

j=1α− j = 1,

||X+α+ − s+||
2 ≤ r2

+, ||X−α− − s−||2 ≤ r2
−.

(10)

Given the optimal α± and hence x±, the separating hy-
perplane can be found as before.

Letting α ≡
(
α+
α−

)
, X = [X+, −X−] and e± be col-

umn vectors of ones of the appropriate dimensions, the
problem can be rewritten as

min
α
α>Gα

s.t. α>+e+ = 1, α>−e− = 1,

α>+G+α+ − 2α>+X>+s+ + s>+s+ ≤ r2
+,

α>−G−α− − 2α>−X>−s− + s>−s− ≤ r2
−,

(11)

where G = X>X, G+ = X>+ X+ and G− = X>− X−. This
QPQP is convex as both the Hessian G and the con-
straint Hessians G+ and G− are positive semidefinite.

QCQP’s can be transformed into Semidefinite Pro-
grams (SDPs), i.e. optimization problems over the inter-
section of a cone of positive semi-definite matrices with

an affine set [49]. The CVX solver1 uses this approach
but in our simulations with synthetic data, it some-
times failed to find a solution or returned an incorrect
one. We therefore preferred to use the MOSEK solver2,
which always succeeded in finding the correct solution
in our simulations. MOSEK transforms the QCQP into
a Second-Order Cone Program (SOCP). These can be
solved in polynomial time by interior points methods,
which is more efficient than solving an SDP [1]. Re-
cently, more efficient algorithms have been introduced
for solving QCQP problems [44, 48].

If the hyperdisks overlap owing to outliers, two ap-
proaches are possible. Firstly, the ceiling parameters γ
in (5) can be set to values less than 1 to find more com-
pact hyperspheres that exclude the outliers. If this does
not suffice, upper and lower bounds can be enforced on
the coefficients α in (11) to constrain the positions of
the points x±, as in the soft SVM and the convex hull re-
duction method of [3]. In our experiments, setting γ < 1
sufficed to remove the overlap without bounds on the α.

2.3.1. Kernelization
The QCQP algorithm is already expressed in terms

of dot products so it is straightforward to kernelize it.
Given the kernel k(xi, x j) =

〈
φ(xi),φ(x j)

〉
, let Φ+ =

[φ(x+
1 ), ...,φ(x+

n+
)] and Φ− = [φ(x−1 ), ...,φ(x−n− )] be the

implicit matrices of feature vectors of the positive and
negative training sets, and let the corresponding explicit
kernel matrices be K+ = Φ>+Φ+, K− = Φ>−Φ− and
K+− = Φ>+Φ−. Define K =

(
K+ −K+−

−K>+− K−

)
. Let the hy-

persphere centres in feature space be K+β+ and K−β−.
Then the kernelized QCQP becomes

min
α
α>Kα

s.t. α>+e+ = 1, α>−e− = 1,

α>+K+α+ − 2α>+K+β+ + β>+K+β+ ≤ r2
+,

α>−K−α− − 2α>−K−β− + β>−K−β− ≤ r2
−.

(12)

Note that both β+ and β− may be sparse as the cen-
tres depend only on the training points that lie ex-
actly on the sphere. This can be used to reduce the
amount of computation required. Given the weights
α, the classifier is α>+K+x − α

>

−K−x + b > 0 where
b = −(α>+K+α+ + α>−K−α−)/2 and K+x and K−x are the
kernel vectors of the example being classified against
the positive and negative training sets.

1http://cvxr.com/cvx
2http://www.mosek.com
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2.4. Extension to Multi-Class Problems

The hyperdisk method can be extended to multi-class
problems using any of the common strategies devel-
oped for extending binary SVMs. We tested the popular
one-against-one (OAO) and one-against-rest (OAR) ap-
proaches. For a c-class problem, OAR trains c binary
classifiers, each separating one class from the remain-
ing c− 1, and classifies test examples to the class whose
classifier has the highest output. There are only c classi-
fiers, but each needs to be trained on the entire training
set. In contrast, OAO constructs all possible c(c − 1)/2
binary pairwise classifiers for the c classes and classifies
examples to the class that wins the most pairwise deci-
sions. Other strategies such as Directed Acyclic Graphs
[37] and Binary Decision Trees [52, 5] can also be used.

3. Complexity and Sparsity

Although sparsity is not our focus here, like SVMs,
hyperdisk classifiers have intrinsic sparsity proper-
ties. Suppose that two classes are contained in a d-
dimensional affine subspace of (possibly kernelized)
feature space. It is well known that the corresponding
SVM can be specified in terms of at most d + 1 sup-
port points (training examples with nonzero weights).
In fact, if sparse expansion is the goal, any d + 1 points
that span the subspace are sufficient to express any clas-
sifier based on Euclidean geometry (SVM, hyperdisk,
etc.): by using the points to define an orthonormal basis
for the subspace as in section II.B and expressing the
training and test points in terms of this, the classifier(s)
can be constructed and used in explicit Euclidean co-
ordinates. Hence, hyperdisk margin classifiers have the
same (d + 1 basis point) intrinsic complexity bound as
the corresponding SVM. However unlike SVMs, they
essentially always meet this bound, so in practice they
are typically somewhat more complex than the corre-
sponding SVM.

Similarly, if we count irreducible numbers of support
points (ones on which the solution depends) rather than
basis points, d+1 support points are sufficient to specify
a d-dimensional hyperdisk: the hypersphere is defined
by d + 1 or fewer support points, these are affinely in-
dependent, and if necessary additional points can be in-
cluded to make up the d + 1 needed to specify the affine
support. Hence, the two class hyperdisk margin classi-
fier depends on at most 2d + 2 support points – and on
just d + 1 in the common case where the two affine sup-
ports are non-intersecting, i.e. of dimension d1, d2 with
d = d1 + d2 + 1. In multiclass problems, the hyperdisk
margin approach can even be sparser than SVM because

every hyperdisk classifier involving a class reuses the
same set of support points for that class, whereas each
SVM classifier typically uses a different set of support
points.

Note that while SVM support points always lie close
to the separating hyperplane, this is not necessarily the
case for support points on the rims of hyperdisks: they
are always boundary points of the class, but not neces-
sarily the most difficult ones to classify against the given
other class. This is the price payed for the extra regular-
ization provided by modeling class extents rather than
pure discrimination. Similarly, the above bounds are for
affine hulls estimated from the minimum possible num-
bers of support points. If we use more global strate-
gies such as affine least squares fitting (as we do in the
experiments below), the number of participating points
increases in return for improved noise averaging in the
affine estimate.

If greater sparsity is needed, several strategies are
possible. Firstly, increasing the threshold that the affine
hull eigenvalues must exceed in order to be considered
significantly nonzero typically decreases the dimension-
ality of the affine hulls and hence the number of basis
points needed. Secondly, most of the available methods
[35, 40, 33, 4] for simplifying kernel SVM and KPCA
classifiers (i.e. approximating feature space expansions
Φα with more compact ones) can be applied to hyper-
disk classifiers. Below we test two reduced set methods
of this kind: the simple iterative subspace estimation
algorithm of [40, 33], and the quadratic programming
approach of [40]. (These methods only approximate the
hyperplane normal / kernel expansion w = Φα: to com-
plete the classifiers we also re-estimate their offsets b to
minimize the error rates on their training sets).

4. Experiments

We provide illustrative tests of maximum margin
classifiers3 based on separating hyperdisks (LMC-HD),
affine hulls (LMC-AH) and convex hulls (SVM) on
a number of datasets. For multi-class problems we
tested both the one-against-rest (OAR) and one-against-
one (OAO) approaches, reporting whichever yielded the
best results. By default we used the QCQP algorithm to
find hyperdisk separators.

4.1. Linear (Non-kernelized) Classifiers
4.1.1. Honda/UCSD Dataset

This video-based face recognition dataset [28] con-
tains 59 300–500 frame video sequences of 20 individ-

3For the software see http://www2.ogu.edu.tr/∼mlcv/softwares.html.
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Figure 3: Honda/UCSD dataset: some detected face images from
videos of two subjects.

Table 1: Classification Rates (%) for linear classifiers on the
Honda/UCSD dataset

Method Clean Noisy Noisy Noisy
Training Test Training+Test

LMC-HD 97.4 97.4 92.3 89.7
LMC-AH 97.4 97.4 92.3 87.2
SVM 94.9 92.3 92.3 82.1

uals. One video per person is designated for training,
with the remaining 39 for testing. We use a multi-image
face recognition setting where each probe is a set of face
images taken from a single video and the most similar
set in the training data must be determined. To find the
faces we ran the OpenCV Viola-Jones face detector [51]
on each video, adding all of the detected face regions
to the set after resizing them to 40×40 pixel gray scale
images and applying histogram equalization. Some ex-
amples of detections are shown in Fig. 3.

For this experiment we use linear classifiers, with the
Newton root finding algorithm for the hyperdisk dis-
tance computations. Affine hull dimensions were set
to retain enough eigenvalues to account for 98% of the
total energy in the eigen-decomposition. To quantify
the robustness to outliers, we give classification rates
for both clean and noisy training and test sets. The
noisy examples were created by augmenting each train-
ing and/or test example with two random images from
each other class (2(c − 1) in all).

The results are given in Table I. The hyperdisk
method has the best or best equal accuracy in all of the
tests, but the affine hull method is a close second. The
SVM has the worst accuracy. All of the methods are rel-
atively robust to noise in the training samples, but sig-
nificantly more sensitive to noise in the test examples.

Figure 4: Aligned images of one subject from the AR Face dataset.
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Figure 5: Classification rate (%) versus the number of training sam-
ples per class on the AR Face dataset.

4.1.2. AR Face Dataset
The AR Face dataset [32] provides frontal views of

126 subjects, with two groups of 13 images per sub-
ject recorded in two sessions spaced by 14 days. The 13
images contain different facial expressions, illumination
conditions and occlusions. For this experiment we ran-
domly selected 20 male and 20 female subjects, align-
ing, downscaling and cropping the images to 105×78
pixels so that the centres of the two eyes fall at fixed
coordinates. Some examples of the results are shown
in Fig. 4. Raw pixel values were used as features. For
training we randomly selected n = 5, 10, 15, 20, 25 im-
ages of each individual, keeping the remaining 26 − n
for testing. This process was repeated 15 times, with
the final classification rates being averages over the 15
rounds.

The results are shown in Fig. 5. When 5 samples
per class are used, the affine hull and hyperdisk classi-
fiers yield respectively 92.6% and 92.3% accuracy, sig-
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Table 2: Low-dimensional datasets from the UCI Repository

Dataset # Classes # Examples Dimension
Ionosphere 2 351 34
Iris 3 150 4
IS 7 2310 19
LR 26 20000 16
MF 10 2000 256
PID 2 768 8
Wine 3 178 13
WDBC 2 569 30

nificantly (with 95% confidence) outperforming SVM,
which yields 90.2%. With 10 or more samples per class,
the performance rapidly saturates and all of the methods
provide similar classification rates.

4.2. Experiments with Kernelized Classifiers
We tested the kernelized versions of the methods on

the Volatile Organic Compound identification (VOC),
Caltech-4 visual object recognition, and United States
Postal Service (USPS) handwritten digit datasets and on
eight lower-dimensional datasets from the UCI reposi-
tory4: Ionosphere, Iris, Image Segmentation (IS), Let-
ter Recognition (LR), Multiple Features (MF) – pixel
averages, Pima Indian Diabetes (PID), Wine, and Wis-
consin Diagnostic Breast Cancer (WDBC). The sizes of
the UCI problems are summarized in Table II. Gaus-
sian kernels, k(x, y) = exp(−||x − y||2/(2σ2), were used
in all cases. The parameters were set using random
training/test partitions for the VOC, Caltech-4 and UCI
datasets and the designated validation set for USPS.

4.2.1. Volatile Organic Compound Dataset
The Volatile Organic Compound (VOC) dataset5

comes from the real-world application of determin-
ing the identity of volatile organic compounds detected
by an array of six quartz crystal microbalance sen-
sors. There are 384 samples and five VOCs of inter-
est: ethanol, octane, toluene, xylene and trichloroethy-
lene. The small size of the training set and the fact
that the identification needs to be made independently
of the VOC concentration, on which the individual sen-
sor signals are strongly dependent, make the problem
more challenging.

The results are given in Table III. The Gaussian ker-
nel width is set to σ = 0.4. The asterisks indicate

4http://archive.ics.uci.edu/ml
5http://users.rowan.edu/∼polikar/RESEARCH/vocdb.html

Table 3: Classification Rates (%) on the VOC Dataset

Method Classification Rate
LMC-HD 95.3 ± 1.5
LMC-AH 92.1∗ ± 3.6
SVM 93.5∗ ± 1.7

Table 4: Classification Rates (%) on the Caltech-4 dataset.

Method Classification Rate
LMC-HD 76.9 ± 4.3
LMC-AH 73.0∗ ± 4.3
SVM 74.2 ± 4.8

performance differences that are statistically significant
at 95% level between the given method and the corre-
sponding best result in bold. Based on the results, the
hyperdisk classifier is the best, followed by the SVM.
The SVM and affine hull methods both have lower per-
formance than the hyperdisk one at 95% significance.

4.2.2. Caltech-4 Dataset
Caltech-46 is a visual object recognition dataset con-

taining 2876 images from four categories: airplanes,
cars, faces and motorcycles – c.f . Fig. 6. The largest
class, airplanes, has 1074 samples while the smallest
one, faces, has 450. The images have significant back-
ground clutter and intra-class and scale variability, so
we use a “bag of features” representation that does
not require geometric alignment of the targets. SIFT
[29] descriptors (local histograms of gradient orienta-
tion on image patches extracted at multiscale Difference
of Gaussian interest points) are vector quantized against
a codebook of 1000 visual words obtained by cluster-
ing training descriptors using k-means, and the resulting
codes are histogrammed over the image to make a 1000-
D descriptor vector. We use 5-fold cross-validation over
a random partition of the images of each class to evalu-
ate the performance, averaging over all five choices of 4
fold for training and the remaining 1 for testing.

The results are summarized in Table IV. The best
Gaussian kernel parameter is found as σ = 2. The hy-
perdisk method gives the best results, followed by SVM.
The affine hull method gives the worst accuracy, and the
proposed hyperdisk method significantly outperforms
the affine hull method at 95% confidence level.

6http://www.vision.caltech.edu/html-files/archive.html
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Figure 6: Some examples of images from the Caltech-4 dataset.

Table 5: Classification Rates (%) on the UCI Datasets.

Dataset LMC-HD LMC-AH SVM
Ionosphere, σ = 0.90 94.0 ± 3.1 93.7 ± 3.4 92.9 ± 3.2
Iris, σ = 2.00 96.7 ± 2.3 94.7∗ ± 2.9 95.3 ± 3.8
IS, σ = 0.35 97.2 ± 0.3 95.3∗ ± 0.7 97.1 ± 0.4
LR, σ = 3.00 97.5 ± 0.4 97.5 ± 0.4 96.5∗ ± 0.3
MF, σ = 5.00 98.3 ± 0.5 98.3 ± 0.5 98.0∗ ± 0.4
PID, σ = 40.00 78.4 ± 1.3 77.5 ± 1.9 78.1 ± 1.7
Wine, σ = 2.00 98.8 ± 1.6 98.8 ± 1.6 98.2 ± 1.6
WDBC, σ = 5.00 97.0 ± 0.5 96.0∗ ± 0.8 97.4 ± 0.9

4.2.3. UCI Repository Datasets
The results obtained on the eight UCI datasets and

the chosen Gaussian kernel parameters are summarized
in Table V. The differences in accuracy are modest, but
the hyperdisk method is still the best classifier tested on
four of the sets, and the best equal with the affine one on
three more. The SVM outperforms the hyperdisk classi-
fier on just one dataset, WDBC, while it outperforms the
affine one on four and is outperformed by the affine one
on four. For the results marked with asterisks – two sets
for SVM and three for the affine method – the hyperdisk
method outperforms the given classifier at at least 90%
confidence level. SVM never outperforms the hyperdisk
method at this level, even on WDBC.

4.2.4. USPS Dataset
The USPS dataset7 contains 9298 16×16 gray-scale

images of handwritten digits, with 7291 reserved for
training and validation and the remaining 2007 for test-
ing. Some samples are shown in Fig. 7. Many sophisti-
cated methods have been applied to this dataset, but our
aim here is only to evaluate the relative performance
of the three basic methods that we test so we use raw

7Retrieved from ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.

Figure 7: Some examples of images from the USPS dataset.

Table 6: Classification Rates (%) on the USPS dataset.

Method Classification Rate
LMC-HD 95.7
LMC-AH 95.7
SVM 95.4

gray-scale pixels as features, without any preprocess-
ing or feature extraction. The results are therefore most
directly comparable to older work such as [38] for Ra-
dial Basis Function Neural Network classifiers. The pa-
rameters of the methods were set using the designated
validation set, then the methods were retrained on the
combined training and validation sets and tested on the
test set. The best Gaussian kernel width is found to be
equal to σ = 5. Table VI summarizes the results: the
hyperdisk and affine hull methods are equal best, with
the SVM only slightly behind.

4.2.5. Sparsification using Reduced Set Methods
Finally, we test the effect of applying the reduced set

methods of [40, 33] to sparsify the hyperdisk classifier
and hence improve its run time. Both reduction meth-
ods gave similar results, so here we only report results
for the subspace estimation one [33]. For the experi-
ment we take the two most confused classes from the
USPS dataset – the digits ‘4’ and ‘6’. Together the two
classes contain 1214 training samples and 326 test sam-
ples. We use kernelized classifiers with the global USPS
parameter settings. The kernel has the same width for
all of the methods.

For unreduced methods, the hyperdisk and affine hull
approaches again come out top equal with 96.6% clas-
sification rate, with SVM second at 96.0%. Fig. 8 sum-
marizes the results of applying the reduced set method
for various levels of sparsity. The full SVM (96.0%
accuracy) has 261 support vectors, while the reduced
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Figure 8: Classification rates (%) on the USPS two digit subset for
the reduced set large margin classifiers under various levels of sparsity
(numbers of support vectors).

set hyperdisk method still has unchanged performance
(96.6% accuracy) with 125, and 95.7% accuracy with
only 25. Hence, in this experiment the hyperdisk
method still outperforms full SVM, even when it is sig-
nificantly sparser than it and hence faster to run.

4.3. Statistical Comparisons of Classifiers Over All
Tested Data Sets

A statistical comparison of the classification accura-
cies between the proposed hyperdisk method and other
large margin classifiers, namely LMC-AH and SVM,
is provided in Table VII. Comparison is done over all
tested data sets except for the Honda/UCSD since the
experimental setup for this database is different than the
others (Classification accuracies of image sets are com-
puted rather than image samples for Honda/UCSD). For
the AR face database, we take the average of all differ-
ent test cases as the final classification accuracy. Over-
all the hyperdisk method performs better than the affine
hull method on 7 out of 11 data sets, and the affine
hull method outperforms the hyperdisk method only on
one data set. Similarly, the hyperdisk method outper-
forms the SVM on 10 out of 11 data sets, and SVM
beats it only once. In general, the proposed hypedisk
method significantly performs better than other tested
large margin classifiers. We justify this by conduct-
ing a two-tailed Wilcoxon signed rank test over all ex-
perimental results as presented in Table VII. Note that
the null hypothesis is rejected at a significance level
α = 0.01 when the hyperdisk method is compared to
the affine hull method, and it is rejected at a signifi-
cance level α = 0.05 when the hyperdisk method is

compared to SVM. These results indicate that the hy-
perdisk method is significantly better than the affine hull
and SVM methods.

5. Summary and Conclusions

Classifiers based on the maximum margin separators
of the convex hulls (SVM) and the affine hulls (LMC-
AH) of the training samples of the classes have proven
very successful. Here we investigated large margin clas-
sification based on an alternative convex model of the
classes, the minimal bounding hyperdisk, i.e. the in-
tersection of the affine hull and the minimal bounding
hypersphere of the samples. We showed how to con-
struct such hyperdisk models from samples, and we in-
troduced two algorithms for finding the closest pair of
points between two hyperdisks and hence for finding
their maximum margin separating hyperplane. The first
finds an orthonormal parametrization and reduces the
problem to 2D Newton root finding. The second formu-
lates the problem as a convex Quadratically Constrained
Quadratic Program. The method was also kernelized to
allow more flexible classifiers.

We argued that in high dimensions, the convex hull
of the training samples (the class approximation used
by SVM) is typically a significant underestimate of the
true extent of the class. Hyperdisk models are compar-
atively simple and compact supersets of the convex hull
model, and subsets of the affine hull one. We argued that
this intermediate size allows them to counteract some
of the ill effects of class underestimation in the SVM,
and hence to return better classification performance in
many problems. Our experiments supported this hy-
pothesis, with the hyperdisk classifiers producing the
best or best equal results overall on all of the datasets
tested, often outperforming SVM to a statistically sig-
nificant extent whereas the converse never occurred.

On the negative side, the hyperdisk classifiers are in
practice less sparse, and hence somewhat slower to train
and run, than the corresponding SVM. However, when
we consider the real-time efficiency, the difference be-
tween run times of SVM and the proposed method is not
so big especially in high-dimensional spaces with lim-
ited number of samples. This is due to the fact that most
of the training samples become support vectors in such
cases. For example, when 5 samples per class are used
in AR database, SVM algorithm returns 198 support
vectors out of 200 samples. Similarly, when 25 samples
are used, 864 training examples become support vec-
tors out of 1000. For Caltech-4, SVM algorithm returns
1862 support vectors for 2296 training samples. Thus,
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Table 7: Pairwise classification comparison between the proposed method and related margin classifiers based on Wilcoxon signed
rank test.

Classifier Pair Hypothesis Test

LMC-HD versus LMC-AH

Null Hypothesis H0: The LMC-HD is equivalent to LMC-AH
Alternative Hypothesis H1: The LMC-HD is significantly better than LMC-AH
Wilcoxon Signed Rank Test: R+ = 35, R− = −1, and T = 1.
Null hypothesis is rejected at significance level α = 0.01.

LMC-AH versus SVM

Null Hypothesis H0: The LMC-HD is equivalent to SVM
Alternative Hypothesis H1: The LMC-HD is significantly better than SVM
Wilcoxon Signed Rank Test: R+ = 72, R− = −6, and T = 6.
Null hypothesis is rejected at significance level α = 0.05.

the run times of SVM and the proposed method are sim-
ilar. But, when the dimensionality is small and the train-
ing set size is large relative to the dimension, SVM re-
turns less support vectors, which in turn offers an ad-
vantage over the proposed method. Slower test time of
the proposed method is largely an algorithmic issue: our
current algorithms do not do enough to reduce the num-
ber of support points involved to the strict minimum,
and we are currently working on rectifying this. How-
ever there is also an intrinsic difference: even though it
actually has the same overall complexity bound as SVM
in terms of intrinsic dimensionality / numbers of support
vectors, the hyperdisk method generically attains this
bound whereas SVM often does not. To overcome this,
reduced set approximations can be used and we gave
one experiment where this strategy was successful. We
are currently working on ways to reformulate the QCQP
method so that it returns sparser solutions.
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