
2-Sided Best Fitting Hyperplane Classifier

Hakan Cevikalp
Electrical and Electronics Engineering Department

Machine Learning and Computer Vision Laboratory
Eskisehir Osmangazi University, Meselik, 26480, Eskisehir, Turkey

http://www2.ogu.edu.tr/~mlcv/, hakan.cevikalp@gmail.com

Abstract—In this paper, we propose a novel method that is
more appropriate than classical large-margin classifiers for open
set recognition and object detection problems. The proposed
method uses the best fitting hyperplanes approach, and the main
idea is to find the best fitting hyperplanes such that each
hyperplane is close to the samples of one of the two classes and as
far as possible from the other class samples. As opposed to the
most common hyperplane fitting classifiers in the literature, the
proposed classifier allows the negative samples to lie on both
sides of the fitting hyperplane and hence it is based on a non-
convex optimization problem. We use concave-convex procedure
to solve this non-convex problem. Then, the method is extended
to the nonlinear case by using the kernel trick. The proposed
method is also suitable for large-scale problems, and it returns
sparse solutions in contrast to the other hyperplane fitting
methods in the literature. The experiments on several databases
show that our proposed method typically outperforms other
hyperplane fitting classifiers in term of classification accuracy,
and it performs as good as the SVM classifier if not any better.

Keywords—classifier; open set recognition; hyperplane fitting;
kernel methods; support vector machines.

I. INTRODUCTION

Large margin classifiers have been successfully used in
many fields including computer vision, text analysis,
biometrics and bioinformatics. The prototypical method of this
kind, the Support Vector Machine (SVM) [1] finds a linear
hyperplane in feature space that maximizes the “margin” – the
Euclidean distance between the hyperplane and the closest
training samples of each class. The resulting optimization task
requires the minimization of a convex quadratic function
subject to linear inequality constraints, and this problem can be
efficiently solved by various methods [2,3,4]. The solution is
sparse in the sense that once the closest points (so-called
support vectors) have been found, it depends only on them.

Recently, Mangasarian and Wild [5] proposed the first
hyperplane fitting classifier so-called generalized eigenvalue
proximal support vector machine (GEPSVM). GEPSVM finds
two non-parallel hyperplanes (as opposed to the parallel
hyperplanes returned by the Proximal SVMs [6]) by solving
two generalized eigenvalue problems so that each hyperplane
best fits to the corresponding class samples, and at the same
time, it is as far as possible from the other class samples. Once
the best fitting hyperplanes are found, the new samples are
classified based on the minimum distances to the returned
hyperplanes. By using a similar idea, Jayadeva et al. [7]
proposed the Twin Support Vector Machine (TSVM) classifier.

This classifier also aims at finding two non-parallel
hyperplanes such that each hyperplane is closer to the one of
the two classes and is as far as possible from the other.
However, TSVM solves a pair of quadratic programming (QP)
problems instead of a generalized eigenvalue problem. It has
been reported that the total training time of TSVM takes less
time than training time of SVM classifier since TSVM solves a
pair of smaller sized QP problems instead of a large QP
problem as in SVM. Shao et al. [8] further improved the
TSVM classifier by introducing a regularization term on the
hyperplane parameters. Kumar and Gopal [9] proposed the
least squares version of the TSVM and smooth TSVM [10].
Some other extensions of TSVM can also be found in [11,12].

Classifiers based on the best-fitting hyperplanes have been
proposed as alternatives to the binary SVM classifier, but there
are better application areas of these methods in recognition
problems known as “open set recognition” [13]. In classical
classification problems, it is assumed that all testing classes are
known at training time. But, in more realistic applications,
samples may come from unknown classes during testing time.
Margin-based classifiers such as SVM or affine hull based
classifier [14] seek to maximize the distance between the
known class samples and the decision boundary. Regions far
from the known data (it is called as open space in [13]) are also
assigned to the known classes although we do not have a good
basis for assigning labels to these regions. As a result, these
classifiers may largely fail during testing when there are
samples coming from unknown classes. This is illustrated in
Fig. 1. On the other hand, as we show in this study, the
classifiers using the best fitting hyperplanes are more
appropriate for these kinds of applications. They are also more
suitable than large margin classifiers for visual object detection
tasks, in which there is a limited number of object class
samples whereas there are millions of negative samples coming
from thousands of different classes [15].

Although classifiers using the best fitting hyperplane
models have wider application areas compared to the large-
margin classifiers, the current methods in the literature are not
perfect. More precisely, there are two major limitations of the
hyperplane fitting classifiers, GEPSVM and TSVM: As a first
limitation, these classifiers are not suitable for large-scale
classification problems. Kernel GEPSVM requires eigen-
decomposition on)1()1( nn matrices where n is the
number of all samples in the training set. Similarly, kernel
TSVM requires taking inverse of a)1()1( nn matrix. For
small size classification problems, it is reported that training

times of GEPSVM and TSVM take less time compared to the
training time of SVM classifier. But, for large scale problems,
it is difficult (most of the time it is impossible) to fit those large
matrices into memory and to operate on them. The second
limitation is related to the sparsity of the solution. As opposed
to the SVM classifier, the solution returned by the GEPSVM or
TSVM is not sparse, i.e., all training samples become support
vectors. Therefore, testing times of those classifiers are much
slower compared to the testing time of SVM. There has been
an attempt to modify TSVM method so that it returns sparse
solutions in [16]. However, it is based on the assumption that
the best fitting hyperplane is constructed by the support vectors
coming from only one class samples. This assumption does not
hold in many classification problems since the best fitting
discriminating hyperplanes are determined by the samples
lying in the critical regions where the two-class boundaries are
close to each other.

In this paper, we introduce a novel classifier that uses the
best fitting hyperplane approach. Our method does not have
limitations of both GEPSVM and TSVMs. In particular, the
proposed method is suitable for large-scale classification
problems, and it always returns sparse solutions. It is also
better suited for open set recognition problems as well as object
detections problems. The rest of the paper is organized as
follows. In Section 2, we introduce the proposed method.
Section 3 presents our experimental results and Section 4
concludes the paper.

Fig. 1. The separating hyperplane S returned by the SVM classifier separates
people and dog classes. All samples under the separating hyperplane are
assigned to the dog class. When there are test samples coming from the
unknown classes such as chair and fish, these samples will be erroneously
assigned to the dog class with high confidence scores. Adding another parallel
hyperplane H helps to localize dog class samples better, and misclassifications
can be reduced.

II. METHOD

We propose a new classification method that uses the best
fitting hyperplanes for pattern classification. As opposed to the
TSVM and its extensions, the proposed method allows the
negative samples to lie on both sides of the fitting hyperplane
and it requires solving a more complicated non-convex
optimization problem as described below.

A. Two-Sided Best Fitting Hyperplane Classifier (2S-BFHC)

This method searches for the best fitting hyperplanes such
that each hyperplane is closer to the samples of one of the two
classes and far from the other class samples. Let x be the
sample’s feature vector and let 0  bT xw be the equation of
the best fitting hyperplane for the positive class samples. The
proposed method allows the negative samples to lie on both
sides of the fitting hyperplanes separated from the positive
samples with a margin of at least ||||/2  w as shown in Fig. 2,
where  is a parameter that must be set between 0 and 1 by
the user. However, this problem is no longer convex and it is
typically difficult to solve for large-scale data. To solve this
non-convex problem for large scale data, we employ concave-
convex procedure [17].

Fig. 2. In the proposed method, positive class samples (shown with red
triangles) lie between two parallel hyperplanes characterized by

 1bT xw and  1bT xw . The negative samples shown with

blue circles can lie on both sides of the fitting hyperplane (fitting hyperplane,

0 bT xw , is shown with the dashed line), and they are separated from the

positive samples with a margin of at least ||||/2 w in separable case.

Let us define the decision function we will use for label
assignment in the form

  bf T xwx)( , (1)

where   b,w includes the parameters that define the best
fitting hyperplane for the positive class samples. In the
proposed method, we constrain positive samples to lie between
two parallel hyperplanes   1bT xw and

  1bT xw . To implement this goal, we use the
symmetric Ramp Loss function (shown in Fig. 3) defined as

)()()(tRtRtJ pospospos  , (2)

where))1,0max(,1min()(tstRpos  is the so-called

“Ramp Loss” function [18] illustrated in Fig. 4, where
01  s is a parameter that must be set by the user. As shown

in the figure, the Ramp Loss function can be written as the sum
of the convex Hinge loss and a concave loss function (or as the
difference between two Hinge losses), i.e.,

)()()(21 tHtHtR spos   , where),0max()(tatHa  is the

classical Hinge loss function. The Ramp loss function can be
seen as a “clipped” version of the Hinge loss, and the
parameter s controls where we clip the Ramp Loss. We set it
to 20.0s in our experiments.

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Illustration of the cost function,)()()(tRtRtJ pospospos  , of

positive samples.))1,0max(,1min()(tstRpos  can be written as the

sum of the convex Hinge loss and a concave loss function, i.e.,
)()()(21 tHtHtR spos   .  is set to 0.3 and 20.0s .

The negative samples are forced to lie outside of the
hyperplane shaped slabs, and they are separated from the
positive samples with a margin of at least ||||/2  w . Thus the

constraints for negative samples become   1|| bi
T xw . To

implement this, we use another symmetric Ramp Loss (shown
in Fig. 5) defined as

)()()(tRtRtJ negnegneg  , (3)

where))1,0max(,1min()(tstRneg  is illustrated in

Fig. 4. Similar to the previous case, this Ramp Loss function
can also be written as the sum of the convex Hinge loss and a
concave loss function i.e.,)()()(1 tHtHtR sneg   . For this loss

function, s parameter controls the wideness of the flat part of
the symmetric part of the symmetric Ramp Loss plotted in Fig.
5.

In order to use the symmetric Ramp Loss functions defined
for positive and negative samples, each sample in the training
set appears as two examples labeled with both negative and
positive classes. More precisely, if we let n be the number of
positive samples, and n be the number of negative samples
under the assumption that the positive and negative samples are
ordered, then we create the new samples as follows

   
 

   
 

















nnnni

nnnniynnniy

nni

nniyniy

nii

ii

nii

ii

22,...,12 ,

22,...,12 ,1 ; 2,...,12 ,1

2,...,1 ,

2,...,1,1 ; ,...,1 ,1

xx

xx

In this case our total cost function can be written as

)).(())((||||
2

1
)(

22

12

2

1

2
ii

nn

ni
negii

n

i
pos fyRCfyRCJ xxw  





 





 (4)

Here,)( CC is a user defined parameter that controls the
weight of the errors associated with the positive (negative)

samples. By using the equations)()()(21 tHtHtR spos  

and)()()(1 tHtHtR sneg   , the above cost function can be

written as

)()()( concaveconvex JJJ  , (5)

where

))(())((||||
2

1
)(

22

12
1

2

1
1

2 




 







nn

ni
iiii

n

i
convex fyHCfyHCJ xxw  ,

 (6)

and

))(())(()(
22

12

2

1
2 ii

nn

ni
s

n

i
iisconcave fyHCfyHCJ xx  





 





 . (7)

Since the cost function)(J can be decomposed into a convex
and a concave part, we can apply the concave-convex
procedure (CCCP) to solve the problem. The CCCP solves this
non-convex optimization problem by an iterative procedure,
where each iteration approximates the concave part by its
tangent, and minimizes the resulting convex function as given
in Algorithm 1. The convergence of CCCP has been proved in
[17]. It should be noted that the convex optimization problem
that constitutes the core of the CCCP algorithm can be solved
by using efficient convex algorithms.

 Algorithm 1: The Concave-Convex Procedure

Initialize 0

repeat

).)((minarg '1 


concaveconvex
t JJ 

until convergence of t .

Now, in order to simplify the first order approximation of
the concave part of the optimization problem, let us define



















nninsfyC

nisfyC

f

J
y

ii

ii

i

concave
ii

2212 and)(if,

21 and 2)(if ,

)(

)(0

x

x

x









 (8)

After some standard derivations shown in the Appendix (it
is available at http://mlcv.ogu.edu.tr/pdf/appendix.pdf), the
method can be summarized as in Algorithm 2.

Algorithm 2: Two Sided Best Fitting Hyperplane Classifier

Initialize),(000
 bw

compute



















nninsfyC

nisfyC

f

J
y

ii

ii

i

concave
ii

2212 and)(if

21 and 2)(if

)(

)(0

x

x

x









-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 4. The illustrations of Ramp Loss functions))1,0max(,1min()(tstRpos  (top left figure) and))1,0max(,1min()(tstRneg  (bottom

left). Each loss can be written as sum of the convex Hing loss (center) and the concave loss (right), i.e.,)()()(21 tHtHtR spos   , and

)()()(1 tHtHtR sneg   , where),0max()(tatHa  is the classical Hinge loss. Here, the parameters are set to 20.0s and 30.0 .

repeat

 Solve the following convex quadratic optimization problem

.2212 ,

;21 , ;0 subject to

)1()1(,
2

1
 min

22

1

22

12

2

1

22

1

2

1

























 







 

nninChy

niChyh

hyhyhh

iiii

iiii

nn

i
i

nn

ni
iii

n

i
ijij

nn

i

nn

j
i





xx

 compute 1

tw by using ixw 








nn

i
i

t h
22

1

1 and 1

tb as

described in the Appendix.

 compute













nninsfyifC

nisfyifC

ii

iit
i 2212 and)(

21 and 2)(1

x

x





until 1
1 ||||  



tt ww or 2
1 ||||  tt ββ , where 1 and 2 are

some pre-defined small thresholds.

Note that the convex part of the algorithm becomes a
convex quadratic optimization with equality and inequality
constraints, and it can be efficiently solved by using Sequential
Minimal Optimization (SMO) [2] for large-scale data. More
precisely, it is not necessary to construct the full Hessian
matrix: only the Hessians of the active sets of samples need to
be considered in each iteration. Our proposed method usually
takes 3-5 iterations to converge a solution based on the
initialization of the algorithm. It should be noted that only the
bounds on ih have to be adjusted after each update of β .

Another advantage of the proposed method is that the
solution returned by the optimization problem is sparse, i.e., the

most of the ih coefficients are zero. Therefore 2S-BFHC is
more suitable than GEPSVM or TSVM for real-time
classification applications where the speed is important.

The second fitting hyperplane is also obtained by the same
procedure by interchanging the roles of positive and negative
samples. For multi-class classification problems, test samples
are classified based on the minimum distances to the returned
hyperplanes, i.e.,),(minarg)(

,...,1
itesti

Ki
test bg 


xwx , where K is

the number of classes in the training set.

-3 -2 -1 0 1 2 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 5. The Symmetric Ramp Loss function,)()()(tRtRtJ negnegneg  ,

for negative samples. Parameters are set to 20.0s and 30.0 .

III. EXPERIMENTS

We tested the proposed method 2S-BFHC on synthetic and
real databases to assess its performance and we compared our
results to those obtained by the related classification methods
including Generalized Eigenvalue Proximal Support Vector
Machine (GEPSVM), Twin Support Vector Machines

(TSVMs) and SVM. One-Against-Rest (OAR) regime was
used for multi-class classification problems. For the nonlinear
(kernelized) classifiers, we only used the Gaussian kernels.

A. Experiments on Synthetic Data

Here we consider an object detection scenario where the
positive class samples are surrounded by the negative samples.
To this end, we created two-dimensional normally distributed
data plotted in Fig. 6. The positive class samples have a mean
of  00 and x and y dimensions are uncorrelated with the
corresponding standard deviations of 0.1 and 0.9, respectively.
Positive class samples are surrounded with negative samples
having the same covariance structure but different means of

 05.1 and  05.1 . Thus, the optimal best fitting
hyperplane coincides with the y-axis. Consequently, the normal
of the optimal hyperplane must be in the direction of x-axis.

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Fig. 6. Normal vectors of the fitting hyperplanes returned by the proposed
method and GEPSVM. The proposed method successfully returns the correct
support vectors in the vicinity of the positive class boundary as shown with
the circles around the samples

Among all the best fitting hyperplane based methods, only
GEPSVM and our proposed 2S-BFHC methods allow negative
samples to lie on both sides of the separating hyperplane. As a
result, all linear methods except GEPSVM and 2S-BFHC will
fail for this problem. Thus, we compare only these two
methods. We initialized the normal of the best fitting
separating hyperplane with  110 w , and the proposed
method converged to the solution in 3 iterations and returned
the solution of  004.0397.1w and 0.05b which is very
close to the optimal solution. The normal of the separating
hyperlane returned by the proposed method is shown with
black solid line in Fig. 6. Our proposed method also
successfully returns the correct support vectors in the vicinity
of the positive class boundary as shown with the circles around
the samples in the figure. GEPSVM on the other hand returns
the normal  03.099.0w shown with the green solid line in
Fig. 6. For quantitative comparison, we create same amount of
test data with the same distributions and compute the Average
Precision (AP) scores obtained from precision-recall curves.
The proposed method achieves the highest accuracy 0.923 as
expected, and GEPSVM achieves 0.918.

B. Experiments on the UCI Repository and VOC datasets

We tested the proposed method on the Volatile Organic
Compound (VOC) identification (available at
http://users.rowan.edu/polikar/RESEARCH/vocdb.html) and 6
lower-dimensional datasets from the UCI repository:
Ionosphere, Iris, Image Segmentation (IS), Pima Indian
Diabetes (PID), Wine, and Wisconsin Diagnostic Breast
Cancer (WDBC). The sizes and dimensionalities of the datasets
are given in Table I. Here we tested both linear and kernel
methods. We initialized the linear 2S-BFHC with the
hyperplane returned by the GEPSVM, and we used the
hyperplanes returned by linear 2S-BFHC method to initialize
the kernel 2S-BFHC.

TABLE I. VOC AND LOW-DIMENSIONAL DATASETS FROM THE UCI
REPOSITORY

Datasets

Classes

Examples Dimension

Ionosphere 2 351 34

Iris 3 150 4

IS 7 2310 19

PID 2 768 8

VOC 4 384 6

Wine 3 178 13

WDBC 2 569 30

We used 5-fold cross-validation over random partition of
the samples of each class to evaluate the performance,
averaging over all five choices of 4 fold for training and the
remaining 1 for testing. The results are given in Table III.
Although being quite mixed, results indicate that the
generalization performance of the proposed method compares
favorably with SVM and other related hyper-plane fitting
algorithms. More precisely, the proposed 2S-BFHC classifier
achieves the 4 best results out of 7 for both linear and nonlinear
cases. SVM also performs well yielding the 3 best results in
nonlinear case and 2 best results in linear case. GEPSVM
generally produces the worst classification accuracies. It was
significantly outperformed by the best performing method on 5
datasets in linear case, and on 3 datasets in nonlinear case.
Using kernels typically increases the classification accuracy
with the exception on the Iris and Wine databases, where the
accuracies of kernel methods are slightly behind the accuracies
of linear methods. It should be noted that only SVM and the
proposed method return sparse solutions in nonlinear case.

IV. SUMMARY AND CONCLUSION

Classifiers using the best fitting hyperplanes are becoming
increasingly popular owing to the fact that they are better
suited for open set recognition and object detection problems.
Especially, in case of open set recognition problems, one can
easily reject the test samples if the distances from those
samples to the fitting hyperplanes are larger than empirically
determined thresholds. However, existing hyperplane fitting
algorithms have two major limitations: They are not suitable

TABLE II. CLASSIFICATION RATES (%) ON VOC AND UCI DATASETS

Linear
Methods

Ionosphere Iris IS PID VOC Wine WDBC

GEPSVM 74.91,
8.5

97.33,
7.2

68.23,
5.5

75.00,
1.3

64.07,
4.5

81.48,
1.14

88.23,
1.2

TSVM 88.86,
3.6

96.67,
3.3

91.94,
6.1

77.21,
8.1

79.57,
3.4

97.65,
8.3

96.48,
9.0

SVM 86.59,
1.5

93.33,
7.5

92.55,
2.1

77.22,
1.2

75.76,
7.4

97.17,
0.2

96.66,
4.1

2S-BFHC 85.46,
4.3

98.00,
9.2

90.00,
3.2

75.91,
5.2

79.73,
2.7

98.35,
5.1

97.54,
7.0

Kernel
Methods

GEPSVM 88.87,
4.4

95.33,
8.3

87.83,
0.2

75.92,
0.4

82.71,
9.4

97.06,
6.3

95.07,
0.1

TSVM 93.72,
5.4

94.00,
7.2

92.90,
9.1

77.74,
3.2

91.74,
2.3

97.76,
2.1

97.53,
9.0

SVM 94.30,
1.3

96.67,
0.4

97.14,
4.0

77.61,
8.1

93.10,
6.3

97.76,
2.1

97.54,
7.0

2S-BFHC 93.73,
4.3

97.33,
7.2

96.71,
6.0

76.42,
0.2

93.40,
2.4

97.76,
2.1

97.89,
8.1

for large-scale classification problems since one has to make
eigen-decomposition on the resulting large matrices or inverses
of those large matrices must be taken. Existing classifiers are
also not efficient in terms of real-time performance because the
classifiers do not return sparse solutions. In this paper, we have
proposed a novel hyperplane fitting classifier that does not
have the limitations mentioned above. More precisely, the
proposed classifier uses SMO algorithm, which does not
require constructing large Hessian matrices, making the
method suitable for large-scale problems. Moreover, the
returned solutions are sparse similar to SVMs, thus the
proposed method is very efficient in terms of testing time.

We tested classification accuracies of the proposed method
on both synthetic and real-world classification problems. The
proposed method typically outperformed other best-fitting
hyperplane classifiers in most of the cases, and it produced
comparable results to the SVM classifier.

ACKNOWLEDGMENT

This work was supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) under
Grant number EEEAG-109E279.

REFERENCES
[1] C. Cortes, V. Vapnik, “Support vector networks,” Machine Learning,

vol. 20, pp. 273-297, 1995.

[2] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Advances in Kernel Methods: Support Vector
Learning, MIT Press, Cambridge, pp. 185-208, 1999.

[3] R.-E. Fan, P.-H. Chen, C.-J. Lin, “Working set selection using second
order information for training SVM,” Journal of Machine Learning
Research, vol. 6, pp.1889-1918, 2005.

[4] T. Joachims, “Making large-scale support vector machine learning
practical,” Advances in Kernel Methods: Support Vector Learning, MIT
Press, Cambridge, pp. 185-208, 1999.

[5] O. L. Mangasarian, E. W. Wild, “Multisurface proximal support vector
machine classification via generalized eigenvalues,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, pp. 69-74, 2006.

[6] G. Fung, O. L. Mangasarian, “Proximal support vector machine
classifiers,” Proceedings of Knowledge Discovery and Data Mining,
2001.

[7] Jayadeva, R. Khemchandani, S. Chandra, “Twin support vector
machines for pattern classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, pp. 905-910, 2007.

[8] Y.-H. Shao, C.-H. Zhang, X.-B. Wang, N.-Y. Deng, “Improvements on
twin support vector machines,” IEEE Transactions on Neural Networks,
vol. 22, pp. 962-968, 2011.

[9] M. A. Kumar, M. Gopal, “Least squares twin support vector machines
for pattern classification,” Expert Systems with Applications, vol. 36,
pp. 7535-7543, 2009.

[10] M. A. Kumar, M. Gopal, “Application of smoothing technique on twin
support vector machines,” Pattern Recognition Letters, vol. 29, pp.
1842-1848, 2008.

[11] S. Gao, Q. Ye, N. Ye, “1-Norm least squares twin support vector
machines,” Neurocomputing, vol. 74, pp. 3590-3597, 2011.

[12] X. Peng, “TPMSVM: A novel twin parametric-margin support vector
machine for pattern recognition,” Pattern Recognition, vol. 44, pp. 2678-
2692, 2011.

[13] W. J. Scherier, A. Rocha, A. Sapkota, T. E. Boult, “Towards open set
recognition,” IEEE Transactions on PAMI, vol. 35, pp. 1757 – 1772,
2013.

[14] H. Cevikalp, B. Triggs, H. S. Yavuz, Y. Kucuk, M. Kucuk, A. Barkana,
“Large margin classifiers based on affine hulls,” Neurocomputing, vol.
73, pp. 3160-3168, 2010.

[15] H. Cevikalp, B. Triggs, “Efficient object detection using cascades of
nearest convex model classifiers,” IEEE Society Conference on
Computer Vision and Pattern Recognition, 2012.

[16] X. Peng, “Building sparse twin support vector machine classifiers in
primal space,” Information Sciences, vol. 181, pp. 3967-3980, 2011.

[17] A. L. Yuille, A. Rangarajan, “The concave-convex procedure (CCCP),”
Advances in Neural Information Processing Systems, 2002.

[18] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale
transductive SVMs,” Journal of Machine Learning Research, vol. 7, pp.
1687-1712, 2006.

