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Abstract—In this paper, we propose a novel method that is 
more appropriate than classical large-margin classifiers for open 
set recognition and object detection problems. The proposed 
method uses the best fitting hyperplanes approach, and the main 
idea is to find the best fitting hyperplanes such that each 
hyperplane is close to the samples of one of the two classes and as 
far as possible from the other class samples. As opposed to the 
most common hyperplane fitting classifiers in the literature, the 
proposed classifier allows the negative samples to lie on both 
sides of the fitting hyperplane and hence it is based on a non-
convex optimization problem. We use concave-convex procedure 
to solve this non-convex problem. Then, the method is extended 
to the nonlinear case by using the kernel trick. The proposed 
method is also suitable for large-scale problems, and it returns 
sparse solutions in contrast to the other hyperplane fitting 
methods in the literature. The experiments on several databases 
show that our proposed method typically outperforms other 
hyperplane fitting classifiers in term of classification accuracy, 
and it performs as good as the SVM classifier if not any better. 

Keywords—classifier; open set recognition; hyperplane fitting; 
kernel methods; support vector machines. 

I.  INTRODUCTION 

Large margin classifiers have been successfully used in 
many fields including computer vision, text analysis, 
biometrics and bioinformatics. The prototypical method of this 
kind, the Support Vector Machine (SVM) [1] finds a linear 
hyperplane in feature space that maximizes the “margin” – the 
Euclidean distance between the hyperplane and the closest 
training samples of each class. The resulting optimization task 
requires the minimization of a convex quadratic function 
subject to linear inequality constraints, and this problem can be 
efficiently solved by various methods [2,3,4]. The solution is 
sparse in the sense that once the closest points (so-called 
support vectors) have been found, it depends only on them.  

Recently, Mangasarian and Wild [5] proposed the first 
hyperplane fitting classifier so-called generalized eigenvalue 
proximal support vector machine (GEPSVM). GEPSVM finds 
two non-parallel hyperplanes (as opposed to the parallel 
hyperplanes returned by the Proximal SVMs [6]) by solving 
two generalized eigenvalue problems so that each hyperplane 
best fits to the corresponding class samples, and at the same 
time, it is as far as possible from the other class samples. Once 
the best fitting hyperplanes are found, the new samples are 
classified based on the minimum distances to the returned 
hyperplanes. By using a similar idea, Jayadeva et al. [7] 
proposed the Twin Support Vector Machine (TSVM) classifier. 

This classifier also aims at finding two non-parallel 
hyperplanes such that each hyperplane is closer to the one of 
the two classes and is as far as possible from the other. 
However, TSVM solves a pair of quadratic programming (QP) 
problems instead of a generalized eigenvalue problem. It has 
been reported that the total training time of TSVM takes less 
time than training time of SVM classifier since TSVM solves a 
pair of smaller sized QP problems instead of a large QP 
problem as in SVM. Shao et al. [8] further improved the 
TSVM classifier by introducing a regularization term on the 
hyperplane parameters. Kumar and Gopal [9] proposed the 
least squares version of the TSVM and smooth TSVM [10]. 
Some other extensions of TSVM can also be found in [11,12]. 

Classifiers based on the best-fitting hyperplanes have been 
proposed as alternatives to the binary SVM classifier, but there 
are better application areas of these methods in recognition 
problems known as “open set recognition” [13]. In classical 
classification problems, it is assumed that all testing classes are 
known at training time. But, in more realistic applications, 
samples may come from unknown classes during testing time. 
Margin-based classifiers such as SVM or affine hull based 
classifier [14] seek to maximize the distance between the 
known class samples and the decision boundary. Regions far 
from the known data (it is called as open space in [13]) are also 
assigned to the known classes although we do not have a good 
basis for assigning labels to these regions. As a result, these 
classifiers may largely fail during testing when there are 
samples coming from unknown classes. This is illustrated in 
Fig. 1. On the other hand, as we show in this study, the 
classifiers using the best fitting hyperplanes are more 
appropriate for these kinds of applications. They are also more 
suitable than large margin classifiers for visual object detection 
tasks, in which there is a limited number of object class 
samples whereas there are millions of negative samples coming 
from thousands of different classes [15]. 

Although classifiers using the best fitting hyperplane 
models have wider application areas compared to the large-
margin classifiers, the current methods in the literature are not 
perfect. More precisely, there are two major limitations of the 
hyperplane fitting classifiers, GEPSVM and TSVM: As a first 
limitation, these classifiers are not suitable for large-scale 
classification problems. Kernel GEPSVM requires eigen-
decomposition on )1()1(  nn  matrices where n is the 
number of all samples in the training set. Similarly, kernel 
TSVM requires taking inverse of a )1()1(  nn  matrix. For 
small size classification problems, it is reported that training 



times of GEPSVM and TSVM take less time compared to the 
training time of SVM classifier. But, for large scale problems, 
it is difficult (most of the time it is impossible) to fit those large 
matrices into memory and to operate on them. The second 
limitation is related to the sparsity of the solution. As opposed 
to the SVM classifier, the solution returned by the GEPSVM or 
TSVM is not sparse, i.e., all training samples become support 
vectors. Therefore, testing times of those classifiers are much 
slower compared to the testing time of SVM. There has been 
an attempt to modify TSVM method so that it returns sparse 
solutions in [16]. However, it is based on the assumption that 
the best fitting hyperplane is constructed by the support vectors 
coming from only one class samples. This assumption does not 
hold in many classification problems since the best fitting 
discriminating hyperplanes are determined by the samples 
lying in the critical regions where the two-class boundaries are 
close to each other.  

In this paper, we introduce a novel classifier that uses the 
best fitting hyperplane approach. Our method does not have 
limitations of both GEPSVM and TSVMs. In particular, the 
proposed method is suitable for large-scale classification 
problems, and it always returns sparse solutions. It is also 
better suited for open set recognition problems as well as object 
detections problems. The rest of the paper is organized as 
follows. In Section 2, we introduce the proposed method. 
Section 3 presents our experimental results and Section 4 
concludes the paper. 

 

 

Fig. 1. The separating hyperplane S returned by the SVM classifier separates 
people and dog classes. All samples under the separating hyperplane are 
assigned to the dog class. When there are test samples coming from the 
unknown classes such as chair and fish, these samples will be erroneously 
assigned to the dog class with high confidence scores. Adding another parallel 
hyperplane H helps to localize dog class samples better, and misclassifications 
can be reduced. 

II. METHOD 

We propose a new classification method that uses the best 
fitting hyperplanes for pattern classification. As opposed to the 
TSVM and its extensions, the proposed method allows the 
negative samples to lie on both sides of the fitting hyperplane 
and it requires solving a more complicated non-convex 
optimization problem as described below. 

A. Two-Sided Best Fitting Hyperplane Classifier (2S-BFHC) 

This method searches for the best fitting hyperplanes such 
that each hyperplane is closer to the samples of one of the two 
classes and far from the other class samples. Let x  be the 
sample’s feature vector and let 0  bT xw  be the equation of 
the best fitting hyperplane for the positive class samples. The 
proposed method allows the negative samples to lie on both 
sides of the fitting hyperplanes separated from the positive 
samples with a margin of at least ||||/2  w  as shown in Fig. 2, 
where   is a parameter that must be set between 0 and 1 by 
the user. However, this problem is no longer convex and it is 
typically difficult to solve for large-scale data. To solve this 
non-convex problem for large scale data, we employ concave-
convex procedure [17].  

 

Fig. 2. In the proposed method, positive class samples (shown with red 
triangles) lie between two parallel hyperplanes characterized by 

 1bT xw  and  1bT xw . The negative samples shown with 

blue circles can lie on both sides of the fitting hyperplane (fitting hyperplane, 

0 bT xw , is shown with the dashed line), and they are separated from the 

positive samples with a margin of at least ||||/2 w  in separable case. 

Let us define the decision function we will use for label 
assignment in the form 

  bf T xwx)( ,               (1) 

where   b,w  includes the parameters that define the best 
fitting hyperplane for the positive class samples. In the 
proposed method, we constrain positive samples to lie between 
two parallel hyperplanes   1bT xw  and 

  1bT xw . To implement this goal, we use the 
symmetric Ramp Loss function (shown in Fig. 3) defined as 

)()()( tRtRtJ pospospos  ,             (2) 

where ))1,0max(,1min()( tstRpos   is the so-called 

“Ramp Loss” function [18] illustrated in Fig. 4, where 
01  s  is a parameter that must be set by the user. As shown 

in the figure, the Ramp Loss function can be written as the sum 
of the convex Hinge loss and a concave loss function (or as the 
difference between two Hinge losses), i.e., 

)()()( 21 tHtHtR spos   , where ),0max()( tatHa   is the 



classical Hinge loss function. The Ramp loss function can be 
seen as a “clipped” version of the Hinge loss, and the 
parameter s  controls where we clip the Ramp Loss. We set it 
to 20.0s  in our experiments. 
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Fig. 3. Illustration of the cost function, )()()( tRtRtJ pospospos  , of 

positive samples. ))1,0max(,1min()( tstRpos   can be written as the 

sum of the convex Hinge loss and a concave loss function, i.e., 
)()()( 21 tHtHtR spos   .   is set to 0.3 and 20.0s . 

The negative samples are forced to lie outside of the 
hyperplane shaped slabs, and they are separated from the 
positive samples with a margin of at least ||||/2  w . Thus the 

constraints for negative samples become   1|| bi
T xw . To 

implement this, we use another symmetric Ramp Loss (shown 
in Fig. 5) defined as  

)()()( tRtRtJ negnegneg  ,             (3) 

where ))1,0max(,1min()( tstRneg   is illustrated in 

Fig. 4. Similar to the previous case, this Ramp Loss function 
can also be written as the sum of the convex Hinge loss and a 
concave loss function i.e., )()()( 1 tHtHtR sneg   . For this loss 

function, s parameter controls the wideness of the flat part of 
the symmetric part of the symmetric Ramp Loss plotted in Fig. 
5. 

In order to use the symmetric Ramp Loss functions defined 
for positive and negative samples, each sample in the training 
set appears as two examples labeled with both negative and 
positive classes. More precisely, if we let n  be the number of 
positive samples, and n  be the number of negative samples 
under the assumption that the positive and negative samples are 
ordered, then we create the new samples as follows 
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In this case our total cost function can be written as 
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Here, )(  CC  is a user defined parameter that controls the 
weight of the errors associated with the positive (negative) 

samples. By using the equations )()()( 21 tHtHtR spos    

and )()()( 1 tHtHtR sneg   , the above cost function can be 

written as  

)()()(  concaveconvex JJJ  ,               (5) 
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Since the cost function )(J  can be decomposed into a convex 
and a concave part, we can apply the concave-convex 
procedure (CCCP) to solve the problem. The CCCP solves this 
non-convex optimization problem by an iterative procedure, 
where each iteration approximates the concave part by its 
tangent, and minimizes the resulting convex function as given 
in Algorithm 1. The convergence of CCCP has been proved in 
[17]. It should be noted that the convex optimization problem 
that constitutes the core of the CCCP algorithm can be solved 
by using efficient convex algorithms. 

 Algorithm 1: The Concave-Convex Procedure 

Initialize 0  

repeat  

 ).)((minarg '1 


concaveconvex
t JJ   

until convergence of t . 

 

Now, in order to simplify the first order approximation of 
the concave part of the optimization problem, let us define  
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After some standard derivations shown in the Appendix (it 
is available at http://mlcv.ogu.edu.tr/pdf/appendix.pdf), the 
method can be summarized as in Algorithm 2. 

 

Algorithm 2: Two Sided Best Fitting Hyperplane Classifier 

Initialize ),( 000
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Fig. 4. The illustrations of Ramp Loss functions ))1,0max(,1min()( tstRpos   (top left figure) and ))1,0max(,1min()( tstRneg   (bottom 

left). Each loss can be written as sum of the convex Hing loss (center) and the concave loss (right), i.e., )()()( 21 tHtHtR spos   , and 

)()()( 1 tHtHtR sneg   , where ),0max()( tatHa   is the classical Hinge loss. Here, the parameters are set to 20.0s  and 30.0 .

repeat 

 Solve the following convex quadratic optimization problem    
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1 ||||  tt ββ , where 1  and 2  are 

some pre-defined small thresholds. 
 

Note that the convex part of the algorithm becomes a 
convex quadratic optimization with equality and inequality 
constraints, and it can be efficiently solved by using Sequential 
Minimal Optimization (SMO) [2] for large-scale data. More 
precisely, it is not necessary to construct the full Hessian 
matrix: only the Hessians of the active sets of samples need to 
be considered in each iteration. Our proposed method usually 
takes 3-5 iterations to converge a solution based on the 
initialization of the algorithm. It should be noted that only the 
bounds on ih  have to be adjusted after each update of β . 

Another advantage of the proposed method is that the 
solution returned by the optimization problem is sparse, i.e., the 

most of the ih  coefficients are zero. Therefore 2S-BFHC is 
more suitable than GEPSVM or TSVM for real-time 
classification applications where the speed is important. 

The second fitting hyperplane is also obtained by the same 
procedure by interchanging the roles of positive and negative 
samples. For multi-class classification problems, test samples 
are classified based on the minimum distances to the returned 
hyperplanes, i.e., ),(minarg)(

,...,1
itesti

Ki
test bg 


xwx , where K is 

the number of classes in the training set. 
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Fig. 5. The  Symmetric Ramp Loss function, )()()( tRtRtJ negnegneg  , 

for negative samples. Parameters are set to 20.0s  and 30.0 . 

III. EXPERIMENTS 

We tested the proposed method 2S-BFHC on synthetic and 
real databases to assess its performance and we compared our 
results to those obtained by the related classification methods 
including Generalized Eigenvalue Proximal Support Vector 
Machine (GEPSVM), Twin Support Vector Machines 



(TSVMs) and SVM. One-Against-Rest (OAR) regime was 
used for multi-class classification problems. For the nonlinear 
(kernelized) classifiers, we only used the Gaussian kernels. 

A. Experiments on Synthetic Data 

Here we consider an object detection scenario where the 
positive class samples are surrounded by the negative samples. 
To this end, we created two-dimensional normally distributed 
data plotted in Fig. 6. The positive class samples have a mean 
of  00  and x and y dimensions are uncorrelated with the 
corresponding standard deviations of 0.1 and 0.9, respectively. 
Positive class samples are surrounded with negative samples 
having the same covariance structure but different means of 

 05.1  and  05.1 . Thus, the optimal best fitting 
hyperplane coincides with the y-axis. Consequently, the normal 
of the optimal hyperplane must be in the direction of x-axis.  
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Fig. 6. Normal vectors of the fitting hyperplanes returned by the proposed 
method and GEPSVM. The proposed method successfully returns the correct 
support vectors in the vicinity of the positive class boundary as shown with 
the circles around the samples 

Among all the best fitting hyperplane based methods, only 
GEPSVM and our proposed 2S-BFHC methods allow negative 
samples to lie on both sides of the separating hyperplane. As a 
result, all linear methods except GEPSVM and 2S-BFHC will 
fail for this problem. Thus, we compare only these two 
methods. We initialized the normal of the best fitting 
separating hyperplane with  110 w , and the proposed 
method converged to the solution in 3 iterations and returned 
the solution of  004.0397.1w  and 0.05b  which is very 
close to the optimal solution. The normal of the separating 
hyperlane returned by the proposed method is shown with 
black solid line in Fig. 6. Our proposed method also 
successfully returns the correct support vectors in the vicinity 
of the positive class boundary as shown with the circles around 
the samples in the figure. GEPSVM on the other hand returns 
the normal  03.099.0w  shown with the green solid line in 
Fig. 6. For quantitative comparison, we create same amount of 
test data with the same distributions and compute the Average 
Precision (AP) scores obtained from precision-recall curves. 
The proposed method achieves the highest accuracy 0.923 as 
expected, and GEPSVM achieves 0.918. 

B. Experiments on the UCI Repository and VOC datasets 

We tested the proposed method on the Volatile Organic 
Compound (VOC) identification (available at 
http://users.rowan.edu/polikar/RESEARCH/vocdb.html) and 6 
lower-dimensional datasets from the UCI repository: 
Ionosphere, Iris, Image Segmentation (IS), Pima Indian 
Diabetes (PID), Wine, and Wisconsin Diagnostic Breast 
Cancer (WDBC). The sizes and dimensionalities of the datasets 
are given in Table I. Here we tested both linear and kernel 
methods. We initialized the linear 2S-BFHC with the 
hyperplane returned by the GEPSVM, and we used the 
hyperplanes returned by linear 2S-BFHC method to initialize 
the kernel 2S-BFHC.  

TABLE I.  VOC AND LOW-DIMENSIONAL DATASETS FROM THE UCI 
REPOSITORY 

Datasets 
# 

Classes 
# 

Examples Dimension 

Ionosphere 2 351 34

Iris 3 150 4

IS 7 2310 19

PID 2 768 8

VOC 4 384 6

Wine 3 178 13

WDBC 2 569 30

 

We used 5-fold cross-validation over random partition of 
the samples of each class to evaluate the performance, 
averaging over all five choices of 4 fold for training and the 
remaining 1 for testing. The results are given in Table III. 
Although being quite mixed, results indicate that the 
generalization performance of the proposed method compares 
favorably with SVM and other related hyper-plane fitting 
algorithms. More precisely, the proposed 2S-BFHC classifier 
achieves the 4 best results out of 7 for both linear and nonlinear 
cases. SVM also performs well yielding the 3 best results in 
nonlinear case and 2 best results in linear case. GEPSVM 
generally produces the worst classification accuracies. It was 
significantly outperformed by the best performing method on 5 
datasets in linear case, and on 3 datasets in nonlinear case. 
Using kernels typically increases the classification accuracy 
with the exception on the Iris and Wine databases, where the 
accuracies of kernel methods are slightly behind the accuracies 
of linear methods. It should be noted that only SVM and the 
proposed method return sparse solutions in nonlinear case. 

IV. SUMMARY AND CONCLUSION 

Classifiers using the best fitting hyperplanes are becoming 
increasingly popular owing to the fact that they are better 
suited for open set recognition and object detection problems. 
Especially, in case of open set recognition problems, one can 
easily reject the test samples if the distances from those 
samples to the fitting hyperplanes are larger than empirically 
determined thresholds. However, existing hyperplane fitting 
algorithms  have two  major limitations: They  are  not suitable  



TABLE II.  CLASSIFICATION RATES (%) ON VOC AND UCI DATASETS 

Linear 
Methods 

Ionosphere Iris IS PID VOC Wine WDBC

GEPSVM 74.91, 
8.5  

97.33, 
7.2  

68.23, 
5.5  

75.00, 
1.3  

64.07, 
4.5  

81.48, 
1.14  

88.23, 
1.2  

TSVM 88.86, 
3.6  

96.67, 
3.3  

91.94, 
6.1  

77.21, 
8.1  

79.57, 
3.4  

97.65, 
8.3  

96.48, 
9.0  

SVM 86.59, 
1.5  

93.33, 
7.5  

92.55, 
2.1  

77.22, 
1.2  

75.76, 
7.4  

97.17, 
0.2  

96.66, 
4.1  

2S-BFHC 85.46, 
4.3  

98.00, 
9.2  

90.00, 
3.2  

75.91, 
5.2  

79.73, 
2.7  

98.35, 
5.1  

97.54, 
7.0  

Kernel 
Methods 

    

GEPSVM 88.87, 
4.4  

95.33, 
8.3  

87.83, 
0.2  

75.92, 
0.4  

82.71, 
9.4  

97.06, 
6.3  

95.07, 
0.1  

TSVM 93.72, 
5.4  

94.00, 
7.2  

92.90, 
9.1  

77.74, 
3.2  

91.74, 
2.3  

97.76, 
2.1  

97.53, 
9.0  

SVM 94.30, 
1.3  

96.67, 
0.4  

97.14, 
4.0  

77.61, 
8.1  

93.10, 
6.3  

97.76, 
2.1  

97.54, 
7.0  

2S-BFHC 93.73, 
4.3  

97.33, 
7.2  

96.71, 
6.0  

76.42, 
0.2  

93.40, 
2.4  

97.76, 
2.1  

97.89, 
8.1  

 

for large-scale classification problems since one has to make 
eigen-decomposition on the resulting large matrices or inverses 
of those large matrices must be taken. Existing classifiers are 
also not efficient in terms of real-time performance because the 
classifiers do not return sparse solutions. In this paper, we have 
proposed a novel hyperplane fitting classifier that does not 
have the limitations mentioned above. More precisely, the 
proposed classifier uses SMO algorithm, which does not 
require constructing large Hessian matrices, making the 
method suitable for large-scale problems. Moreover, the 
returned solutions are sparse similar to SVMs, thus the 
proposed method is very efficient in terms of testing time.  

We tested classification accuracies of the proposed method 
on both synthetic and real-world classification problems. The 
proposed method typically outperformed other best-fitting 
hyperplane classifiers in most of the cases, and it produced 
comparable results to the SVM classifier. 
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