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Abstract We describe an efficient approach to visual object
detection that uses short cascades of asymmetric ‘one class’
classifiers to quickly reject negatives (windows not cen-
tered on an object of the desired class) within a sliding
window framework. Current detectors typically use binary
discriminants such as Support Vector Machines or Boosting
to implement each stage of the cascade. These treat the pos-
itive and negative classes symmetrically. We argue that this
is suboptimal because object detectors typically see a great
many negative windows with extremely diverse contents and
only a few positive ones with comparatively coherent con-
tents. We show that asymmetric representations that focus
on tightly modeling the extent of the rare, coherent positive
class can lead to simpler classifiers and faster rejection. Our
cascades use asymmetric classifiers based on simple convex
models to progressively tighten the bound on the positive
class. They typically start with a conventional linear SVM
for initial pruning, followed by a cascade of linear distance-
to-hyperplane and interior-of-hypersphere classifiers and
finishing with a kernelized hypersphere classifier. We show
that the resulting detectors have competitive performance
on the Labeled Faces in the Wild dataset and state-of-the-
art performance on the FDDB face detection, ESOGU face
detection and INRIAPerson datasets. The results on the PAS-
CAL VOC 2007 dataset are also respectable given that they
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use neither object parts nor context. The one-class formula-
tions provide significant reductions in classifier complexity
relative to the corresponding two-class ones, making them
suitable for real-world applications.
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1 Introduction

Object class detection is an important computer vision task in
which all instances of a given generic object class that occur
in an image must be recovered and labeled with their image
positions and scales. Given its many applications (video
surveillance, automatic target detection, content-based image
retrieval, driver-assistance systems, interactive games,...) it
has received a great deal of attention, but despite signif-
icant advances it remains challenging. Natural categories
such as people, dogs or chairs have a bewildering variety of
shapes, deformations and appearances, and even for a known
instance, view-point changes can produce large variations in
image layout and scale. Lighting variations, complex back-
grounds, occlusion and truncation make the problem still
harder.

Two factors that are critical for an object detectionmethod
are the features used to encode the image content and the
classifiers used to make object/non-object decisions based
on them. Regarding features, early detectors used raw pixel
values (Rowley et al. 1998), wavelets (Papageorgiou and
Poggio 2000), edges (Amit and Geman 1999), and Gabor fil-
ter responses (Shams and Speslstra 1996). Histogram-based
features have also become very popular owing to their effi-
ciency and good performance. Many of the histogram-based
feature sets are based on oriented image gradients, including
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SIFT (Lowe 2004), SURF (Bay et al. 2008), Histogram of
Oriented Gradients (HOG) (Dalal and Triggs 2005), PHOG
(Vedaldi et al. 2009), Generalized Shape Context (Belongie
et al. 2002) andLocal EdgeOrientationHistograms (Levi and
Weiss 2004). Others are based on local patterns of qualita-
tive gray-level differences, including Local Binary Patterns
(LBP) (Ahonen et al. 2006; Wang et al. 2009), and Local
Ternary Patterns (LTP) (Tan andTriggs 2010).More recently,
CNN (Convolutional Neural Network) (Girshick et al. 2014;
Li et al. 2015; Angelova et al. 2015) features learned by the
supervised deep neural networks dominated the field. Empir-
ically, the best feature set depends on the application and new
ones are being developed all the time. Many recent methods
combine several sets for better results, e.g. , simply concate-
nating them to form an extended feature vector (Harzallah
et al. 2009; Wang et al. 2009; Hussain and Triggs 2010),
finding optimal combination coefficients at the learning stage
(Vedaldi et al. 2009; Varma and Ray 2007), or using boost-
ing or other sparse methods to select informative subsets of
features (Viola and Jones 2004; Perrotton et al. 2010).

Regarding the decision rule, this must use the features
to decide whether the moving detection window currently
contains a correctly framed class instance or something else
(background, a partial or incorrectly framed instance, another
class, etc. ). This discrimination problem is usually formu-
lated in a way that treats the “object” and “anything else”
categories symmetrically. Many formalisms have been used
(nearest neighbors, classification trees, probabilistic mod-
els, neural, convolutional or deep networks,...) but two have
received much of the attention owing to their interesting
properties: Boosting based cascades, and Support Vector
Machines. The seminal work of Viola and Jones (2004) pro-
duced a very efficient face detector by using AdaBoost to
train a cascade of pattern-rejection classifiers over rectan-
gular wavelet features. Li et al. (2015) and Angelova et al.
(2015) applied boosting cascade with CNN features whereas
Benenson et al. (2012) and Orozco et al. (2015) used boost-
ing cascade classifiers with HOG like features for face and
pedestrian detection tasks. Each stage of the boosting cascade
is designed to reject a considerable fraction of the negative
examples that survived to that stage while passing almost all
of the positives. As a result, the majority of windows that
do not contain object class are rejected early in the cascade
with comparatively little computation. Rejection typically
becomes harder as the cascade progresses, so the one-stage
classifiers grow in complexity.

Although Boosting based cascades give excellent results
for real-time face/pedestrian detection, Support Vector
Machine (SVM) classifiers are currently a more common
choice for general object detection under less stringent
time constraints (Harzallah et al. 2009; Felzenszwalb et al.
2008; Dalal and Triggs 2005; Vedaldi et al. 2009; Aldavert
et al. 2010; Girshick et al. 2014). Linear SVMs are usually

preferred for their simplicity and speed although it is well-
established that kernel SVMs typically give higher accuracy
at the cost of greatly increased computational complexity
(Vedaldi et al. 2009). For this reason, several state-of-the-art
methods use short cascades in which the early stages use lin-
ear SVMs to reject most of the negative windows quickly,
whereas the later stages use nonlinear SVMs to make the
final decisions (Harzallah et al. 2009; Vedaldi et al. 2009).
Instead of using a cascade, Vedaldi and Zisserman (2012)
approximate the nonlinear SVM kernels by explicitly map-
ping data onto a higher dimensional space, and report much
higher accuracies over linear SVMs for pedestrian detection.
Malisiewicz et al. (2011) introduced Ensemble of Exemplar
SVMs which uses an ensemble of linear SVM classifiers
trained with a single positive example. However using a
single positive example for each classifier makes the classi-
fication problem extremely imbalanced and the method does
not generalize well as demonstrated in our experiments. Fur-
thermore, the detector is too slow for real-time applications
since the testing time is linearly related to the number of
positive samples in the training set.

Although symmetric binary classifiers are currently the
norm, several detectors have exploited ‘one class’ methods,
i.e. classifiers that abandon the formal equivalence between
the positive and negative classes and adopt asymmetric rep-
resentations or loss functions designed to provide tighter
modeling of the positive class.1 For example, Jin et al. (2004)
used a kernelized hypersphere classifier for face detection.
This gives an accurate approximation to the face class but
it is computationally expensive owing to the need to eval-
uate kernels against many support vectors. To decrease the
run time they divide the detection window into nine blocks
and apply the nonlinear classifier only if it passes various
heuristic tests such as eye regions being darker than cheeks
and the bridge of nose. Thus, the method applies only to face
detection. The preliminary version of the current paper used
a cascade of linear hyperplane and linear/kernelized hyper-
sphere models for face and person detection (Cevikalp and
Triggs 2012). In work done independently of ours, Scheirer
et al. (2013) confirm that object detectors can be improved
by using one-class methods.

Another important issue is the method used to conduct
the image search. Naive sliding window approaches tend
to be prohibitively slow because they must evaluate their
full feature vectors and window-level classifiers at every
possible location and scale in the image. Methods such
as integral images (Viola and Jones 2004), integral his-

1 Thename“one class” is conventional. It emphasizes the origin of these
methods in density modeling and the predominant role of the positive
class but it is something of amisnomer in that negative examples usually
can be, often are, and in some formulations must be included during
training.
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tograms (Porikli 2005), distributive histograms (Sizintsev
et al. 2010) and other histogram-based approaches (Wei
and Tao 2010) are often used to facilitate feature computa-
tion. Similarly, cascade-based classifier architectures (Viola
and Jones 2004) allow unpromising windows to be pruned
without a full evaluation, and alternatives such as branch-and-
bound search have also been developed (Lampert et al. 2008).
More recently, Girshick et al. (2014) used a sophisticated
algorithm to return the most promising candidate windows
to evaluate classifiers.

Many authors have demonstrated the benefits of flexible
object models that allow several possible pose or appear-
ance classes to compete and that incorporate movable object
parts or fragments to deal with finer pose and shape vari-
ations. Notably, Felzenszwalb et al. (2010b) describe an
elegant two-level framework in which several root appear-
ance models compete, each with its own set of movable parts
located in such a way as to optimize the score of a global
feature vector that includes both root and part features. One
of its key contributions is a ‘latent SVM’ methodology that
not only estimates the unknown part position variables and
appearance-class labels during both training and testing, but
also provides a fine-tuning of the labeled instance positions
during training, thus greatly sharpening the resulting mod-
els and allowing training from less precise annotations. This
very successful approach has been extended in several ways,
for example to multiple layers (Zhu et al. 2010) and cas-
cade deformable part models (DPMs) (Felzenszwalb et al.
2010a) which speeds up the DPMs detector hierarchically
by pruning low scoring hypotheses obtained from the best
configurations of subsets of the parts.

The present paper describes object detectors based on
short cascades consisting of a linear SVM pre-processor
followed by series of one-class methods, first a sequence
of linear distance-to-hyperplane classifiers, then linear and
kernelized interior-of-hypersphere classifiers. The algorithm
allows for multiple roots (appearance classes) and latent
training, but for simplicity it does not currently incorpo-
rate parts. These could easily be added after the final stage
classifier (c.f. Cevikalp et al. 2013) but we have not done
this below so that the experiments can focus on the perfor-
mance of the cascade process itself. It is not clear how useful
parts would be in earlier stages of the cascade owing to their
high computational cost relative to the root and the issue of
whether and how tomaintain part-position consistency down
the cascade. To this end, a similar approach can be used as
in Felzenszwalb et al. (2010a) by replacing SVM classifier
with the proposed cascade of linear classifiers and estimat-
ing a separate threshold for each classifier in the cascade and
using these thresholds hierarchically for pruning low scoring
hypotheses.

A preliminary version of this work appeared in Cevikalp
and Triggs (2012). The current paper adds multiple roots,

latent training, an alternative form of hyperplane classifier, a
reduced set method, many small refinements, and additional
experiments and discussion.

2 Method

In sliding window object detectors, the positives are the
detectionwindows that correctly frame a valid instance of the
desired class,whereas the negatives are thewindows that con-
tain anything else at all, including background, other classes
and invalid or incorrectly framed instances. The classifica-
tion problem is thus both imbalanced—only a tiny fraction
of windows are positives—and asymmetric—the positives
typically form a compact, coherent group, while the nega-
tives (being defined negatively) are much more diverse and
hence harder to model. This is reflected in the learned clas-
sifiers. For example in SVM based detectors it is common
to find that most of the support vectors are negative ones,
needed to characterize the many ways in which a window
can fail to be a valid, well-framed class instance. This hap-
pens even when the bulk of the negative population is well
separated from the decision surface and hence comparatively
easy to classify: the remaining ‘hard negatives’ (ones close
to the decision surface) still outnumber the positives and
it is the necessity of finding and incorporating these that
makes the learning problem so challenging. In fact, with
current feature sets it is not uncommon to find that the
hard negatives completely surround the positives in feature
space—c.f. the scatter plots of projected class densities in
Hussain (2011), and also its observation that many detectors
that work extremely well using their final thresholds actu-
ally misclassify most of their training positives if the raw
threshold returned by the SVM is used instead. As a result,
linear SVMs are not very reliable for object detection in the
sense that they need a fine tuning of the error penalty param-
eter C (small changes of this parameter causes a large drop
in accuracy), and increasing training set size may decrease
the detection performance instead of an improvement in the
accuracy (Zhu et al. 2012).

Given this, it seems appropriate to use asymmetric (‘one
class’) classifiers that focus on tightly bounding the posi-
tive class and/or multi-stage architectures that can rapidly
prune away the mass of easy negatives and progressively cut
out a compact, coherent positive region from a broad sea
of harder negatives. Our approach combines these princi-
ples by using a cascade of one class classifiers to enforce
increasingly restrictive convex bounds on the positive class.
The current version has four stages. The first uses a standard
linear SVM to eliminate the bulk of the easy negatives and
thus reduce the training set to a more manageable size. The
second applies a series of distance-to-hyperplane tests (i.e.
absolute values of linear forms, |w�

k x + bk | ≤ τk), thus lim-
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iting the positives to a (usually open-ended) parallelepiped.
The third limits them to the interior of an affine hypersphere
by enforcing a distance constraint ‖x − c‖ ≤ r . Finally, the
fourth stage uses either a kernelized hypersphere classifier
or a kernelized SVM to enforce further nonlinear bounds.
We do not claim that this particular sequence is optimal but
in practice it does seem to provide effective search prun-
ing at a modest computational cost—essentially a single dot
product for each classifier except the last. There are many
other forms of region-bounding classifiers that could be tried
including lower-dimensional affine subspaces, convex hulls,
and hyper-disks and hyper-ellipsoids (Cevikalp and Triggs
2008; Cevikalp et al. 2010).

Our proposed cascade classifier differs from other cas-
cade detectors (Viola and Jones 2004; Harzallah et al. 2009;
Malisiewicz et al. 2011; Li et al. 2015; Angelova et al. 2015;
Benenson et al. 2012) in the way that we focus on approx-
imating positive class regions by using one-class classifiers
and use the distances to the estimated positive class regions to
accept/reject test windows. As a result, the proposed cascade
classifier achieves very good accuracies for face and pedes-
trian detection tasks where the positive class samples have
a compact distribution. To deal with diversified appearances
resulting from sparse and irregular distributions, we need a
sophisticated clustering algorithm that will discover com-
pact subgroups before application of the method. However,
as the number of positive samples is increased, the sparse
and irregular distributions of positive classes will become
denser and it will be a more smooth nonlinear manifold as

illustrated in Fig. 1. Therefore, we believe that our proposed
cascade classifier will also be successful for such cases. We
now present each stage in detail, then describe the train-
ing methodologies used for our basic and multi-root object
detectors.

2.1 Stage 1: Linear SVM

The first stage of the cascade simplifies the task of the later
stages by using a linear SVM to eliminate as many of the
easier negatives as possible. To fix notation, we work with
input examples (feature vectors) x ∈ Rd and their class labels
y ∈ {−1,+1}: +1 for the positive (object) class and −1
for the negative (background) one. The SVM classifies an
example as a positive if and only if w�x + b > 0, where w
is the SVM’s weight vector and b is its offset. For training
we are given a set of labeled examples {xi , yi }, i = 1, ..., n.
The formulation (Cortes and Vapnik 1995) tries to find aw, b
that not only correctly classify the training samples, but that
separate the positives from the negatives by a fixed margin
of ±1, i.e. yi (w�xi + b) ≥ 1 for all training samples. It does
this by solving a convex program that penalizes both large
‖w‖ and margin violations:

min
w,b,ξ≥0

1

2
‖w‖2 + C

∑

i

ξi

s.t. yi (w�xi + b) > 1 − ξi .

(1)

Fig. 1 (Best viewed in color).
An illustration of pruning in our
four-stage cascade. Samples
from the object (positive) and
background (negative) classes
are shown respectively as blue
triangles and black dots. a The
first stage eliminates most of the
easier negatives using a linear
SVM. The surviving negatives
are shown as red dots. b The
second stage retains only the
samples that lie close to each of
a set of hyperplanes (the dashed
line and its two borders). c The
third stage retains only the
samples that lie within a
hypersphere (i.e. close to its
central point). d The final stage
is a kernelized classifier that
confines the surviving samples
to a nonlinear acceptance region
(Color figure online)
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Here, the ξi are slack variables that quantify anymargin viola-
tions andC is an error penalty set by the user. The formalism
can be used to learn nonlinear classifiers by applying the
‘kernel trick’.

SVM training has received a lot of attention and there are
efficient algorithms that allow large problems to be handled
reliably. We used LIBOCAS2 to train linear SVMs and LIB-
SVM3 to train kernelized ones.

2.2 Stage 2: Distance-to-Hyperplane Classifiers

The second stage of the cascade applies a series of filters of
the form |w�

kx + bk | ≤ τk to the examples, i.e. it constrains
them to lie in a (usually open and unbounded) parallelepiped
formed by the intersection of a set of slab shaped regions [the
points within distance τk of hyperplane (wk, bk)]. Ideally,
for each hyperplane in turn, the remaining positives should
lie close to it while the remaining negatives lie far from it.
The problem is thus one of robust hyperplane fitting to the
positives, penalized by closeness to the negatives. This is
potentially non-convex with a combinatorial number of local
minima: if the negatives lie in several groups themethodmust
decide which groups should lie to the left of the hyperplane
andwhich to the right of it.We tested two algorithms that con-
trive to avoid this issue. The first adopts an algebraic distance
instead of a Euclidean one, reformulating the fit as a general-
ized eigenproblem. The second requires all of the negatives
to lie to the left, reformulating the fit as a quadratic program
that generalizes linear SVM. In either case, a sequence of
filters is then found by repeatedly fitting a new hyperplane
to the surviving training examples and deleting the examples
that it eliminates.
AlgebraicMethod: LetX+ andX− be matrices whose rows
are the surviving training samples of respectively the positive
and the negative classes. For convenience, define extended
matrices X̄± = [X± e±]where e± are corresponding column
vectors of ones. The hyperplane that gives the best least-
squares fit to the positive data alone is

min
w,b,‖w‖=1

‖X+ w + e+ b‖2 = min
z

z�Gz
‖w‖2 , (2)

where z = (w
b

)
and G = X̄�+X̄+. To give a background-

sensitive fit (Mangasarian and Wild 2006), we instead
minimize the regularized Rayleigh quotient

2 http://cmp.felk.cvut.cz/~xfrancv/ocas/html/index.html.
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm.

min
w,b,‖w‖=1

‖X+ w + e+ b‖2
‖X− w + e− b‖2 + δ (‖w‖2 + b2)

, (3)

which can be re-expressed as

min
z

z�Gz
z�Hz

(4)

where H = X̄�− X̄− + δI and δ is a user-set regulariza-
tion constant. The solution reduces to finding the smallest-λ
eigenvector of the generalized eigenproblem Gz = λHz
and renormalizing it to find w, b.

Although thismethod is simple, it implements an algebraic
notion of distance that is typically far from the Euclidean one,
it is not robust to outliers because it is based on minimizing
sums of squared distances, and it is computationally expen-
sive because it must solve a large generalized eigensystem.
It worked well in the face and person detection experiments
but not in the PASCAL VOC ones, presumably because
these have more outliers and poorer conditioning owing to
their high intra-class variability and inter-root competition
for examples.
QPMethod:The secondmethod adopts amargin-based cost
function that requires the positives to lie within ±Δ (i.e.
Euclidean distance±Δ/‖w‖) of the hyperplane and the neg-
atives to lie at least 1+Δ to the left of it (negative samples are
separated from the positives by a margin of 1/‖w‖), formu-
lating this as an SVM-like program that can be solved using
any Quadratic Program solver:

min
w,ξ≥0

1

2
||w||2 + C+

∑

i

(ξi + ξ∗
i ) + C−

∑

j

ξ j

s.t. w�xi + b ≤ Δ + ξi ,

w�xi + b ≥ −Δ − ξ∗
i , i ∈ I+,

w�x j + b ≥ Δ + 1 − ξ j , j ∈ I−.

(5)

Here, C± are user-defined weightings on errors in positive
and negative training examples, I± are sets that index these
examples, and Δ is a parameter that defines the assumed
ratio between the width of the positive class and the width
of the positive-to-negative margin.4 By shifting b by proper
amount, it is easy to see that this model can also be viewed
as linear SVM with an additional penalty on positives that
have over-large values of w�x + b. Also note that although
this is a one-class method in the sense that it treats the
classes asymmetrically and encourages only the positive one
to be compact, negative training examples are essential here:

4 It would be possible to learnΔ by including a (weight) · Δ term in the
cost function but we have not done this here owing to a limitation of the
QP solver that we used. Instead we setΔ directly using cross validation.
(Cross validation might be needed in any case, to set the weight).
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without examples to enforce the±1positive-to-negativemar-
gin, w would simply shrink to zero. (The most obvious
negative-free formulation—robust L1 or SVM-regression-
loss hyperplane fitting with a ‖w‖ = 1 constraint – is
non-convex). Overall, this method is restricted to problems
in which the hyperplane can be placed so that most of the
negatives lie to one side of it, but when this occurs it tends to
be significantly more robust than (3).
Other Approaches. A related formulation was used for
‘open set recognition’ problems in which there are samples
belonging to unknown classes during testing (Scheirer et al.
2013). As here, the positives are constrained to lie between
two parallel hyperplanes. Their offsets are obtained using
validation data but their orientation is only fixed subopti-
mally, using the hyperplane returned by either a 1-class SVM
(Schölkopf et al. 2001) or a classical binary one.

One could also intersect half-spaces instead of slabs, thus
bounding the positives to a polyhedral region. There are
several algorithms for constructing such polyhedra (Murat
Dundar et al. 2008; Gasimov and Ozturk 2006; Tenmoto
et al. 1998; Murty et al. 1994) but most of them do not scale
well with training set size and some need ancillary clus-
terings or labellings. In any case, enforcing a well-chosen
upper bound on w�x + b in addition to the lower one has
a negligible computational cost and it can only improve the
results, particularly as its tighter pruning may allow more
scope for optimizing the hyperplane orientation in both the
current stage and subsequent ones.

2.3 Stage 3: Linear Hypersphere Classifier

The third stage of the cascade applies a single linear SVDD
classifier (Tax andDuin 2004). SVDD is a one class approach
that finds a hypersphere ‖x− c‖ ≤ r that bounds most of the
positives and excludes most of the negatives. Here, c is the
sphere’s center and r is its radius. The parameters are found
by solving the quadratic program

min
c, r≥0, ξ≥0

r2 + γ+
∑

i

ξi + γ−
∑

j

ξ j

s.t. ‖xi − c‖2 ≤ r2 + ξi , i ∈ I+
‖x j − c‖2 ≥ r2 − ξ j , j ∈ I−

(6)

or its dual

min
α≥0

∑

i, j

αi α j
〈
xi , x j

〉 +
∑

l,m

αl αm 〈xl , xm〉

− 2
∑

l, j

αl α j
〈
xl , x j

〉 +
∑

l

αl ‖xl‖2 −
∑

i

αi ‖xi‖2

s.t.
∑

i

αi −
∑

l

αl = 1, αi≤γ+, αl≤γ−

i, j ∈ I+, l,m ∈ I−.

(7)

Here, 〈−〉 represents the (possibly kernelized) inner product,
the αi are Lagrange multipliers, and the γ± ∈ [1/n±, 1] are
ceiling parameters that can be set to values less than one to
reduce the influence of outliers. The objective is strictly con-
vex so a unique globalminimumexists. The solution depends
only on the active support vectors (the training examples
lying exactly on the hypersphere), which makes evaluating
the model more efficient in the kernelized case. One can
also enforce a nonzero margin between the positives and the
negatives. An alternative to (6) is to append an additional
component ‖x − c′‖2 to the feature vector for some c′ and
train a linear SVM: the resulting model implicitly encodes
hypersphere constraints similar to (6) so long as c′ is not too
far from the final c and the new feature is scaled so that the
corresponding coordinate of w does not perturb ‖w‖2 too
much.

Large-scale problems of the form (7) can be solved with
Sequential Minimal Optimization (SMO) (Platt 1998) using
only the Hessian of the currently-active set of examples at
each iteration. We revised the CMP quadratic programming
software5 for this, allowing us to solve problems with mil-
lions of variables in a reasonable time. Given the optimal α,
the sphere center is c = ∑

i αi xi − ∑
j α j x j , from which

the radius r can be found using any active support vector.
In practice we find that the hypersphere stage comple-

ments the precedingoneswell, rejectingmost of the surviving
false positives. Including the negative examples significantly
improves the performance of (6) (particularly when the pos-
itive training set is small, c.f. the person detector below) but
it is also costly in training time. For this reason we include
only the positives during the initial rounds of latent training
described in Sect. 2.6.

2.4 Stage 4: Kernelized Hypersphere Classifier

The final stage of our cascade is a single kernelized hyper-
sphere classifier. A kernelized SVM can also be used if that
works better. Kernelization supplies nonlinear classifiers that
allow finer discrimination than the preceding linear stages
in return for increased computation for the few examples
that reach this stage. A kernel is a function that encapsulates
the result of mapping points to some hidden internal feature
space and evaluating the inner product there, k(xi , x j ) =〈
φ(xi ), φ(x j )

〉
, where φ() is the implicit mapping. To ker-

nelize (7) we simply replace the inner products
〈
xi , x j

〉
with

kernel evaluations k(xi , x j ). Training remains straightfor-
ward, but evaluating the distance from an incoming sample
x to the center of the bounding hypersphere requires kernel
evaluations k(xi , x) against all of the support vectors xi . In
practice only a small fractionof the training examples turn out
to be support vectors but there can still be a considerable num-

5 http://cmp.felk.cvut.cz.
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ber of these, making kernel SVDD classifiers significantly
more expensive than their linear counterparts. However in
our applications they at typically least an order of magnitude
faster than the corresponding kernel SVM. Kernel SVM’s
seem to require large numbers of negative support vectors
to deal with their hard negatives whereas kernel SVDD’s
need comparatively few owing to their stronger reliance on
positive modeling—it is harder for a negative to lie within
the well-bounded acceptance region defined by a hyper-
sphere than it is for it to lie within an unbounded half-space.
We believe that this makes kernel SVDD a better default
choice than kernel SVM for terminal stages of detection
cascades.

2.5 Speed Improvement Using Reduced Set Methods

The speed of the kernelized final-stage classifier can be
improved by reducing its set of support vectors. There are
many methods for doing this for kernelized SVM and PCA
(Schölkopf et al. 1999; Mika et al. 1999; Burges 1996).
Here we use a Reduced Set method based on the sim-
ple iterative subspace estimation algorithm of Mika et al.
(1999).

Running a kernelized classifier essentially reduces to eval-
uating sums of the form

∑ns
i=1 αi k(xi , x) for given sets of

weights {αi } and support examples {xi }. This corresponds to
a dot product 〈
,φ(x)〉 in the implicit feature space, where

 = ∑ns

i=1 αi φ(xi ). (In SVDD 
 encodes the hypersphere
center, in SVM the hyperplane normal). Reduced Set meth-
ods attempt to find a smaller set of examples zi and weights
βi that approximates 
 well, i.e.

ns∑

i=1

αi φ(xi ) ≈
nz∑

i=1

βi φ(zi ), (8)

where nz � ns . Given any {zi }, their optimal reduced
weights {βi } can be found by least squares regression, giving

β = (Kzz)−1Kzx α, (9)

whereKzz andKzx are respectively the matrices with entries
k(zi , z j ) and k(zi , x j ). Finding an optimal set of {zi } is hard
in general, but for Gaussian kernels and positive {αi } the best
single z vector is the global maximum of

∑
i αi k(xi , z). It is

also useful to place z’s near the other local maxima of this,
and such maxima can be found by simple mean shift hill
climbing:

zt+1 =
∑

i wi (zt ) xi∑
i wi (zt )

with wi (z) = αi exp
(
−||z−xi ||2

γ

)
.

(10)

Algorithm 1 Algorithm for Finding a Reduced Set of
Gaussian Support Vectors

Input:
X = [x1...xns ]: initial set of support vectors
α = [α1...αns ]: initial set of expansion coefficients
nz : number of reduced support vectors
Output: Z and β

Initialization:
X0 = X, α0 = α, Z = [ ], β = [ ].
Description:
for i = 1 : nz do
X = [X0, Z], α = [α0; −β];
z0 = randn(d, 1);
while ||zt+1 − zt || ≥ tol do

wi t = αi exp(−||zt − xi ||2/γ );
zt+1 = (

∑
i wi t xi )/(

∑
i wi t );

end while
Z = [Z, zt+1];
β = (Kzz)−1 Kzx0 α0

end for

To find {zi } we thus proceed greedily, repeatedly finding a
random local mode and subtracting out its contribution from
the cost—see Algorithm 1.

2.6 Training Methodology

For the rigid (single root) object detection problems given
in Sects. 3.1 and 3.2 we proceed as follows. We choose the
detector window, using statistics of the training annotations
to set its aspect ratio and setting its size either by finding
the smallest size that provides sufficient accuracy on a cross-
validation set (face detection), or by using the default size
from the data set (person detection). We rescale and crop the
positive training samples to the chosen window dimensions,
and randomly sample windows from the negative (object-
free) training images to create an initial negative training
set. The visual feature vectors of these windows are used
to train an initial cascade. This is scanned over the training
images to collect hard examples: false positives—detections
that either do not overlap an annotation or that overlap by less
than 25%—and annotated objects that were missed. Hard
negatives are collected from the positive images as well as
the negative ones because this improves the results, espe-
cially for person detection. The hard examples are added to
the initial training set, trimming it to fit into RAM by sort-
ing the negatives by detector score and keeping those with
the highest scores, then the cascade is retrained. This proce-
dure is repeated several times. For person detection we also
enlarged the positive training set by including windows from
slightly perturbed annotations—this significantly improves
the results.

The PASCAL VOC data set has large within-class pose
and appearance variations and also significant inter-annotator
variability. To handle this we used multiple root detectors in
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Algorithm 2 Latent Training for Multi-Root Classifier Cascade

Input:
A set of positive and negative training images annotated with object bounding boxes, the number of roots k, the number of iterations of latent search
Nlatent, the number of iterations of hard negative search Nhardneg, the maximum number of negative samples to use M .
Phase I - Initialization:
(i) Sort the positives by bounding box aspect ratio and divide the list into k equal groups.
(ii) For each group m = 1, ..., k:

1. Determine its detection window dimensions from its bounding box statistics.
2. Rescale and crop the positive examples to the window size. Compute feature vectors for these and for their left-right reflections. Cluster the

vectors to initialize a mirror-symmetric pair of root components.
3. Create a negative training set by randomly sampling windows from the negative images.
4. Train the linear stages of the cascade using these training sets.

Phase II - First Latent Layer:
For i = 1, ..., Nlatent:

1. Using the current linear cascade, re-estimate the position of each positive example by searching all locations whose bounding boxes overlap
its annotated box by at least 70%.

2. For j = 1, ..., Nhardneg:

(a) Randomly sample a subset of negative images and scan them. Retain the hardest M negatives (the negative windows with the highest
scores).

(b) Re-train the linear cascade.

Phase III - Second Latent Layer (Merging Linear and Kernelized Classifiers):

1. Re-estimate the positive locations as in Phase II. Scan all of the negative images retaining the hardest M negative windows.
2. Train the nonlinear classifier stage (kernelized hypersphere or SVM).
3. Re-estimate the positive locations and re-scan for the M hardest negatives using the full (linear and nonlinear) cascade.
4. Re-train the entire cascade using this final training set.

Phase IV (Optional) - Run Time Optimization:
If the nonlinear classifier is too slow, simplify it using the Reduced Set algorithm.

a latent training framework similar to Felzenszwalb et al.
(2010b). Roots are competing sub-detectors that capture dif-
ferent possible pose or appearance subclasses, for example
front-on and side-on views of a person. The basic idea of
latent training is that object instances have hidden variables
that encode unknowns such as their pose or appearance sub-
class, the positions of their parts, or their exact locations
relative to their annotation boxes. Training proceeds by hill-
climbing: finding hidden variable values that maximize the
score of the current detector, then re-training using these
assignments. The resulting flexibility makes latently trained
multi-root detectors particularly effective for highly variable
data sets like PASCAL VOC.

In our case each root is a separate cascade. The roots
compete as usual (the one with the highest score on an exam-
ple ‘owns’ that example for the current training round) and
they can have different window sizes and aspect ratios. The
user sets the number of roots 2k. To choose the root aspect
ratios we sort the training annotations by aspect ratio, par-
tition them into k equal groups, and find the mode of each
group by histogramming. To choose the root window sizes
we take the largest window that is smaller in area than 80%
of the group’s annotation boxes. For each group we train
two roots that are left-right mirror images of one another
(Hussain 2011; Felzenszwalb et al. 2010b). The initial ‘left
facing’ versus ‘right facing’ partition for this is obtained

using a specialized k-means algorithm that separates mirror
symmetric pairs (Felzenszwalb et al. 2010b). [Wehave devel-
oped a more sophisticated method for this that uses convex
hull classifiers instead of k-means (Cevikalp et al. 2013), but
here we use k-means to facilitate comparison with (Felzen-
szwalb et al. 2010b)].

Latent training is used both for the root assignment deci-
sions and to refine the locations of the training samples
within their annotation boxes, thus mimicking the freedom
that the final detector has when localizing detections (Hus-
sain 2011; Felzenszwalb et al. 2010b; Zhu et al. 2010).
During training, initial detectors are trained using the human-
supplied annotation boxes, then in later rounds all locations
near the annotation box are evaluated using the current
detector and the one that gives the best score is used for
retraining. Similarly, the hard negative locations are the ones
found using the current detector. The complete procedure
is summarized in Algorithm 2. To reduce training times,
the linear hypersphere classifier (6) is trained using pos-
itives alone in Phases I and II, and using both positives
and negatives in Phase III. Therefore, the training times of
Phase I and Phase II stages are very similar to the DPM
training time and we need an additional time to train the
kernelized classifier. The time needed for training kernel-
ized classifier will depend on the number of training samples
returned by negative hard-mining and positive latent search
layers.
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3 Experiments

We evaluated our approach6 with non-latent single-root
detectors on the LFW, FDDB and ESOGU face datasets
and on the INRIA Person dataset, and with multi-root latent
detectors on the PASCAL VOC 2007 dataset. The PASCAL
VOC metrics were used to assess accuracy: we report Aver-
age Precision (AP), i.e. area under the precision-recall curve,
andwedeclare a detection to be a true positive if and only if its
bounding box R overlaps any ground-truth annotation’s box
Q by more than a certain percentage, where overlap is com-
puted as area|Q∩R|

area|Q∪R| . The overlap threshold was 50%, except
for face detection which used 45%. (The existing face detec-
tors that we tested disagree on how faces should be framed.
We modified their outputs to resemble our annotations and
to compensate for this adjustment we slightly reduced the
overlap threshold required).

3.1 Face Detection

We tested our detectors on three datasets: the 13,127
image ‘Labeled Faces in the Wild’ (LFW) (Huang et al.
2007), the 2845 image ‘Face Detection Dataset and Bench-
mark’ (FDDB) (Jain and Learned-Miller 2010), and ESOGU
Faces,7 a new dataset that contains 667 high resolution color
images with 2042 annotated frontal faces. LFW contains
many faces but it is principally a face recognition dataset
not a face detection one. Its images are relatively small and
normalized so thatmost of the faces appear near themiddle of
the image with similar scales. This limits its value for testing
multi-scale detectors. We developed the ESOGU (ESkise-
hir OsmanGazi University) dataset to provide more realistic
testing on images from real world consumer snapshot collec-
tions. The ESOGU images contain faces appearing at a wide
range of positions and scales, with complex lighting, back-
grounds and occlusions. The FDDB images have a similar
degree of realism. Note that we only used annotated frontal
face images from these datasets in our experiments.
Training:Given the limitations of current publicly-available
face detector training sets, we collected 12,500 subimages of
frontal upright faces from the web for training. Most of these
are from real-world images and there is a high degree of
variability in appearance and lighting conditions. The faces
were rescaled and cropped to a resolution of 35×28 (lower
resolutions reduce the performance). For the negative set we
randomly sampled 10,000 windows from face-free image
regionswith complex backgrounds.WeusedLBP+HOGfor
the visual features. For LBP, we divided the images into four
non-overlapping quadrants and extracted descriptors from
each region using circular (8,1) neighborhoods. The result-

6 The code is available from http://mlcv.ogu.edu.tr/softwares.html.
7 http://mlcvdb.ogu.edu.tr/facedetection.html.

ing histogramswere normalized to sum to 1 and concatenated
to produce the final feature vector. For HOG, we used a grid
of 6×6 pixel cells with 9 bins of unsigned gradient orienta-
tions over color images, grouping each cell into overlapping
2×2 cell blocks for normalization as in Felzenszwalb et al.
(2008).

We trained a four stage cascade with respectively linear
SVM, linear hyperplane, linear hypersphere and kernel-
ized hypersphere classifiers. The initial cascade was used
to scan a set of thousands of images to collect additional
false negatives and false positives. These hard examples
were added to the training set, increasing the numbers of
positives and negatives to respectively about 20 and 112
k, then the cascade was retrained. When scanning images
we used detection window steps of 3 pixels horizontally
and 4 vertically, and image pyramid scales spaced by 1.15.
We apply non-maximum suppression by iteratively find-
ing the top-scoring candidate detection and eliminating any
others that overlap it. We also penalize candidates that
have little support by suppressing groups with less than 4
overlapping candidates and for the remainder heuristically
adding log(# participating candidates)/3 to the group’s top
score.
Results: Figure 2 shows some examples of face detections
on the LFW and ESOGU test sets. Table 1 gives Average
Precision scores for our 4-stage full cascade, our 3-stage lin-
ear cascade, and a simple 1-stage linear SVM on the LFW,
FDDB and ESOGU test sets. It also gives the corresponding
scores for three publicly-available detectors, the part-based
detector of Zhu andRamanan (2012), the boosted frontal face
detector of Kalal et al. (2008), and the OpenCV Viola–Jones
cascade (Viola and Jones 2004). However note that these
scores are not strictly comparable because these detectors
used different, non-publicly-available training sets.

Our full cascade was the best method tested on FDDB
and ESOGU and the second best on LFW. Our linear cas-
cade also performs respectably, especially on LFW. As
expected, the simplistic linear SVMperforms poorly, as does
the aging (but efficient) Viola-Jones approach. The Zhu–
Ramanan detector returns only face parts so its face regions
were estimated as the tightest bounding box of the parts.
This method works well with high-resolution images where
the faces are typically larger than 80 × 80 pixels. In our
experiments, it achieved the best result on LFW, but gave
the second worst accuracy for the ESOGU faces database
since there are many faces smaller than 80×80 pixels in this
database.

Figure 3 gives Precision-Recall curves for some of the
above detectors on FDDB and ESOGU. We also tested the
commercial Google Picasa person tagging tool8 informally
on ESOGU, visually counting the faces returned and treating

8 http://picasa.google.com.

123

http://mlcv.ogu.edu.tr/softwares.html
http://mlcvdb.ogu.edu.tr/facedetection.html
http://picasa.google.com


Int J Comput Vis (2017) 123:334–349 343

Fig. 2 Some examples of the output of our face detection cascade on images from the Labeled Faces in the Wild (top) and ESOGU Faces (bottom)
datasets. Most of the faces are correctly detected, but there are a few missed detections and false positives

Table 1 Average precision (%) for various face detectors on the LFW,
FDDB and ESOGU face datasets

Method LFW FDDB ESOGU faces

Full cascade 95.96 74.10 87.38

Linear cascade 94.08 69.21 79.46

Linear SVM 70.97 37.60 44.66

Zhu and Ramanan (2012) 96.90 73.47 50.55

Kalal et al. (2008) 87.89 66.25 79.67

Viola and Jones (2004) 80.23 67.14 73.61

Bold values show the best accuracies

every detection near a face as a true positive (even though
some would not satisfy the PASCAL overlap criteria) and
ignoring all of the false positives. This gave a recall rate of
91.52%, as plotted in Fig. 3.

To give an idea of the degree of pruning provided by
each stage of the cascade, of the 77 M windows scanned
on ESOGU, 686 k (0.9%) passed the linear SVM, 392 k
(0.5%) passed the linear hyperplane classifier, 65 k (0.084%)
passed the linear hypersphere classifier, and 33 k (0.043%)
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Fig. 3 Precision-Recall curves
for various face detectors on
FDDB (left) and ESOGU Faces
(right)
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passed the kernel hypersphere one. Non-maximum suppres-
sion merged these into 1887 detections (an average of 17.7
candidatewindows per detection), ofwhich 1792 (95%)were
correct. 250 (12%) of the 2042 annotated faces were missed.
Similarly, of the 175 M windows scanned on LFW, 2.5 M
(1.4%) passed the linear SVM, 1.6 M (0.9%) passed the lin-
ear hyperplane classifier, 450 k (0.26%) passed the linear
hypersphere classifier, and 312 k (0.18%) passed the kernel
hypersphere one. Non-maximum suppression then merged
these into 13,566 detections (22.9 candidate windows per
detection) of which 13,223 (97.5%) were correct, and 517
(3.8%) of the 13,740 annotated faces were missed.

In full cascade, we used a nonlinear hypersphere classi-
fier (kernel SVDD) at the last stage. Using a nonlinear SVM
instead of nonlinear hypersphere in the cascade typically
achieves slightly better results, but it is too slow compared
to the cascade using nonlinear hypersphere classifier. The
kernel SVDD classifier method returned 1716 support vec-
tors whereas nonlinear SVM classifier algorithm returned
15,691 support vectors. Therefore, the cascade using a non-
linear hypersphere classifier is approximately 8 times faster
than the one using a nonlinear SVM on face detection prob-
lems.

3.2 Human Detection

Training: We used the INRIA Person dataset (Dalal and
Triggs 2005) for our human (‘pedestrian’) detection experi-
ments, with LBP+HOG features on a grid of 8×8 pixel cells
for HOG and the detection window divided into a 5×3 set of
rectangular regions for LBP.We artificially enlarged the pos-
itive training set by including small random perturbations of
the ground-truth annotations, and randomly sampled 12,180
negative windows from the dataset’s negative (person-free)
training images. Initial detectors trained on these examples
were scanned over all of the training images to collect hard
examples, followed by retraining. The nonlinear SVM clas-
sifier returns 28,251 support vectors on the final training
set, whereas nonlinear hypersphere classifier returns only
2818 support vectors (therefore, the cascade with a nonlinear

Table 2 Average precision scores (%) for human detection on the
INRIA Person dataset

Method Average precision

Full cascade 92.28

Exemplar SVMs (Li et al. 2015) 44.36

Felzenszwalb et al. (2008) 90.17

Hussain and Triggs (2010) 84.10

Dalal and Triggs (2005) 75.00

Bold values show the best accuracies

hypersphere classifier is approximately 20 times faster than
the cascade using a nonlinear SVM). During detection, the
search window was moved in 4 pixel steps horizontally and
6 pixel ones vertically, and pyramid scales were spaced by a
factor of 1.15. Test images are up-sampled with a scale factor
of 1.2 before detection.
Results: Table 2 gives Average Precison scores for several
detectors trained and tested on the INRIAPerson training and
test sets. Some illustrative detections from our full cascade
are shown in Fig. 4. We compared our method to those of
Felzenszwalb et al. (2008, 2010b) (linear latent SVM using
multiple roots and parts over HOG, supplied with the soft-
ware fromFelzenszwalb et al. 2010b), Ensemble ofExemplar
SVMs (Malisiewicz et al. 2011; Hussain and Triggs 2010)
(a two stage, linear then quadratic, cascade based on sin-
gle root latent SVM over HOG + LBP + LTP), and Dalal
and Triggs (2005) (simple linear SVM over HOG). Our full
cascade using kernelized hypersphere classifier outperforms
all of these methods, improving on the best previous AP by
2.1% despite the fact that it uses only a single root and no
parts or latent training. Ensemble of Exemplar SVMs is the
worst performing method although it uses an ensemble that
includes 1237 linear SVMclassifiers trained for each positive
example.

3.3 PASCAL Visual Object Challenge Dataset

ThePASCALVOC2007dataset contains images of everyday
scenes with annotations for all full or partial instances of 20

123



Int J Comput Vis (2017) 123:334–349 345

Fig. 4 Some examples of detections from our full cascade on the
INRIA Person dataset. The yellow rectangles show ground-truth anno-
tations, the green ones valid detections based on the PASCAL VOC

criteria, and red ones false positives. (The false positives in the sec-
ond row are actually valid detections with missing annotations) (Color
figure online)

common object classes: aeroplane, bicycle, bird, boat, bottle,
bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, and tv monitor. Its
training/validation subset contains 5011 images with 12,608
annotated instances, and its test set contains 4952 images
with 12,032 annotated instances.
Training:Weused the latent trainingmethodology described
in Sect. 2.6 to train a full cascade detector for each VOC
class. As in Felzenszwalb et al. (2010b), we use a feature
pyramid with HOG features on a grid of 8 × 8 pixel cells
and windows steps of 8 pixels. The pyramid scales were
spaced by a factor of 1.07. We used kernel SVM’s for the
final cascade stages: they worked better than kernel SVDD

owing to the modest number of positive training samples
available,9 but they tended to accumulate large numbers of
negative support vectors to deal with themany hard negatives
so we applied the Reduced Set algorithm to limit them to 500
support vectors per root. On aworkstation, each detector took
about 5 seconds to run on a VOC image. In addition, we also
made comparisons to the more recent CNN based method of
Girshick et al. (2014). This detector has three stages, where
the first stage returns region proposals, the second stage
extracts 4096 dimensional CNN features, and the last stage

9 Typically only a few hundred—about a thousand per class partitioned
among 3 pairs of roots.
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Fig. 5 Some examples of detections from our full cascade method on images from the PASCAL VOC 2007 ‘bicycle’, ‘car’, ‘person’, and ‘train’
categories

includes a set of class-specic linear SVMs. Linear SVM clas-
sifiers are trained with negative hardmining.We replaced the
linear SVMs with our cascade classifiers in this setting and
obtained detection results on PASCAL VOC 2007. It should
be noted that a single cascade classifier is trained since all
candidate regions are warped onto the same size (256× 256
images) before extracting CNN features.
Results: Some examples of outputs from our detectors are
shown in Fig. 5. Table 3 givesAverage Precision scores on the
PASCALVOC2007 dataset for our full cascade object detec-
tors and for several others, including the official winner of the
originalVOC2007 challenge for the class10 and a selection of
methods based on the Felzenszwalb et al. (2010b) approach.
‘Felzenszwalb 2R + P’ denotes results from Felzenszwalb
et al. (2010b) using two roots and parts. ‘Felzenszwalb 6R’
denotes results obtained by using the publicly-available code
from Felzenszwalb et al. (2010b)11 to train a detector with
6 roots (3 symmetric pairs) and no parts—the same configu-

10 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/results/
index.shtml.
11 http://www.cs.berkeley.edu/~rbg/latent/index.html.

ration that our cascade uses. Similarly, ‘Felzenszwalb 6R +
P’ denotes results obtained using 6 roots (3 pairs), each with
6 parts. We also included the accuracies of Exemplar SVMs
from Malisiewicz et al. (2011). Test images are up-sampled
with a scale factor of 1.2 as before. For CNN features, we
used the same setting given in Girshick et al. (2014). More
precisely, we apply the cascade classifier to the CNN fea-
tures extracted from approximately 2000 candidate regions
for each image.

As can be seen in Table 3, using CNN features signifi-
cantly improves the results over HOGs. The best accuracy
is obtained by the proposed cascade classifier using CNNs
followed by the method of Girshick et al. (2014) using lin-
ear SVMs. Our method slightly outperforms linear SVMs
on 14 categories of the 20 object categories whereas linear
SVMs beat our cascade only on 5 categories and the accu-
racies are equivalent on 1 category. For HOG features, our
full cascade outperforms the original VOC 2007 challenge
winner on the class for 13 of the 20 object categories, and
also outperforms the directly comparable Felzenszwalb 6R
method for 13 categories. However it is the best of the meth-
ods tested only for two categories, bird and cow: on VOC,
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Table 3 Average precision score (%) on PASCAL VOC 2007

HOGs CNNs

Class\method Full
cascade

VOC 2007
winner

Exemplar
SVMs
(Li et al. 2015)

Felzenszwalb
2R + P
(Felzenszwalb
et al. 2010b)

Felzenszwalb
6R

Felzenszwalb
6R + P

Full cascade Girshick et al.
(2014)

Aeroplane 23.9 26.2 20.4 29.0 19.1 28.5 63.2 63.0

Bicycle 46.4 40.9 40.7 54.0 47.5 57.2 68.4 68.5

Bird 9.9 9.8 9.3 0.6 2.3 3.0 49.7 49.6

Boat 11.6 9.4 10.0 13.4 13.3 17.1 40.3 40.7

Bottle 18.8 21.4 10.3 26.2 14.9 24.9 32.5 31.9

Bus 39.7 39.3 31.0 39.4 40.4 47.5 62.9 62.9

Car 46.2 43.2 40.1 46.4 41.8 53.9 67.5 67.1

Cat 11.4 24.0 9.6 16.1 6.7 13.6 58.5 59.4

Chair 17.9 12.8 10.4 16.3 16.2 22.1 32.5 32.2

Cow 25.1 14.0 14.7 16.5 21.0 25.1 57.5 57.2

DiningTable 17.1 9.8 2.3 24.5 15.3 20.4 47.7 47.4

Dog 7.9 16.2 9.7 5.0 10.6 3.9 55.4 55.7

Horse 40.4 33.5 38.4 43.6 40.1 57.5 59.5 58.7

Motorbike 36.5 37.5 32.0 37.8 34.1 47.7 66.5 66.1

Person 33.1 22.1 19.2 35.0 30.1 42.4 50.2 49.5

Potted plant 9.5 12.0 9.6 8.8 11.3 12.2 29.1 30.1

Sheep 13.5 17.5 16.7 17.3 15.0 17.4 49.7 50.0

Sofa 18.8 14.7 11.0 21.6 21.9 31.5 48.9 48.7

Train 36.7 33.4 29.1 34.0 34.1 44.6 58.9 58.7

TV monitor 39.4 28.9 31.5 39.0 30.0 40.6 64.7 64.3

Average 25.2 23.3 19.8 26.2 23.3 30.6 53.2 53.1

Bold values show the best accuracies

including parts greatly improves performance and as a result
part-based methods using HOGs top 16 of the 20 categories
here. Note that we have not included any methods that use
context or inter-category non-maximum suppression for both
HOGs and CNNs in these tests. Such methods would almost
certainly improve the results, but they would take us outside
the scope of the individual detector development considered
here and they can usually be applied to any kind of detector
including ours.

We find that most of our missed detections are due to the
strictness of the box overlap based acceptance criteria. There
are also some failures for objects that are truncated, occluded
or smaller than the search window size, and occasional con-
fusion of visually similar classes (horse vs. cow, bicycle vs.
motorbike, car vs. bus).

4 Summary and Conclusions

This study has developed sliding window object detectors
based on short cascades of binary and one-class classifiers.
It began by arguing that ‘one-class’ methods—asymmetric
classifiers that focus on tightly modeling the extent of a

compact positive class, either ignoring the remaining neg-
ative examples or treating them as a broader, more diverse
background—are well suited to object detection tasks and
often provide improvements in accuracy and/or speed. It
then developed a specific form of object detector based on
a four-stage rejection cascade whose stages are respectively:
a linear SVM for initial pruning of easy negatives; a series
of linear distance-to-hyperplane filters; a linear interior-of-
hypersphere filter; and a kernelized interior-of-hypersphere
classifier. The last three stages are all one-class methods. For
the second stagewe developed a novel convex programbased
classifier that can be viewed either as linear SVM with an
upper bound on positive scores or as SVM-regression hyper-
plane fitting while avoiding a negative class that lies off to
one side. Our cascade framework supports multi-root detec-
tors and latent training (Felzenszwalb et al. 2010b), but not
(currently) parts. The final detectors give very competitive
results on the LFW, FDDB and ESOGU face detection and
the INRIAperson detection datasets (with single roots and no
latent training), and respectable results on the PASCALVOC
2007 dataset. Linear cascades including only the first three
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stages of our method also work quite well in many cases.
For the final stage of the full four-stage method, a kernel
SVM simplified using a Reduced Set method is sometimes
a better choice than a kernel hypersphere classifier, espe-
cially when there are many roots and relatively few positive
training examples. However, it should be kept in mind that
the cascade using a kernelized hypersphere is much faster
compared to the cascade using the kernel SVM since hyper-
sphere classifier returns less support vectors. More precisely,
the cascade using a kernel hypersphere classifier is approx-
imately 8 times faster than the one using a kernel SVM on
face detection problems whereas it was 20 times faster on
people detection.

There are several avenues for improving the proposed
approach. The most obvious is to add object parts, which
might significantly improve the results on PASCAL VOC.
However creating a cascade that uses parts is problematic, at
least as they are implemented in Felzenszwalb et al. (2010b).
Such parts are expensive to evaluate and hence ill-suited to
rapid search pruning, yet if flexible class modeling is needed
it must begin early enough in the cascade to prevent highly
flexed positives from being eliminated. One of Felzenszwalb
et al. (2010b)’s strengths is the robustness that it gains by
postponing ancillary decisions (such aswhether or not a given
part occurred at a given location) until the overall detection
decision.Anypruning-based framework for speedingup such
computations would need good bounds on, or empirical esti-
mates of, the extent to which a proposed filtering rule (e.g. a
threshold on a partly evaluated part or root) could perturb the
final detection decision. One-class methods might be useful
for such bounds owing to their ability to single out coherent
groups of responses amidst noise. Conversely, filtering is eas-
ier to incorporate into approaches that are based on finding
and assembling discrete detections (as opposed to integrating
soft presence scores), so an alternativewould be, e.g. , to filter
on possible root locations then run part searches near these as
in Cevikalp et al. (2013), or to select parts by their intrinsic
detectability (salience relative to the background) as in Ull-
man and Sali (2000) and use these as anchors for the search.

Another obvious enhancement would be to incorporate
inter-class interactions, both elementary ones such as non-
maximum-class suppression of overlapping detections from
competing classes and higher-level ones such as context.

Finally, we are not yet satisfied with the distance-to-
hyperplane classifiers. A better formulation is needed that
allows a well-localized positive class to be isolated within a
background of negatives using only one or a few dot product
evaluations, while yielding a convex learning algorithm that
scales to large datasets.
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